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This study aimed at constructing a diagnostic immune risk score (dIRS) system

and a prognostic immune risk score (pIRS) system for diagnose and prognosis of

breast cancer (BC). The gene expression data of BC were downloaded from

TCGA dataset (training set), and from GSE65194, GSE29044, GSE42568, and

GSE20685 (validation sets). Then, the immune cell type proportions in each

dataset were assessed using EPIC tool, and the dIRS system was built based on

the SVM-RFE and RF-VIMP algorithms. Subsequently, the pIRS system and the

nomogram survival model were established separately using penalized and rms

packages. Finally, the differential expressed genes (DEGs) between low and high

pIRS groups were screened, and submitted for functional analysis. The dIRS

system consisted of B cells, CD8 + T cells, endothelial cells, NK cells, and other

cells had high accuracy in distinguishing BC patients from the healthy controls

(AUROC >0.7). Subsequently, the pIRS system with the five prognosis-

associated immune-infiltrating cell was constructed, and Kaplan-Meier

analysis demonstrated that the survival rate of low pIRS group was

significantly higher than that of high pIRS group (p < 0.05). Based on age,

pathologic stage and the pIRS values, the nomogram survival model was built.

The AUROC value, Specificity value, Sensitivity value and C-index of the

nomogram survival model were higher than 0.7000, and had a good

predictive ability for BC. Finally, a total of 539 DEGs were identified, and

significantly enriched in six pathways. The dIRS system and the pIRS system

composed of immune cells might be critical for the diagnosis and prognosis of

BC patients.
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Introduction

As a frequent malignant tumor, breast cancer (BC) arises

from the epithelial tissues of the breast (Holen et al., 2017). BC

patients often suffer from skin changes, axillary lymphadenoma,

nipple discharge, breast deformation, and breast lumps (Moodley

et al., 2018; Wani et al., 2018). As the tumor with the highest

morbidity in women, BC results in the death of over half a million

patients annually worldwide (Winters et al., 2017). Metastatic BC

cannot be cured through resection operation, and the early

detection is an important way to improve the prognosis and

reduce the mortality of BC (Medford et al., 2018). Therefore,

more researches should be made to diagnose and treat BC

patients as early as possible.

Tumor infiltrating lymphocytes (TILs) are lymphocytes isolated

from tumor tissues, whichmainly include T cells, natural killer (NK)

cells, B cells, and macrophages (Denkert et al., 2018). TILs help to

comprehensively understand the tumor immunemicroenvironment

and guide the individualized immunotherapy of tumors (Asano

et al., 2017). TILs play roles in killing tumor cells, while their killing

capability can be inhibited by multiple factors in the tumor

microenvironment or by too few TILs (Tomioka et al., 2018).

Among the various cell types associated with the development

and progression of cancer, the effects of TILs on prognosis have

been extensively studied. Previous studies have shown that the

assessment of the extent of tumor infiltration of lymphocytes is

an important complementary marker for predicting the recurrence

and mortality of tumor patients (Pages et al., 2018; Wang et al.,

2018). Non-lymphocyte immune cells are also contained in tumors,

which are thought to have unique effects on clinical survival in

various tumor types and stages (Jang et al., 2017). However,

traditional methods (such as immunohistochemistry or flow

cytometry) for detecting tumor immune cell infiltration cannot

fully evaluate the impacts of different immune cell types or

cannot effectively differentiate the closely related cell populations.

Increased amounts of TILs indicate the response of

neoadjuvant chemotherapy in BC patients, which can be

applied for selecting the patients suitable for neoadjuvant

chemotherapy (Issa-Nummer et al., 2014). Stromal TILs have

critical prognostic values in early-stage triple-negative breast

cancer (TNBC), which can promote the prognosis of stage I

TNBC patients without adjuvant chemotherapy (Park JH et al.,

2019). In addition, the diagnostic immune risk score (dIRS)

system and the prognostic immune risk score (pIRS) system are

two novel immune models, and can provide more effective

biomarkers for the diagnosis and prognosis of cancer patients.

