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Assignment of gene function has been a crucial, laborious, and time-consuming

step in genomics. Due to a variety of sequencing platforms that generates

increasing amounts of data, manual annotation is no longer feasible. Thus, the

need for an integrated, automated pipeline allowing the use of experimental

data towards validation of in silico prediction of gene function is of utmost

relevance. Here, we present a computational workflow named AnnotaPipeline

that integrates distinct software and data types on a proteogenomic approach

to annotate and validate predicted features in genomic sequences. Based on

FASTA (i) nucleotide or (ii) protein sequences or (iii) structural annotation files

(GFF3), users can input FASTQ RNA-seq data, MS/MS data from mzXML or

similar formats, as the pipeline uses both transcriptomic and proteomic

information to corroborate annotations and validate gene prediction,

providing transcription and expression evidence for functional annotation.

Reannotation of the available Arabidopsis thaliana, Caenorhabditis elegans,

Candida albicans, Trypanosoma cruzi, and Trypanosoma rangeli genomes

was performed using the AnnotaPipeline, resulting in a higher proportion of

annotated proteins and a reduced proportion of hypothetical proteins when

compared to the annotations publicly available for these organisms.

AnnotaPipeline is a Unix-based pipeline developed using Python and is

available at: https://github.com/bioinformatics-ufsc/AnnotaPipeline.
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Introduction

Genome annotation involves a detailed description and

understanding of the genome structure and assignment of

biological functions to the genes (Stein, 2001). Structural

annotation thus characterizes the physical structure of coding

and non-coding regions on a given genome, resulting in a

physical map of the genes’ number and positioning. Along

determination of the structure and organization of the

protein-coding sequences (CDS) located within open reading

frames (ORF) of each gene, annotation also includes a

description of other genomic elements such as promoters and

enhancers (Korf, 2004; Danchin et al., 2018). Several

computational tools known as gene predictors, such as

AUGUSTUS (Stanke and Waack, 2003) and GeneMark

(Brůna, Lomsadze, and Borodovsky, 2020), have been widely

used to perform structural annotation (Yandell and Ence, 2012).

Functional annotation consists of assigning biological

information to genes, such as their involvement in biological

processes, molecular functions, presence of functional protein

domains, and subcellular localization, among others (Stein, 2001;

Yandell and Ence, 2012). The assignment of biological functions

to protein-coding genes is generally performed through

similarity analysis with databases containing previously

annotated protein sequences using sequence aligners such as

BLAST (Camacho et al., 2009) or DIAMOND (Buchfink, Reuter,

and Drost, 2021). The biological function of a predicted CDS is

therefore assumed to be the same as the protein in the database

that demonstrates the most significant similarity, leading to an

annotation transfer (Hegyi and Gerstein, 2001). Thus, the

accuracy of the annotated database is fundamental for genome

annotation, allowing the quality of downstream analyses based

on the transferred annotations. Especially with the use of high-

throughput sequencing during the past years, several public

genomic and proteomic databases from a variety of organisms

are nowadays available. However, the exponential growth of

datasets impairs the quality of a proper and detailed structural

and functional annotation of genomes. For that, the use of

curated databases such as SwissProt/UniProtKB (The UniProt

Consortium, 2021) and Ensembl (Flicek et al., 2014), or even

organism-specific databases, such as those contained in the

VEuPathDB (Amos et al., 2022), is highly recommended to

ensure high quality to the genome annotation.

Considering the growing datasets of genomic and proteomic

databases, and the specific genomic features across taxa,

combining different computational tools or pipelines to

automatically assess gene structural and functional annotation

has been widely used (Danchin et al., 2018). Composed of a set of

data processing methods connecting inputs and outputs in series,

automated pipelines can perform genome annotation by

sequence similarity (Hyatt et al., 2010; Steinbiss et al., 2016)

or functional annotation of proteins (Gotz et al., 2008; Vlasova

et al., 2021; Törönen and Holm, 2022). Nevertheless, only a few

genome annotation pipelines use expression experimental data

(RNA-Seq or MS/MS) to validate the in silico annotation (Ghali

et al., 2014; Sheynkman et al., 2014).

