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Given the considerable cost of drug discovery, drug repurposing is becoming

attractive as it can effectively shorten the development timeline and reduce the

development cost. However, most existing drug-repurposingmethods omitted

the heterogeneous health conditions of different COVID-19 patients. In this

study, we evaluated the adverse effect (AE) profiles of 106 COVID-19 drugs. We

extracted four AE signatures to characterize the AE distribution of 106 COVID-

19 drugs by non-negative matrix factorization (NMF). By integrating the

information from four distinct databases (AE, bioassay, chemical structure,

and gene expression information), we predicted the AE profiles of 91 drugs

with inadequate AE feedback. For each of the drug clusters, discriminant genes

accounting for mechanisms of different AE signatures were identified by sparse

linear discriminant analysis. Our findings can be divided into three parts. First,

drugs abundant with AE-signature 1 (for example, remdesivir) should be taken

with caution for patients with poor liver, renal, or cardiac functions, where the

functional genes accumulate in the RHO GTPases Activate NADPH Oxidases

pathway. Second, drugs featuring AE-signature 2 (for example,

hydroxychloroquine) are unsuitable for patients with vascular disorders, with

relevant genes enriched in signal transduction pathways. Third, drugs

characterized by AE signatures 3 and 4 have relatively mild AEs. Our study

showed that NMF and network-based frameworks contribute to more precise

drug recommendations.
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Introduction

The coronavirus disease 2019 (COVID-19) has swept the world for over 2 years.

Although COVID-19 vaccines have made an indelible contribution to triumphing over

the epidemic, it is not the silver bullet to end the pandemic. An increasing number of

infected cases were reported even though they were fully vaccinated (i.e., the COVID-19

vaccine breakthrough infections) (CDC Covid-19 Vaccine Breakthrough Case
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Investigations Team, 2021). There is an urgent need to develop

therapeutic drugs to fight against this pandemic.

Because traditional drug discovery methods are time

consuming and expensive, the drug repurposing method is

becoming an attractive option in the current urgent

circumstance. Recently, many computational approaches have

been developed to narrow down the search space of drugs to

accelerate the process of drug repurposing against SARS-COV-2

(Gordon et al., 2020; Jang et al., 2021; Adhami et al., 2021; Guo

et al., 2021; Gysi et al., 2021). Among them, the network-based

approach accounts for a large proportion. Rintala et al. (2022)

reviewed some representative drug repurposing results for

COVID-19, which applied network proximity algorithms.

Most of the existing computational methods have two main

shortcomings. First, only one particular type of data was used in

the drug repurposing procedure, which may limit the power to

identify therapeutic candidates. Integrating multiple

heterogeneous data sources would be more powerful. The

other shortcoming is the so-called winner-takes-all pattern.

Specifically, the selected repurposed drug may be

recommended to all patients without taking the heterogeneous

health conditions into account. In the era of precision medicine,

it is normal to recommend specific drugs for patients with

distinct underlying conditions, even though they are

diagnosed with the same disease. To address the limitations of

the winner-takes-all pattern in the existing drug repurposing

scheme, predicting the drug’s heterogeneous safety levels with

respect to the different health conditions of patients is essential.

From the perspective of drug safety, drugs repurposed for

treating COVID-19 can be classified into two categories. The first

category contains drugs that are still in or about to be in the stage

of clinical trials. Because these drugs have not been used by

COVID-19 patients on a large scale, their adverse effect (AE)

feedback may be inadequate and the evaluation of drug safety

remains unclear. In this case, it is more desirable to conduct

computational methods to predict side effects for drugs in the

clinical trial stage to save research time and cost. The prediction

of drug side effects is usually based on drug–drug similarity

through integrating multi-source data, including chemical

structures, protein targets, and therapeutic indication (Wang

et al., 2014; Zhang et al., 2016; Timilsina et al., 2019).

The second category involves drugs that have been approved

by the World Health Organization (WHO) or drugs with

relatively abundant post-market surveillance-reported AEs

offered by COVID-19 patients. Jing et al. (2021) mined the

AE information of several COVID-19 drugs using the FDA

adverse events reporting system (FAERS) database, presenting

the landscape of overreported AEs in each organ/system for each

drug. Wu et al. (2020) explored the associations between

COVID-19 drugs and 30 human tissues based on network

proximity. Although it is more systematic to classify AEs into

tissue level or system level, the biological process causing AEs

might be cross organs or cross systems. Thus, it is more powerful

to integrate different AEs and different drugs together to dig out a

higher-level landscape of AEs, which can give us a

comprehensive picture of drug safety and offer benefits for

drug recommendation in precision medicine.

In this drug safety study, we conducted the AE profile for two

different kinds of drugs: drugs with abundant AE information

and drugs without abundant AE information. First, based on the

relatively abundant AE information provided by FAERS, we

proposed a non-negative matrix factorization (NMF) (Lee and

Seung, 2000) framework for drugs that have already been used to

treat COVID-19. Apart from extracting four AE signatures to

depict each drug’s AE distribution, NMF also provided

abundance fractions on the four AE signatures for each drug,

which we refer to a characteristic combination of AEs as an AE-

signature. The higher-level landscape of AEs represented by AE

signatures can help us partition the whole COVID-19 patient

cohort into four subpopulations, with each subpopulation more

vulnerable to its corresponding AE signature. Therefore, we can

conduct the precise drug recommendation by incorporating the

AE signature’s abundance fraction for each drug.