A previous study of Zhou et al. (2019) established a dIRS model

based on the immune cells, as well as found that the significant

stepwise increase in dIRS values from normal colon to polyp and

tumor tissues, and the high area under the receiver-operator

characteristic curve (AUC) values not only indicated that the

dIRS model could effectively identify colon cancer patients from

individuals with colon polyps and healthy controls, but also

demonstrated that the immune system was involved in colon

cancer development. Furthermore, it was also found that the

pIRS model could predict the response to immunotherapy in

colon cancer patients (Zhou et al., 2019). Another study also

reported that the dIRS and pIRS features could be used as

biomarkers for early diagnosis and survival prediction in

digestive system cancers (Yang et al., 2019). Nevertheless, the

immune risk score system based on immune-infiltrating cell

types has not been built for BC patients. In this study,

multiple gene expression profiles of BC were downloaded and

analyzed comprehensively. Besides, the proportion of immune

cells in each dataset was quantitatively evaluated. Based on the

constitutive characteristics of the immune cells in the samples,

the dIRS system and the pIRS system for BC were established.

Our findings might provide more powerful markers for the early

diagnosis and accurate prognosis of BC patients.

Meterials and methods

Data downloading and data preprocessing

The gene expression data of BC (downloaded on 10 November

2019; platform: Illumina HiSeq (1217 and 2000) samples) in The

Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.

gov/) were downloaded. Among the 1,217 samples, 1,108 samples

were included in this study after corresponding to the clinical

information (such as time, overall survival, pathologic M,

pathologic N, pathologic T, pathologic stage, histology type,

estrogen receptor [ER] status, Human epidermal growth factor

receptor 2 [HER2] status, and partial response [RP] status),

including 1009 BC samples and 99 normal samples (the training set).

Meanwhile, appropriate datasets were selected from Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/geo/) according to the following criteria: 1) the datasets were

gene expression profiles; 2) the test objects were solid tumor

tissue samples of BC patients (not blood, cell lines, etc.); 3) the

detection platform was GPL570 or GPL96 (Affymatrix platform);

4) there were control tissues; 5) the datasets were human

expression profiles; 6) the total sample size was no less than

100. Finally, three datasets, including GSE65194 (153 BC samples

and 11 control samples; platform: GPL570 Affymetrix),

GSE29044 (73 BC samples and 36 control samples; platform:

GPL570 Affymetrix), and GSE42568 (104 BC samples and

17 control samples; platform: GPL570 Affymetrix) were
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obtained for the establishment of dIRS. Besides, GSE20685

(including 327 BC samples with survival prognosis

information) was downloaded for building the pIRS system.

Quantitative evaluation of immune cell
type proportion

Estimate the Proportion of Immune and Cancer Cells (EPIC)

(Racle J et al., 2017) is a tool used for analyzing the infiltration

ratio of immune cells (including B cells, CD4 + T cells, cancer-

associated fibroblasts [CAFs], CD8 + T cells, macrophages,

endothelial cells, and NK cells) according to the expression

data. The expression data of each dataset was uploaded to

EPIC tool (https://gfellerlab.shinyapps.io/EPIC_1-1/). For each

sample, the final output estimate was normalized to 1, and thus

could be directly interpreted as a cell fraction for comparison

between different immune cell types and datasets.

Diagnostic analysis

Based on the quantitative evaluation proportions of immune

cells in the training set (TCGA), Support Vector Machine (SVM)-

Recursive Feature Elimination (RFE) and Random Forest Variable

Importance (RF-VIMP) algorithms were used to screen the

infiltration types of characteristic immune cells. SVM-RFE (Lu

et al., 2016) is a sequence backward selection algorithm based on

the maximum interval principle of SVM, which is used to select the

required features factors. Using the e1071 version1.7-1 (Liu and

Wang, 2015) and caret version 6.0–76, (Fichou D et al., 2016),

packages in R, the optimal combination of characteristic immune

cells (parameter: cross, 100-fold cross validation) was selected. The

results with the highest accuracy in cross validation were selected as

the optimal combination of characteristic diagnostic immune cells.