Large-scale genomic and transcriptomic studies based on

high-throughput sequencing platforms in the past decade have

provided increasing amounts of data (Kumar et al., 2016a), also

providing extensive gene expression profiles based on transcribed

RNAs (RNA-seq) sequencing. Moreover, extensive proteomic

data acquired from sensitive mass spectrometry (MS)

technologies are available from several databases (Vaudel

et al., 2016), such as PRIDE (Perez-Riverol et al., 2022),

MassIVE (Miao et al., 2012), and the ProteomeXchange

Consortium (Vizcaíno et al., 2014). Thus, using transcription

and expression evidence to annotate newly predicted CDS or

reannotate formerly analyzed genomes would reveal novel

biological aspects. The proteogenomic approach allows the

cross-validation of genomic, transcriptomic, and proteomic

data on both intra- and inter-specific analyzes (Nesvizhskii,

2014). However, this approach requires novel computational

methods and pipelines. Thus, integrating the classic

annotation analysis by sequence similarity with customizable

parameters and databases, combined with functional prediction

validated with RNA-seq and MS/MS data evidence, would

enhance genome annotation as an essential step toward

comprehending biological mechanisms.

In this study, we developed AnnotaPipeline, a proteogenomic

computational tool for automatic annotation of eukaryotic

genomes using support from high-throughput transcriptomic

and proteomic data, allowing validation of gene function and

expression.

Methods

AnnotaPipeline

Development and overview
The AnnotaPipeline overall scheme and processes are shown

in Figure 1. This pipeline was developed using Python and runs

on Unix-based systems, consisting of a series of tolls and in-

house scripts for data preparation, processing, and analysis.

Documentation related to installation instructions and scripts

to run AnnotaPipeline are available at https://github.com/

bioinformatics-ufsc/AnnotaPipeline.

Input and configuration files
AnnotaPipeline requires the input of at least one of the

following different FASTA files: 1) a nucleotide sequence file,

2) a protein sequence file, 3) a protein sequence file, and

structural annotation files in GFF3 format. If the first option

is selected, AnnotaPipeline will perform gene prediction on the

provided nucleotide sequence. Therefore, it is essential to use a

trained AUGUSTUS model for the gene prediction process
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before executing the pipeline. This execution will produce an

annotated GFF3, and CDS sequences will contain a complete

header. For the second option, gene prediction will be skipped,

and the final output file will contain only a simplified sequence

header. The third option is executed equally to the second option,

the pipeline will include annotations for each CDS from the

provided GFF file. Also, it is recommended that the submitted

GFF file is in GFF3 format, preferably from a previous

AUGUSTUS gene prediction.

Aside from the molecular data input, it is also required from

the user to access the YAML configuration file prior to running

the pipeline, where locations of both software and databases

required for the personalized analysis must be provided.

Similarly, if analyses with experimental data will be carried

out, it is also necessary to provide the locations of folders

containing RNA-seq and MS/MS data.

Users can define the number of processing threads that will

be used during the execution of the pipeline (default is set to

4 threads) and are required to define the cutoff parameters and

specific keywords to classify hypothetical proteins during the

similarity analysis process. This configuration step is facilitated if

the user installs AnnotaPipeline using Conda from the

environment file available at https://github.com/

bioinformatics-ufsc/AnnotaPipeline.

Annotation process
The annotation process starting with a genomic file input is

divided into three steps. Initially, gene prediction is performed by

AUGUSTUS (Stanke and Waack, 2003). Although

AnnotaPipeline is mainly focused on eukaryotic organisms,

the pipeline accepts input of further gene prediction training

models if absent in the AUGUSTUS standalone version. It is

recommended to use the WebAUGUSTUS platform to generate

custom training models (Hoff and Stanke, 2013).

Following gene prediction, the annotation process continues

into similarity analysis performed by the BLASTp algorithm

(Camacho et al., 2009) using (i) the SwissProt database, which

contains about 570,000 manually curated protein sequences from

a wide variety of organisms (The UniProt Consortium, 2021),

and (ii) a user-specified database such as TrEMBL/UniProtKB,

VEuPathDB and GenBank NR, or additional databases that must

be specified in the AnnotaPipeline.yaml configuration file.