Second, because COVID-19 drugs in the clinical trial stage

lack AE feedback, we predicted their AE profiles to achieve more

accurate personalized drug recommendations. Specifically, we

1) Constructed drug–drug similarity networks using data

coming from multiple sources

2) Built a network imputation framework to tackle information

imbalance among networks

3) Combined the integrated similarity network with drugs

possessing a relatively affluent drug safety profile

We presented literature support and molecular-level

explanations to illustrate the rationality of the AE prediction

results.

Methods

Workflow

The workflow of our study is illustrated in Figure 1.

First of all, we collected drugs that are in the current COVID-

19 clinical trial stage (Pundi et al., 2020; Bugin and Woodcock,

2021) together with drugs from the COVID-19 Emergency Use

Authorization FAERS database (CEUAFD), mined their

information from four different datasets (encompassing AE,

bioassay, chemical structure, and gene expression

information), and constructed four first-stage drug–drug

similarity networks accordingly (see Supplementary Material).

For simplicity, we refer to COVID-19 drugs that emerged in the

CEUAFD as CEUAFD drugs hereafter. Second, for drugs in the

clinical trial stage, we only reserved drugs whose information was

available among all four databases. For some CEUAFD drugs
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abundant in certain AE signatures, their information across all

four databases may be incomplete. To leverage their informative

AE feedback and tackle the information imbalance problem, we

built an imputation method based on multi-dimensional scaling

(MDS) (Cox and Cox, 2008) to patch up the information

imbalance among data sources, forming four-dimension-

consistent imputed second-stage networks. Third, we applied

the similarity network fusion (SNF) method (Wang et al., 2014)

to the four second-stage networks to obtain a final-stage

integrated drug–drug similarity network (see Supplementary

Material). At the same time, we conducted NMF to the

CEUAFD drugs to extract four higher-level AE signatures and

drugs’ abundance fractions on the deciphered AE signatures.

Meanwhile, the dimension reduction of AEs and clustering of

CEUAFD drugs can be achieved. Finally, based on the integrated

similarity network and CEUAFD drugs’ clustering outcome from

the NMF procedure, we obtained four drug clusters for all

analyzed COVID-19 drugs, with each cluster featuring one

specific AE signature. Precise recommendations for drugs in

different clinical stages can be implemented subsequently (see

Supplementary Material). To demonstrate the reliability of our

predicted results, we performed extensive literature explorations

and measured drug–tissue distances by taking a network

proximity approach on the Genotype-Tissue Expression

(GTEx) database (Lonsdale et al., 2013). For every pair of

drug clusters among the four clusters, we conducted sparse

linear discriminant analysis (SLDA) (Mai et al., 2012) to pick

up genes with discriminant expression patterns. If there is a

correspondence between discriminant genes and AE signatures

for each pair of drug clusters, the rationality of our drug

clustering results can be proved. Pathway enrichment analysis

(see Supplementary Material) and gene function analysis

revealed that the discriminant genes do have the ability

to account for different AE signatures in each pair of drug

clusters.

Network imputation

We found that drugs abundant with AE feedback may have

insufficient information from other data sources (for example,

multi-compound drugs casirivimab and imdevimab). To make

full use of the AE information reported by COVID-19 patients

and construct a more informative integrated drug–drug

similarity network, we imputed similarity scores for the other

three databases based on the FAERS data.

We took the bioassay database as an example to demonstrate

the imputation process. Suppose the first-stage drug–drug

similarity matrices constructed by FAERS and bioassay

database are denoted by Sf ∈ Rnf×nf and Sa ∈ Rna×na (see

Supplementary Material). To make drug information reflected

by different databases transmissible, we adopted the MDS (Cox

and Cox, 2008) method to translate “drug–drug similarity” into

“lower-dimensional coordinate” for all drugs. Therefore, a

predictive model linking the “lower-dimensional coordinate”

of FAERS and the bioassay database can be built using

dataset-shared drugs. For drugs that lack information in

bioassay form, the information provided by the FAERS

FIGURE 1
Workflow. (A) Four types of input data, including bioassay, chemical structure, LINCS, and FAERS data. (B) Construction of four first-stage
networks based on four types of drug data. (C) Construction of four second-stage networks based on drug intersection and MDS-based network
imputation. (D) Construction of last-stage network from similarity network fusion (SNF). (E)Non-negative matrix factorization (NMF) of count matrix
from the CEUAFD; X, drug-AE count matrix; W, AE-signature matrix; and H, drug abundance fraction matrix. (F) Clustering of all COVID-19
drugs by combining results from (D) and (E), with each cluster featuring one AE signature. (G) Gene expression information extracted from LINCS
data with the A549 cell line for four clusters of drugs. (H)Discriminant gene sets obtained by sparse linear discriminant analysis (SLDA) with respect to
each pair of drug clusters.
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database can be transmitted by this predictive model to fulfill the

imputation.