RF-VIMP tests the performance of the generated random forest with

the data outside the bag (Breiman, 2001; Ishwaran and Lu, 2019;

Ishwaran et al., 2021). Using the bootstrap algorithm of the

randomForest package version 4.6–14 in R (Ishwaran et al.,

2021), the optimal combination of characteristic immune cells

was screened. The results of the bootstrap algorithm with the

lowest out of bag error rate were used as the optimal

combination of characteristic diagnostic immune cells.

Subsequently, the elements included in the optimal combinations

screened by SVM-RFE and RF-VIMP algorithms were integrated,

and their intersection was obtained to construct the dIRS system of

BC. Then, area under the receiver-operator characteristic (ROC)

curve (AUROC) (Krupinski, 2017) was used to evaluate the efficiency

of the dIRS system in both the training set and the validation sets

(GSE65194, GSE29044, and GSE42568). After that, sensitivity (Sen),

positive prediction value (PPV), specificity (Spe), and negative

prediction value (NPV) were calculated for ROC curves using the

pROC package version 1.12.1 (Robin et al., 2011) in R.

Prognostic analysis

For the BC samples of the TCGA training set, the Cox-

Proportional Hazards (Cox-PH) model in the LASSO algorithm

of the R penalized package (version 0.9–50, http://bioconductor.

org/packages/penalized/) was used to screen the optimal

prognosis-associated immune-infiltrating cell types (parameter:

1,000 fold cross-validation likelihood). Based on the immune-

infiltrating cell types and prognostic coefficients, the pIRS system

was built as follows:

pIRS � ∑ βimmune × Immune cell types value

Where β represented prognostic coefficient of each immune-

infiltrating cell type proportion; and “Immune cell types value”

represented the proportion values for each immune-infiltrating

cell type.

Following that, effectiveness evaluation for the pIRS system was

performed in the training set and the validation set GSE20685.

Firstly, the pIRS value of each sample in the training set was

calculated, and then combined with the survival prognostic

information (time and status) of each sample, cutoff Finder

(Budczies et al., 2012) was used to obtain the pIRS point with

the most significant log-rank test. The log-rank test is the most

commonly-used statistical test for comparing the survival

distributions of two or more groups. According to this pIRS

point, the samples were classified into low (pIRS value <0) and
high (pIRS ≥0) pIRS groups (Budczies et al., 2012). Then, the

Kaplan-Meier (KM) method in survival package vrsion2.41-1

(Noura and Read, 2018) was used to assess the correlation

between the low/high pIRS groups and the actual survival

prognosis. At the same time, the proportion of the target

immune-infiltrating cell types and pIRS values were also

calculated in the samples of the validation set GSE20685. Based

on the obtained pIRS value, low (pIRS value <0) and high (pIRS ≥0)
pIRS groups were classified, and KM method was also applied for

evaluating the correlation between the risk grouping and the actual

prognosis information in the validation set GSE20685.

Establishment of nomogram survival
models

Combined with the univariate and multivariate Cox

regression analyses in the survival package (Noura and Read,

2018), the independent clinical prognostic factors (age,

pathologic M, pathologic N, pathologic T, pathologic stage,

histology type, ER status, HER2 status, PR status, vital status,

and overall survival time) in the training set were selected. The

clinical factors with log-rank p-value < 0.05 were considered as

the significant difference.

To further reveal the correlation between the independent

clinical prognostic factors and the pIRS model, rms package

version 5.1–2 (Eng et al., 2015)in R was utilized to build 3-year
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and 5-year nomogram survival models based on the independent

clinical prognostic factors and the risk information discriminated

by the pIRS model.