Despite the used database, the pipeline contains parsing

scripts that automatically will transfer the protein annotation

FIGURE 1
Overview of AnnotaPipeline workflow, indicating the optional and the required inputs from the user, the internal processes, and the output
layers.
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for the predicted CDS on the output file. Proteins are then

classified into three groups: annotated proteins (known

function), hypothetical proteins, and no-hit proteins.

Annotated proteins are those with attributed annotation either

by the SwissProt or the user-specified database. In

AnnotaPipeline, hypothetical proteins are considered those

presenting similarities with proteins with no specific

annotation in the databases (unknown function) and that

contain filter keywords in their descriptions, such as

“fragment”, “hypothetical”, “partial”, “uncharacterized”,

“unknown”, and “unspecified”. These are the default keywords

used by the pipeline, but users can change these in the

AnnotaPipeline.yaml configuration file. Annotations in subject

proteins will be disregarded if at least one description contains

any of the provided keywords. No-hit proteins are proteins with

no available match, and therefore no annotation, in either

database used in the similarity analysis step. For downstream

analysis steps, the no-hit and the hypothetical proteins are

grouped by the pipeline. Furthermore, proteins revealing no

matches with databases and presenting no supporting

evidence from experimental data are considered true negative

proteins.

The third step consists of the functional annotation of

proteins, starting with analyzing both annotated and

hypothetical protein groups by InterProScan software (Jones

et al., 2014). Exclusively for the hypothetical protein/no-hit

group, further analysis using the hmmscan algorithm of the

HMMER suite (Finn, Clements, and Eddy, 2011) and the RPS-

BLAST (Camacho et al., 2009) are performed. The resulting

functional annotation is contained in a single output file where all

predicted proteins will be annotated and can be used as input for

the experimental validation analyses.

Experimental validation with
proteogenomic data

The AnnotaPipeline accepts the input of RNA-seq and

MS/MS data that will allow experimental validation of CDS

prediction and annotation. Upon activation of the

experimental analysis module, transcriptomic data will be

processed by Kallisto (Bray et al., 2016), which performs a

pseudo-alignment of RNA-seq reads to the annotated protein

file. The result will be refined based on a quantification of

aligned transcripts, which are accounted for transcripts per

million (TPM). Users may concatenate their transcriptomic

data into a single FASTQ file (for single-end RNA-seq) or two

FASTQ files (R1 and R2, for paired-end RNA-seq) to run

multiple experiments at once. For experimental validation

using proteomic data (MS/MS), users can provide a single

folder containing their MS/MS data files to run multiple

experiments simultaneously. The search for MS/MS-derived

peptides among the annotated proteins will be performed

using Comet (Eng, Jahan, and Hoopmann, 2013), following

the user-provided search parameters in comet.params

configuration file, generating the input for the Percolator

software (The et al., 2016). Then, the proteomic data will

be searched among the annotated proteins dataset and parsed

by the q-value threshold of the Percolator software.

Output files
The pipeline will create a log file and an output folder in

the AnnotaPipeline directory. The log file contains details of

script processing, software execution, and outputs of each

computational tool. Also, this log may contain any possible

warnings or errors relative to the software execution. Within

the output folder, the pipeline will create (i) two FASTA files

containing the annotated proteins and their respective

annotated CDS, (ii) a GFF file including a transcript

product field containing the final annotation for each CDS,

(iii) a TXT file containing the all CDS product ID and

annotated description, and (iv) a TSV file summarizing all

annotated CDS and information regarding transcription

(RNA-Seq) or expression (MS/MS) evidence. In addition to

these main output files, within each of the folders created by

AnnotaPipeline, other outputs can help the user manually

curate the annotations suggested by the pipeline

(Supplementary Table S1).