To let the “lower-dimensional coordinate” of drugs preserve the

similarity given by Sf or Sa to the largest extent, we applied an

eigenvalue decomposition (EVD) method to the double-centering

matrix Cf � −1
2HfSfHf and Ca � −1

2HaSaHa, whereHf andHa

are the centering matrix, i.e., Hf � Inf − Jnf/nf, and Ha � Ina −
Jna/na with Inf ∈ Rnf×nf and Ia ∈ Rna×na denoting the identity

matrix and Jnf ∈ Rnf×nf and Ja ∈ Rna×na denoting the matrix of

all ones. Concretely, we suppose

Cf � PΛf P
T ≜~P~PT

, (1)
Ca � QΛaQ

T ≜ ~Q ~Q
T
, (2)

where P and Q are orthogonal matrices with P � (ξ1, ..., ξnf) and
Q � (η1, ..., ηna). Here, we denote ξk � (ξk,1, ..., ξk,nf)T for

k � 1, ..., nf; ηl � (ηl,1, ..., ηl,na)T for l � 1, ..., na. Λf and Λa are

diagonal matrices with Λf � diag(λf,1, ..., λf,nf), Λa �
diag(λa,1, ..., λa,na). ~P � PΛf

1
2 � (

���
λf,1

√
ξ1, ...,

����
λf,nf

√
ξnf) and

~Q � QΛa
1
2 � ( ���

λa,1
√

η1, ...,
����
λa,na

√
ηna). For convenience, we

suppose λf,1 ≥ ...≥ λf,nf ≥ 0, λa,1 ≥ ...≥ λa,na ≥ 0.

If the nf and na drugs in FAERS and bioassay databases are

embedded in the kf- and ka-dimensional Euclidean space

separately, the coordinates of drugs in the two datasets can be

represented by ~Pkf � (
���
λf,1

√
ξ1, ...,

����
λf,kf

√
ξkf) and

~Qka � ( ���
λa,1

√
η1, ...,

����
λa,ka

√
ηka), with each row denoting one

drug’s coordinate. More specifically, the coordinate of the i-th

drug in the FAERS database is (
���
λf,1

√
ξ1,i, ...,

����
λf,kf

√
ξkf,i), and the

coordinate of the j-th drug in the bioassay database is

( ���
λa,1

√
η1,j, ...,

����
λa,ka

√
ηka,j).

We introduce set U to contain drugs shared between FAERS

and bioassay datasets. We denote the coordinates in these two

datasets as PU ∈ R|U|×kf and QU ∈ R|U|×ka separately and assume

a linear relationship between PU and QU , i.e.,

QU � PUB + E, (3)

where B is the coefficient matrix and E ∈ R|U|×kf is the noise matrix

with every element ei,j ~ N(0, σ2). If we denote the least square

estimator of B as B̂, for a particular drug only equipped with

FAERS coordinates ζ while lacking bioassay coordinates, we can

predict its bioassay coordinate by ζTB̂. Once the bioassay

coordinates are predicted, the similarity score in the bioassay

database can be computed by the Euclidean distance between the

bioassay coordinates of drugs.

Non-negative matrix factorization of
COVID-19 emergency use authorization
FAERS database drugs

Suppose there are n unique drugs and p unique AEs reported

in the CEUAFD after the pre-processing process

(see Supplementary Material), and X ∈ Rp×n is a matrix with

element Xij representing the total number of patients reporting

the i-th AE after taking the j-th drug (i � 1,..., p and j � 1,..., n).

We applied NMF to X to decipher the underlying AE

signatures among CEUAFD drugs. Meanwhile, for each drug,

we assigned an abundance score to each AE signature.

Concretely, X is approximated by the product of two low-

rank matrices:

X ≈ WH, (4)

where W ∈ Rp×k is the AE-signature matrix with each column

corresponding to a specific AE signature, H ∈ Rk×n is an

abundance fraction matrix with the j-th column representing

the relative abundance on each AE signature for the j-th drug

(j � 1,..., n), and k is the number of AE signatures. After data pre-

processing, we have p = 134, n = 15.

We adopted the optimization algorithm given by Lee and

Seung (2000) to get the factorized matrix W and H. In practice,

we proceeded NMF with 50 different initializations of W and H
to avoid sticking in the local stationary point.

Clustering of CEUAFD drugs

Similar to the work of Brunet et al. (2004),H returned by the

NMF procedure can be used for drug clustering. If

v* � argmax
v�1,...,k

hvj, we can classify drug j into cluster v*.

Tissue-specific genes in the GTEx
database

For a specific tissue t, we denote the mean expression level for

gene g as �Etg, and the mean expression level for gene g across all

tissues in the GTEx database as �Eg. We further assume that

among all tissues, the standard deviation of the expression level

for gene g is Sg, and denote the tissue-specific score for gene g in

tissue t as

Ztg � �Etg − �Eg

Sg
. (5)

For each tissue t, we pick up 200 tissue-specific genes whose

corresponding Ztg values are the 200 largest values among all

genes.