Comparative evaluation of AnnotaPipeline
performance

Performance tests were carried out using a computational

cluster equipped with 40 threads processor (3.2 GHz), 285 GB

RAM memory (DDR4, 2,400 MHz), and 5 TB storage space

(2.5 SATA HD, 7,200 RPM). Storage was mainly used for RNA-

seq and MS/MS data of the testing organisms. Despite the

availability of computing power, the number of processing

threads used for testing was set to 12 in the

AnnotaPipeline.yaml configuration file.

Molecular data from three different model organisms were

used to test AnnotaPipeline: Arabidopsis thaliana (strain

TAIR10), an essential model for plant biology and genetics;

Caenorhabditis elegans (strain WBcel235), an important model

for molecular and developmental biology; and Candida albicans

(strain SC5314), a fungal pathogenmodel. Genomic data for each

of these organisms were retrieved from GenBank under the

following accession numbers: GCA_000001735.2,

GCA_000002985.3, and GCA_000182965.3, respectively.

RNA-seq data for each of these organisms were obtained from

BioProject/NCBI under the following accession numbers:

PRJNA779571, PRJNA809747, and PRJNA750749 for A.

thaliana; PRJNA734346, PRJNA658149, and

PRJNA755869 for C. elegans; PRJNA714869, PRJNA496318,

PRJNA752883, and PRJNA744166 for C. albicans. MS/MS

data for each of these organisms were obtained from

ProteomeXchange, under the following accession numbers:
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PXD012708 and PXD010730 for A. thaliana; PXD025128 for C.

elegans; PXD005364 for C. albicans.

For the similarity analysis step, in addition to the SwissProt

database, a specific database of protein sequences was used for

each model organism: for A. thaliana, a subset of 370,680 protein

sequences was obtained from the GenBank NR dataset; for C.

albicans, the FungiDB v56 containing 2,331,868 protein

sequences was obtained from VEuPathDB; and for C. elegans,

a subset of 23,010 protein sequences was obtained from TrEMBL.

AnnotaPipeline was independently run with default

parameters for every organism, using the genome FASTA file

obtained for each organism as input. AUGUSTUS (version 3.4.0)

prediction was performed with the gene model argument set to

partial and using the prediction model dataset already provided

by the software, as in: arabidopsis, for A. thaliana;

candida_albicans, for C. albicans; and caenorhabditis, for C.

elegans. Therefore, the gene prediction step was not

optimized. BLASTp (version 2.12.0) execution was done

assuming an e-value of 1e-5, the number of maximum target

sequences set to 10. Also, a minimum threshold value of sequence

coverage was set to 30, sequence identity 40, and sequence

positivity 60 for the annotation transfer. The annotation was

chosen based on the highest bit score between the analyzed

sequences.

InterProScan (version 5.52–86.0) was run for the functional

annotation step, allowing for the lookup of corresponding Gene

Ontology annotation (--goterms). HMMscan (version 3.3.2) had

the e-value of both sequences and domains set to 1e-5, and

RPSblast (version 2.12.0) also had the minimum e-value of target

sequences set to 1e-5. Kallisto (version 0.48.0) pseudo-alignment

of RNA-seq dataset was run with 1,000 bootstraps, and the

minimum threshold of TPM was selected as the mean. Comet

(version 2021.01) was run for each MS/MS dataset with a scan

range minimum and a maximum set to 200 and 4,000,

respectively. After, Percolator (version 3.5) was run with

Comet output files, and the results obtained were filtered by a

q-value threshold of 0.05. As a complete example, all the output

files from the A. thaliana dataset are available at https://github.

com/bioinformatics-ufsc/AnnotaPipeline/blob/v1.0/Output%

20Example/Annota_Athaliana.tar.xz.

The pipeline was further tested using two taxonomically close

protozoa species of medical relevance containing over 50% of

their CDS annotated as hypothetical proteins: Trypanosoma

cruzi (strain Sylvio X10/1), the etiological agent of Chagas

disease (Talavera-López et al., 2021) and Trypanosoma rangeli

(strain SC58) an avirulent trypanosomatid of mammals (Stoco

et al., 2014). Genomic data was retrieved from the TriTrypDB

(version 57) under the following accession numbers:

DS_107bdce9bb, and DS_9d0531db8e, respectively. For both

organisms, the Augustus prediction model was trained online

based on their respective available genome file and annotated

transcripts files (tcruzi_sylviox10, for T. cruzi; and

trypanosoma_rangeli, for T. rangeli). For the similarity

analysis step, a database of 648,560 protein sequences

obtained from the TriTrypDB was used, along with the

mandatory SwissProt database. The AnnotaPipeline was run

using default parameters for both trypanosomatid species, as

previously mentioned.

Results

AnnotaPipeline workflow

The complete execution of AnnotaPipeline resulted in the

expected output files that were

named <basename>_AnnotaPipeline_<file>.<format>,
allowing users to identify the results and perform multiple

experiments in the same directory by swapping

the <basename> of the experiments in the

AnnotaPipeline.yaml configuration file.

The generated annotation files in FASTA format display for

each sequence a header containing the following information

separated by a pipe character “|”: sequence identification; source

organism; scaffold number; CDS start; CDS end; strand

orientation; and sequence description, were functional

annotations provided by GO and IPR are included. If no

structural annotation GFF file is included in the analysis,

information concerning strand orientation and scaffold

location will be absent. Also, AnnotaPipeline changes the

“transcript product” field of each CDS in the annotated GFF

file to the corresponding sequence description present in the

header of the FASTA file.

Comparative analysis of AnnotaPipeline
results

AnnotaPipeline was comparatively tested using genomic data

of different model organisms for which genome annotation is

available. The pipeline enabled experimental evidence analyses

and no gene prediction optimization. The summary of the

obtained annotations, functional annotations, and

experimental evidence results for the A. thaliana, C. albicans,

and C. elegans datasets are presented in Table 1.

For A. thaliana, the pipeline annotated a total of

19,651 protein sequences in 29 h and 07 min; 5,377 protein

sequences for C. albicans in 10 h and 06 min; and

14,278 protein sequences for C. elegans in 20 h and 58 min.

Among the genome analyzed, C. albicans had the highest

percentage of annotated proteins with 99.48%, followed by A.

thaliana with 98.90%. C. elegans had 22.62% of their protein

sequences annotated as hypothetical proteins, and another 3.24%

of proteins with no matches available in the analyzed databases.

Comparatively to the current data from analyzed genomes

available in public databases, AnnotaPipeline provided a

Frontiers in Genetics frontiersin.org05

Maia et al. 10.3389/fgene.2022.1020100

https://github.com/bioinformatics-ufsc/AnnotaPipeline/blob/v1.0/Output%20Example/Annota_Athaliana.tar.xz
https://github.com/bioinformatics-ufsc/AnnotaPipeline/blob/v1.0/Output%20Example/Annota_Athaliana.tar.xz
https://github.com/bioinformatics-ufsc/AnnotaPipeline/blob/v1.0/Output%20Example/Annota_Athaliana.tar.xz
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1020100


higher number of annotated proteins (known function) and

fewer hypothetical proteins. Consequently, the number of

hypothetical proteins in the A. thaliana dataset went down

from 8.75% to 1.10% using the AnnotaPipeline, while for C.

elegans and C. albicans datasets, the reduction was from 34.02%

to 25.85% and 38.19%–0.52%, respectively.

Functional annotation of the A. thaliana, C. albicans and C.

elegans genomes using the AnnotaPipeline revealed 69.27%,

68.90%, and 53.14% of their CDS associated with at least one

GO term associated, respectively. When RNA-Seq and MS/MS

data were included for the analysis of experimental evidence of

transcription or expression, A. thaliana, C. albicans and C.

elegans had 16.43%, 15.05%, and 12.00% of their annotated

proteins validated with transcriptomic and proteomic data,

respectively. Interestingly, no C. elegans annotated CDS were

validated by the available MS/MS dataset.