Evaluation of the association between the
drug and tissue

We evaluated the association between each drug and tissue

using network proximity. Suppose for a specific drug j, the

module Aj consists of its target proteins, which can be

obtained from the DrugBank database (Wishart et al., 2018),
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while the module Bt for a specific tissue t contains the tissue-

specific proteins. We define the association between drug j and

tissue t as the distance between module Aj and Bt:

djt �
∑a∈Aj

min
b∈Bt

d(a, b) +∑b∈Bt min
a∈Aj

d(a, b)∣∣∣∣Aj

∣∣∣∣ + |Bt| , (6)

where d(a, b) is the shortest distance between gene a and gene b

in the gene–gene regulatory network.

The significance of the association was calculated by the

permutation test. Specifically, for each drug j and tissue t pair, we

randomly picked up two sets of genes, where the first set contains

the same number of genes as the drug–target gene set and the

second set contains the same number of genes as the tissue-

specific gene set, and then calculated the network distance by Eq.

6. This procedure was conducted 100 times to construct the null

distribution of network distance. Suppose the 100 network

distances obtained from the permutation procedure are

denoted as djt,1,..., djt,100, and we introduced set Djt to

contain these 100 distance values. The significance level of the

drug–tissue association is denoted as the proportion of distance

value in Djt, which is less than djt.

One-sided Wilcoxon rank test

We grouped AEs using their System Organ Class (SOC)

categories in Medical Dictionary for Regulatory Activities

(MedDRA). For a specific SOC category, suppose it contained

m AEs in the CEUAFD. We further assumed that for the v-th AE

signature, the probabilities for these m AEs were W1v,. . ., Wmv.

To test whether there is a significant association between this

SOC category and the v-th AE signature, we reformulated it to

test whether the distribution formed by {Wiv}mi�1 is significantly
larger than the distribution formed by pooling {Wiv′}mi�1 for all

v′ ≠ v. This test was performed by the one-sided Wilcoxon

rank test.

Effect size of the association between the
SOC category and AE signature

Apart from the one-sided Wilcoxon rank test, we also

evaluated the association between SOC categories and AE

signatures by calculating effect size (ES). Specifically, for a

SOC category containing m AEs, we use ωv �(W1v ,. . .,Wmv)

to denote the probabilities for themAEs in the v-th AE signature,

and ωc
v � (W1v′, . . . ,Wmv′)v′≠v is a vector containing

probabilities for the m AEs in the other three AE signatures.

The ES is defined as

ES � mean(ωv) −mean(ωc
v)

sd(ωc
v) . (7)

Sparse linear discriminant analysis

We conducted SLDA (Mai et al., 2012) for each pair of drug

clusters to pick up discriminant genes. Specifically, for a pair of

drug clusters (v1, v2), suppose there are n1 and n2 drugs in these

two clusters with expression information accessible in the Library

of Integrated Network-Based Cellular Signatures (LINCS)

A549 database (Subramanian et al., 2017). We assumed that

the cluster labels are coded as yj � − n
n1
if drug j belongs to cluster

v1 and yj � n
n2
if drug j belongs to cluster v2, where n1 and n2 are

the number of drugs in cluster v1 and v2 separately, with n � n1 +

n2. The gene expression profile for drug j was denoted as xj with
length p.

The discriminant genes were selected by solving the following

l1 penalized least squares problem:

(β̂, β̂0) � argmin
β,β0

⎧⎨⎩n−1∑n
j�1
(yj − β0 − xTj β)2 + λ∑p

k�1

∣∣∣∣βk∣∣∣∣⎫⎬⎭. (8)

In practice, we used the R package TULIP to solve the

abovementioned optimization problem. Because of the limited

sample size, cross validation is not reliable in selecting a suitable

λ, and we set λ to be the smallest one among the sequence of λ

values provided by function dsda. Those genes whose β̂ are non-

zero were considered as discriminant genes.

Results

AE-signature analysis for approved
CEUAFD drugs

The CEUAFD collected from the beginning of the COVID-

19 pandemic until September 2021 was downloaded for COVID-

19 drug-related AE-signature analysis. We obtained

9,754 reports, corresponding with 15 drugs and 134 unique

AE reports after the data-preprocessing procedures (see

Supplementary Material). We then applied NMF to the drug-

AE count matrix X ∈ R134×15 to extract the collection of AE

signatures, with each element of X representing the number of

patients reporting a specific AE for a particular drug. After a

stability-driven model selection procedure (Brunet et al., 2004),

we obtained four AE signatures deciphered by NMF, which

constituted a sufficient and non-redundant base in depicting

the drug-specific AE distributions (see Supplementary Material).

We also conducted the clustering of CEUAFD drugs, with drugs

in each cluster possessing high abundance fractions on the same

AE signature. Some basic information for nine widely used

CEUAFD drugs (more than 20 items of AE feedback in the

CEUAFD by September 2021) is shown in Table 1. Five out of the

nine drugs fall into the second cluster. The two combinational

drugs, casirivimab and imdevimab and bamlanivimab and

etesevimab, are both enriched with AE signature 3. In
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contrast, the other two widely used drugs, remdesivir and

bamlanivimab, are representative drugs of clusters 1 and

4 separately. Overall, drugs with the most frequent AEs are

also representative AEs for each corresponding AE signature

within each drug cluster.