Comparative analysis of the genome annotation for T. cruzi

and T. rangeli retrieved from the TriTrypDB (version 57) and the

annotation generated using AnnotaPipeline is shown in

Supplementary Table S2. Although not including experimental

data for validation (RNA-Seq orMS/MS), the pipeline was able to

reduce the number of hypothetical proteins by 60.46% and

42.84% for T. cruzi and T. rangeli, respectively, while

increasing the proportion of annotated CDS having at least

one GO term assigned (Supplementary Table S2).

Considering the annotation provided by AnnotaPipeline, it is

possible to classify the annotated protein sequences into eight

different categories based on three different criteria: 1) available

annotation based on sequence similarity with provided databases; 2)

transcription evidence by quantifying RNA-seq reads; and 3)

translation evidence supported by the identification of peptides

matches from MS/MS information. As an example, result of the

analysis of the A. thaliana dataset is shown in Table 2. From a total

of 19,651 annotated CDS, the less represented categories are those

who contains CDS having support from either RNA-Seq (12.65%)

or MS/MS (4.09%) support, or both (3.78%).

Discussion

Whole genome annotation is one of the first and most essential

steps in any genome study, consisting in a time-consuming and

laborious work depending on the genome size, and no longer can be

performed manually due to the amount of data generated by high-

throughput sequencing (Ouzounis and Karp, 2002). AnnotaPipeline

was designed to perform automatic annotation of genomes, having

the unique feature to include experimental data derived from

transcriptomic (RNA-Seq) or proteomic (MS/MS) approaches

towards experimental validation of an annotated CDS. The

pipeline is easy to install, runs on operating systems that support

TABLE 1 Summary of AnnotaPipeline annotations, functional annotations, and experimental evidence results for different model organisms.

Parameter Arabidopsis thaliana TAIR10 Candida albicans SC5314 Caenorhabditis elegans WBcel235

GenBank AnnotaPipeline GenBank AnnotaPipeline GenBank AnnotaPipeline

Predicted proteins 27,562 19,651 6,043 5,377 19,984 14,278

Annotated proteins 25,151
(91.25%)

19,434 (98.90%) 3,735
(61.81%)

5,349 (99.48%) 13,186
(65.98%)

10,587 (74.15%)

Annotated by SwissProt – 13,444 (69.18% of
annotated)

– 2,914 (54.48% of
annotated)

– 5,395 (50.96% of
annotated)

Annotated by SpecificDB – 5,990 (30.82% of
annotated)

– 2,435 (45.52% of
annotated)

– 5,192 (49.04% of
annotated)

Hypothetical proteins 2,411 169 2,308 13 6,798 3,229

No hit proteins (true
negative)*

– 48 (45) – 15 (9) – 462 (440)

Total hypothetical proteins 2,411 (8.75%) 217 (1.10%) 2,308
(38.19%)

28 (0.52%) 6,798 (34.02%) 3,691 (25.85%)

Proteins with at least 1 IPR
term

– 17,974 (91.47%) – 4,704 (87.48%) – 11,050 (77.39%)

Proteins with at least 1 GO
term

– 13,612 (69.27%) – 3,705 (68.90%) – 7,587 (53.14%)

Proteins with transcript
evidence

– 3,228 (16.43%) – 716 (13.32%) – 1,714 (12.0%)

Proteins with peptide
evidence

– 1,546 (7.87%) – 809 (15.05%) – 0 (%)

*True negative are proteins with no match on studied databases and no supporting evidence from experimental data, which could possibly be artifacts from gene prediction. Reference

genome GenBank accession number: Arabidopsis thaliana (strain TAIR10) = GCA_000001735.2; Caenorhabditis elegans (strainWBcel235) = GCA_000002985.3; Candida albicans (strain

SC5314) = GCA_000182965.3.
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command-line options, such as Unix-based systems, and does not

require high computational demands, although the time-consuming

tasks can be reduced while using more robust machines. It is also

user-friendly and customizable to meet the user needs in terms of

analysis stringency.

Although distinct genome annotation pipelines are available

(Gotz et al., 2008; Hyatt et al., 2010; Ghali et al., 2014),

AnnotaPipeline provides the possibility of using RNA-seq and

MS/MS data to improve genome annotation simultaneously.