To give amore general picture of eachAE signature, we used the

top 20 representative AEs to characterize the rough distributions of

four AE signatures (see Supplementary Material) and grouped AEs

by their SOC categories in MedDRA. In addition, we performed a

one-sided Wilcoxon rank test for every SOC category in each AE

signature to determine whether AEs belonging to one SOC category

have a high-probability accumulation in some AE-signature

distributions.

For the first AE signature, AEs with top probabilities include

some liver-related symptoms (alanine aminotransferase increased,

aspartate aminotransferase increased, and blood creatinine

increased), kidney-related symptoms (acute kidney injury and

glomerular filtration rate decreased), and cardiovascular-related

symptoms (bradycardia, cardiac arrest, and hypotension)

(Supplementary Figure S1). Most of them were classified into

SOC categories “investigations” and “renal and urinary

disorders.” These two categories correspond to a higher level of

AE severity (Figure 2), where the “investigations” category includes

some laboratory test indexes, radiologic test indexes, or physical

examination indexes. Compared with other drugs, AEs of remdesivir

are more abundant in the first AE signature, with more than 90% of

TABLE 1 Summary of nine CEUAFD drugs. Information on nine widely used CEUAFD drugs (more than 20 items of AE feedback in the CEUAFD by
September 2021) is shown, including the number of patients taking one specific drug, the two most frequent AEs, and the cluster to which each
drug was assigned.

CEUAFD drugs #patients Two most frequent AEs Clusters

Hydroxychloroquine 71 Electrocardiogram Qt prolonged; hypoglycaemia 2

Remdesivir 4047 Alanine aminotransferase increased; aspartate aminotransferase increased 1

Tocilizumab 71 Alanine aminotransferase increased; aspartate aminotransferase increased 2

Casirivimab and imdevimab 722 Dyspnoea; chills 3

Bamlanivimab 4375 Dyspnoea; pyrexia 4

Baricitinib 123 Lymphocyte count decreased; acute kidney injury 2

Covid-19 convalescent plasma 82 Dyspnoea; chills 2

Bamlanivimab and etesevimab 171 Dyspnoea; pyrexia 3

Vancomycin hydrochloride 23 Acute kidney injury; respiratory failure 2

FIGURE 2
Summary of statistically significant SOC categories returned by the one-sided Wilcoxon rank test. All 134 AEs extracted from the CEUAFD are
classified into different SOC categories inMedDRA. By the one-sidedWilcoxon rank test, only significant associations between the SOC category and
AE signature are shown. The size of the circles corresponds to different levels of p values. The colors represent different effect sizes (ESs) of the
association between the SOC category and AE signature.

Frontiers in Genetics frontiersin.org06

Wang et al. 10.3389/fgene.2022.1019940

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1019940


AEs attributed to AE signature 1 (Supplementary Figure S2). This

finding can be supported by several existing studies which reported

the damage to the liver and renal functions of remdesivir users

among COVID-19 patients (Perveen et al., 2020; Zampino et al.,

2020; Singh and Kamath, 2021). Thus, COVID-19 patients with

poor liver, renal, or probably cardiac functions should take

remdesivir with caution.

We detected significant aggregation in some kidney-related

AEs (acute kidney injury), cardiovascular-related AEs

(electrocardiogram QT prolonged, hypotension, and

hypoglycemia), and AEs related to the immune system

(lymphocyte count decreased, lymphopenia, and leukocytosis)

for AE signature 2. This leads to a significant high-probability

accumulation of SOC categories “vascular disorder” (p = 0.0095)

and “blood and lymphatic system disorders” (p = 0.03) in AE

signature 2 (Figure 2 and Supplementary Figure S3).

Hydroxychloroquine, tocilizumab, COVID-19 convalescent

plasma, vancomycin hydrochloride, and baricitinib are more

enriched with AE signature 2 compared with other drugs

(Supplementary Figure S2). Interestingly, tocilizumab and

baricitinib are both categorized as “immune modulators” by

the FDA when treating COVID-19. Recent research also

highlighted that hydroxychloroquine treatment may impair

host immunity in response to SARS-CoV-2 (Devarajan and

Vaseghi, 2021; Rother et al., 2020), while baricitinib could not

be initiated in patients with small lymphocyte count (Praveen

et al., 2020). Synthesizing all the abovementioned evidence, we

recommend that COVID-19 patients with weak immune systems

or vascular disorders should not be prescribed

hydroxychloroquine, tocilizumab, or baricitinib.

AE signature 3 and AE signature 4 have many representative

AEs in common, such as dyspnoea, pyrexia, hypoxia, oxygen

saturation decreased, nausea, vomiting, dizziness, and cough

(Supplementary Figures S4, S5). Most of these common

representative AEs were classified into the “General disorders

and administration site conditions” SOC category (Figure 2).

Standing on the SOC category perspective, we can distill more

general differences between these two AE signatures—part of the

representative AEs in AE signature 3 can be attributed to the

“Skin and subcutaneous tissue disorders” SOC category, while

AEs belonging to the SOC category “Nervous system disorders”

are more abundant in AE signature 4 (Figure 2). Casirivimab and

imdevimab and bamlanivimab are the representative drugs of AE

signature 3 and 4 separately. Another combinational drug

bamlanivimab and etesevimab is also enriched with AE

signature 3 (Supplementary Figure S2). Different from the

first two AE signatures, the symptoms of the last two AE

signatures are relatively mild. This finding is consistent with

the FDA’s recommendation that mild-to-moderate COVID-19

in adults and children not admitted to hospital may be treated by

bamlanivimab (Mahase, 2020). We also found that reduced

oxygen saturation is a common AE brought by both

casirivimab and imdevimab and bamlanivimab, which was

supported by existing research (Kano et al., 2021). Therefore,

casirivimab and imdevimab should be taken carefully by

COVID-19 patients with low oxygen saturation.

AE-signature analysis for drugs in the
clinical trial stage

An AE-signature analysis for drugs that are still in the clinical

trial stage to fight against COVID-19 was performed. Under the

rationale assumption that similar drugs may induce similar side

effects (Campillos et al., 2008; Zhang et al., 2017), we predicted

their AEs by combining the last-stage similarity network and

CEUAFD drugs’ clustering output.

Part of the predicted last-stage drug–drug similarity network

is presented in Figure 3A, including the five widely used

CEUAFD drugs and their five nearest neighbor drugs which

were still in the clinical investigation stage. We found that

baricitinib and hydroxychloroquine are each other’s five

nearest neighbor drugs, which is consistent with the NMF

result of the CEUAFD that these two drugs are both

representative drugs of AE signature 2. On the other hand,

casirivimab and imdevimab and bamlanivimab (both have

relatively mild AE feedback from COVID-19 patients) are also

among each other’s top five nearest neighbor drugs. Finally,

chloroquine, a widely recognized drug with functions similar to

hydroxychloroquine, is also among the top five nearest neighbors

of hydroxychloroquine. We define drugs from the CEUAFD,

i.e., remdesivir, baricitinib, casirivimab and imdevimab, and

bamlanivimab, as the representative drugs for the four

clusters. With respect to the four drugs, the top 15 nearest

neighbor drugs with each are shown in Table 2.

To give a further explanation of the predicted drug clustering

result, we applied the network proximity approach to evaluate

the association between each drug–tissue pair using the GTEx

database. The significance level for each drug–tissue pair is

shown in Figure 3B. Compared with the other three drug

clusters, more drugs from cluster 1 possess a higher

association level in tissues such as the liver, lung, prostate,

and blood. There is a strong association between brain tissue

and drugs from cluster 4, which gives an indirect reflection that

drugs in cluster 4 may induce nervous system disorders.

Furthermore, we listed several representative drugs with

literature-reported AEs observed in pharmacological and

genomic spaces (Table 3). The widely reported AEs showed

high-level consistency with the typical AEs in each drug cluster.

Molecular mechanisms accounting for
different drug clusters

We employed LINCS data with the A549 cell line

(Subramanian et al., 2017) and applied SLDA (Mai et al.,
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2012) to further explore the molecular mechanisms for the four

deciphered AE signatures. Our target is to find therapeutic

biomarkers presenting distinguishing expression patterns for

each pair of drug clusters. Part of the distinguished molecular

mechanisms of four AE signatures was reflected by

discriminative biomarkers extracted from SLDA.

For every pair of drug clusters, we obtained a discriminative

gene set by conducting SLDA. Log fold change of each drug’s

FIGURE 3
(A)Drug–drug similarity network between fivewidely usedCEUAFD drugs and their five nearest neighbor drugs. The arrow pointing fromdrug A
to drug B means drug B is among the five nearest neighbor drugs of drug A. (B) Heatmap of the significance of the association between tissues and
drugs in four drug clusters. The association for each drug–tissue pair was calculated by network proximity, while the significance of the association
was performed using a permutation test. Colors indicate the −log10 (p value) of each drug–tissue pair.

TABLE 2 Four drug clusters based on the integrated drug–drug similarity network and NMF outcomes of the CEUAFD. Drugs in bold are from the
CEUAFD, and each drug cluster features one specific AE signature.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Remdesivir Baricitinib Casirivimab and imdevimab Bamlanivimab

Fostamatinib Ruxolitinib Argatroban Ritonavir

Iloprost Tofacitinib Fluvoxamine Lopinavir

Thalidomide Nintedanib Quetiapine Nitazoxanide

Methotrexate Hydroxychloroquine Ivermectin Ibrutinib

Pitavastatin Azithromycin Amiodarone Clofazimine

Naltrexone Chloroquine Amlodipine Sirolimus

Chlorpromazine Nicotinamide Resveratrol Decitabine

Artesunate Telmisartan Cyproheptadine Amoxicillin

Toremifene Ibudilast Simvastatin Etoposide

Masitinib Imatinib Artemisinin Rivaroxaban

Enzalutamide Clarithromycin Ambrisentan Atorvastatin

Doxycycline Dexamethasone Melphalan Maraviroc

Candesartan Methylprednisolone Disulfiram Leflunomide

Pirfenidone Prednisone Dipyridamole Prazosin
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expression levels on the selected 67 SLDA genes is shown in