Considering that proteomic data have become increasingly

accessible (Nesvizhskii, 2014), and new RNA-seq technologies,

such as single-cell or single-molecule sequencing, are improving

significantly (Wang et al., 2019), the use of this pipeline would

increase que quality and accuracy of the annotated genomes from

a variety of organisms by providing several possible annotations

for each protein sequence. On top of providing a more accurate

automated analysis, the pipeline also offers information to

support manual curation of the annotation by the user.

Comparison of the results obtained using AnnotaPipeline

with the data available in public databases, it was possible to

observe a reduction in the number of hypothetical proteins for A.

thaliana (91.0%), C. elegans (45.70%), and C. albicans (98.79%),

as shown in Table 1. This reduction can be due to the use of

customizable databases and keywords but also to the use of

combined proteogenomic data to complement gene annotation,

increasing the reliability of gene prediction and automatic

annotation.

In addition to these well-annotated genomes,

AnnotaPipeline also showed good performance when used to

annotate the repetitive genomes from two closely related species

of Trypanosoma (T. cruzi and T. rangeli) retrieved from

TriTrypDB, both lacking RNA-seq or MS/MS data for

experimental validation. It was possible to observe a relative

reduction of more than 60% in the number of proteins annotated

as hypothetical (Supplementary Table S2).

The use of experimental data to validate CDS annotation

raises a critical discussion, especially regarding hypothetical

proteins. Categorizing hypothetical proteins according to their

evidence of transcription or expression by AnnotaPipeline

revealed interesting results. Although presenting experimental

support from RNA-Seq, MS/MS or both, as observed for A.

thaliana proteins belonging to Class 7 (Table 2), they remain

annotated as hypothetical proteins in the studied databases. In

this context, annotation pipelines using this multi-omics

approach can provide fundamental insights into new and

uncharacterized proteins and revise those whose functions are

already annotated. Knowledge areas associated with medicine

would benefit most since previously annotated hypothetical

proteins could now be studied and thus allow for the re-

evaluation of disease diagnosis or prognostic methods (Kumar

et al., 2016b).

Furthermore, AnnotaPipeline can be used to guide the

exploration of proteins because it adds functional annotation

to protein annotation through the incorporation of GO and IPR

terms. Especially for hypothetical or uncharacterized proteins,

the classical description of annotations might not be biologically

informative, so the lack of functional annotations (such as GO or

IPR terms) increases this information gap (Lubec et al., 2005;

Gotz et al., 2008). AnnotaPipeline provides descriptive and

functional information for these proteins during the

automated annotation process, which helps to identify

potential prediction artifacts and streamline the process of

manually curating the annotations. Lastly, the AnnotaPipeline

summary file can provide to users the SUPERFAMILY protein

information, adding yet another layer of detail to annotations.

This information can provide new insights into the functionality

of uncharacterized proteins, as they represent possibilities of new

structures and functions to be explored (Lubec et al., 2005).

Conclusion

By integrating experimental data from RNA-seq and MS/MS

analyses to validate prediction and annotations of protein-coding

TABLE 2 Classification table of annotated proteins by AnnotaPipeline for the Arabidopsis thaliana dataset.

Categories Hypothetic Annotation Transcript Evidence Peptide Evidence Number of
sequences

Percentage (%)

1 Yes No No 203 1.03

2 No No No 15,417 78.45

3 Yes Yes No 5 0.03

4 Yes No Yes 7 0.04

5 No Yes No 2,480 12.62

6 No No Yes 796 4.05

7 Yes Yes Yes 2 0.01

8 No Yes Yes 741 3.77
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sequences, AnnotaPipeline, an integrated and modular genomic

annotation pipeline, promoted the reduction of the number of

hypothetical proteins for various organisms. The use of this

original proteogenomic approach on reannotation of A.

thaliana, C. elegans, C. albicans, T. cruzi, and T. rangeli

datasets, have increased the proportion of annotated proteins,

consequently reducing the number of hypothetical proteins if

compared to the currently available annotation. AnnotaPipeline

was developed as a generalist annotation pipeline, allowing the

assessment of genomes from any eukaryotic organism with

available molecular data.
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