Figure 4A. Because representative AEs of drug clusters 3 and 4 are

relatively mild and the AEs in clusters 1 and 2 are more severe and

characteristic, we merged drug clusters 3 and 4 as the control

cluster. SLDA genes showing differential expression patterns in the

drug cluster 1–control pair and 2–control pair were collected for

further validation. A biological function enrichment analysis was

implemented to uncover the possible relationships between

enriched pathways and representative differential AEs in the

pair of drug clusters (see Supplementary Material).

TABLE 3 Summary of 10 representative COVID-19 drugs in the clinical trial stage. Information on 10representative COVID-19 drugs which are in the
clinical trial stage is shown, including DrugBank ID, typical AEs with literature support, and the drug cluster to which each drug belongs.

DrugBank ID Drug name AEs reported in the literature Drug cluster

DB12010 Fostamatinib Hepatic function impairment, Newland and McDonald (2020) 1

DB01041 Thalidomide Bradycardia, Thangaraju et al. (2019) 1

DB01088 Iloprost Acute kidney injury, Uyar et al. (2016); increased GGT, Hsu and Rubin (2005) 1

DB08860 Pitavastatin Change of glomerular filtration rate, Baik et al. (2019) 1

DB01611 Hydroxychloroquine Tachycardia and hypotension, Marquardt and Albertson (2001) 2

DB08895 Tofacitinib Immune system injury, Chen et al. (2017); deep vein thrombosis, Cohen et al. (2020) 2

DB08877 Ruxolitinib Increased risk of infections and thromboembolic events, Shalabi et al. (2022) 2

DB00176 Fluvoxamine Dyspnoea, nausea, and headache, Lenze et al. (2020) 3

DB01601 Lopinavir Acute kidney injury, Binois et al. (2020) 4

DB00507 Nitazoxanide Gastrointestinal complaints and headache, Walsh et al. (2020) 4

FIGURE 4
(A)Heatmap of the log fold change of gene expression levels for drugs in four clusters. Each row is a gene, and each column is a drug. Drugs are
ordered according to their cluster index number. (B) Enriched pathways in two discriminant gene sets corresponding to two pairs of drug
clusters—drug cluster 1–control pair and 2–control pair. Enrichment analysis was performed in two discriminant gene sets separately, where the two
gene sets contain genes showing distinguishing expression patterns between drug cluster 1 and the control group and drug cluster 2 and the
control group separately, and the control group was defined as the combination of drug cluster 3 and 4. Ten pathways with the most significant
enrichment p values are shown, and pathways enriched in different gene sets are filled with different colors (left). Discriminant genes that emerged in
the enriched pathways are shown (right).
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We found that gene FAS presents highly different expression

levels between drug clusters 1 and 2 (Figure 4A). Fas and Fas-

ligands are classical members of the TNF receptor and TNF

ligand families. The interaction of the receptor with its ligand

allows the formation of a death-inducing signaling complex that

includes the Fas-associated death domain protein (FADD),

caspase 8, and caspase 10. With this mechanism, they play an

important role in the regulation of apoptotic processes, including

activation-induced cell death, T-cell-induced cytotoxicity, and

multiple organ function impairment (Wajant et al., 2003).

By conducting enrichment analysis, the differential genes

between drug cluster 1–control pair are enriched in the RHO

GTPases Activate NADPH Oxidases pathway, with PIN1 and

RAC2 being the pathway input genes (Figure 4B). To our

knowledge, RAC2 is an important component of NADPH

oxidase (Kim and Dinauer, 2001). Excessive NADPH oxidase-

derived ROS production can induce multiple tissue injuries and

prolonged inflammatory responses, leading to inflammatory

diseases (Belambri et al., 2018).

Different from that mentioned above, the KEGG Reactome

analysis showed that a large number of differential genes in the

drug cluster 2–control pair flowed to signal transduction pathway

(Figure 4B), which is related to many diseases such as cancer,

atherosclerosis, and inflammatory diseases. Notably, the

SMAD3 gene is selected in this pathway. SMAD3 is a major

transcription factor in transforming growth factor-β (TGF-β)

signaling. The TGF-β/Smad-dependent signaling pathway has

been shown to be activated in models of myocardial infarction, as

well as in multiple pathological processes (Bujak et al., 2007; Peng

et al., 2021).

Discussion

With respect to COVID-19 drug safety, we developed a

framework to predict the AE profiles for those drugs which

are not in large-scale use. This framework has some advantages

from methodological, clinical, and molecular viewpoints.

Some innovative points in our method are worth to be

mentioned. The advantages of NMF are two-fold. First, NMF

possessed the ability of dimension reduction and drug clustering.

Second, by further SOC category enrichment analysis, NMF can

capture the subpopulation fragile to each AE signature with a

higher precision level. On the other hand, most network

integration methods assumed node consistency among

different networks. With the rapid development of new drugs,

it is hard to fulfill that each drug’s information is available in all

data sources. We developed an MDS-based network imputation

method, which was achieved by node embedding and building a

predictive model employing network-shared drugs. This method

can effectively use incomplete information. The imputation is

particularly useful when drugs’ information is unable to be

presented by low-dimensional vectors (for example, chemical

structure or high-dimensional bioassay data), as our imputation

model was built in the low-dimensional embedded space. Lastly,

we utilized SLDA to seek discriminative genes which may

provide molecular-level explanation for different AE

signatures among drug clusters. If there is a correspondence

between the mechanism of SLDA genes and different AE-

signature patterns for each pair of drug clusters, we validate

the rationality of our drug clustering results and AE prediction

results in some sense. On the other hand, combining

symptomatic features with molecular-level features for

COVID-19 patients may contribute to more precise

therapeutic prescriptions.

Clinically, we presented some important discoveries. Our

analysis of the COVID-19 EUA FAERS database showed that

remdesivir may bring damage to liver, renal, or probably cardiac

functions, which is widely acknowledged with the evolvement of

in-depth research (Li et al., 2021). Tocilizumab and baricitinib,

which are categorized as “immune modulators” by the FDA, may

cause vascular, blood, and lymphatic system disorders in

COVID-19 patients. Another important message brought by

the CEUAFD is that AE feedbacks from combinational drugs

are relatively mild. In addition, by clustering all COVID-19

drugs, we found that among the top five nearest neighbors of

Baricitinib, three of them belong to the “tinib” family. Our

prediction can be verified by Halimi et al. (2008), who

reported that prolongation of the QT interval and heart

failure are frequent AEs in patients using tinibs.

From the viewpoint of molecular level, drugs from cluster

1 and control cluster showed differential expression patterns in

the RHOGTPases Activate NADPHOxidases pathway. NADPH

oxidase (NOX) is a multimeric transmembrane enzyme complex

that uses NADPH as an electron donor to generate superoxide

(O2-) and hydrogen peroxide (H2O2) from molecular oxygen. It

participates in various biological processes including innate

immunity, and biosynthetic processes (Bedard and Krause,

2007). In the pathophysiological process of the liver, NADPH

oxidase is expressed functionally in phagocytic and non-

phagocytic forms. NOX-derived ROS contributes to various

liver diseases caused by alcohol, hepatitis C virus, and toxic

bile acids (Paik et al., 2014). In addition to causing liver injury,

the impairment of this pathway is also related to renal

insufficiency. Abnormally activated NOX in renal microvessels

can lead to superoxide production. Oxidative stress in the kidney

contributes to renal vascular remodeling and increases

preglomerular resistance. Some reports showed that they are

key factors in acute and chronic kidney injury (Xu et al., 2020),

while for the drug cluster 2–control pair, the differential genes are

more relevant to the signal transduction pathway. The

relationship between the blockage of the signal transduction

pathway and cardiovascular events has been widely reported

(Wheeler-Jones, 2005). Previous studies have demonstrated that

several kinds of TKIs could lead to grade III or higher QT

prolongation, and animal models suggested that this might be
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caused by the inhibition of PI3K signaling (Schiefer et al., 2018).

In addition, the impairment of other signaling pathways is also

intimately related to cardiovascular disorders. Mechanistic

studies suggested that disturbed TGF-β signaling may also

contribute to non-genetic cardiovascular disorders such as

atherosclerosis and cardiac fibrosis (Goumans and Ten Dijke,

2018). Reactivation of the WNT signaling pathway has also been

observed in many pathologies of cardiac and vascular vessels

(Foulquier et al., 2018).

There are also some limitations in our study. Although the

CEUAFD provided rich AE feedback for some approved

COVID-19 drugs, only 9 drugs were reported by more than

20 patients. This insufficient AE feedback phenomenon may

induce inaccuracy in extracting AE signatures. Therefore, the

four factorized AE signatures cannot depict AE information

for all COVID-19 drugs. Due to the limitations of data

accessibility, we only used LINCS data processed on lung

tissues to explore molecular-level differences among drug

clusters. With the propelling of COVID-19 research, more

and more molecular-level data will be released to promote our

understanding of the mechanism of AEs returned by different

COVID-19 drugs.

Conclusion

Many existing COVID-19 drugs are still in the clinical trial

stage, thus lacking abundant AE feedback. This drug safety analysis

tried to solve this important problem by borrowing information

from the AE profile of other “old” drugs. Our analysis took the

heterogeneous health conditions of COVID-19 patients into

consideration and proposed a computational framework to

predict AEs for potential COVID-19 drugs. Therefore, the

proposed framework jumps out of the current winner-takes-all

drug repurposing framework and can provide better precise

drug recommendations. We believe that our framework can be

generalized to other diseases for precision drug recommendation

and drug clustering with reduced time and cost.
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