Differential analysis and pathway
enrichment analysis

In the training set, the BC samples were divided into low and

high pIRS groups, and then the differential expressed genes (DEGs)

between the low and high pIRS groups were screened using limma

package version 3.34.7 (Ritchie et al., 2015) in R based on the

thresholds of |log2 fold change (FC)| > 0.5 and false discovery

rate (FDR) < 0.05. FC, fold change of expression value, is used to

describe the degree of change from an initial value to a final value,

and is often used to measure the levels of gene expression. FDR

means adjusted p value. After that, all the identified DEGs were

subjected for Kyoto Encyclopedia of Genes and Genomes

enrichment analysis using Gene Set Enrichment Analysis (GSEA)

(Suárez-Fariñas M et al., 2010) with the criterion of FDR <0.05.

Results

The proportion of immune cells in each
dataset

Based on EPIC tool, the proportion of immune cells in each

dataset was quantitatively assessed, and then the classifications of

immune-infiltrating cells in the datasets were compared. As

FIGURE 1
The classifications of immune-infiltrating cells in the datasets, and the construction of diagnostic immune risk score (dIRS) system. (A) The
bubble diagram showing the proportion differences of the immune-infiltrating cells between the tumor samples and normal samples in each dataset.
The red circles indicate that tumor samples have higher proportions of immune-infiltrating cell types than normal samples. The blue circles indicate
that tumor samples have lower proportions of immune-infiltrating cell types than normal samples. The darker the red or blue, the more
significant the difference. The larger the circle, the higher the proportion of the cell type. (B) The scatter diagram for sample classification based on
Random Forest Variable Importance algorithm. Blue and red dots separately represent normal samples and tumor samples. (C) The line chart for
variables based on Support Vector Machine-Recursive Feature Elimination algorithm. (D) The distribution of dIRS values in the training set and the
validation sets. Grey and red dots represent normal samples and tumor samples, respectively. TCGA, The Cancer Genome Atlas.
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shown in Figure 1A, the proportions of CFAs, NK cells and other

cells were consistently higher in the BC tissues than those in the

normal tissues; whereas the proportions of B cells, CD8+ T cells,

endothelial cells, and macrophages were significantly lower in the

BC tissues compared with the normal tissues (p < 0.05).

Immune cells for the establishment of the
dIRS system to diagnose BC

Based on the SVM-RFE and RF-VIMP algorithms, five

immune-infiltrating cell types (B cells, CD8+ T cells、endothelial

cells, NK cells, and other cells) and seven immune-infiltrating cell

types (B cells, CAFs, CD8+T cells, endothelial cells, macrophages,

NK cells, and other cells) were screened, respectively. The RF-VIMP

algorithm analysis (Figure 1B) and SVM-RFE algorithm analysis

(Figure 1C) revealed five overlapping cell types between the two

methods, including B cells, CD8+ T cells, endothelial cells, NK cells,

and other cells.

The aforementioned five immune-infiltrating cell types were

used for the establishment of the dIRS system to diagnose BC. In

this model, the proportions of the selected immune cells were

accessed as continuous variables. Figure 1D showed that the dIRS

value was significantly decreased in the BC tissues compared with

the normal tissues in both the training set and the validation sets

(p < 0.001). In addition, we evaluated the efficiency of the dIRS

system, and the results of ROC curves for the training set

(AUROC = 0.963, Spe = 0.939, Sen = 0.946) and the

validation sets (GSE29044: AUROC = 0.766, Spe = 0.778,

Sen = 0.700; GSE42568: AUROC = 0.843, Spe = 0.706, Sen =

0.915; GSE65194: AUROC = 0.862, Spe = 0.809, Sen = 0.734)

showed that the dIRS system had high accuracy in distinguishing

BC patients from the healthy controls (AUROC >0.7, Figure 2).

Immune cells of the construction of the
pIRS system to predict BC prognosis

In the 994 BC tissue samples with survival and prognosis

information in the training set, five prognosis-associated immune-

infiltrating cell types were identified using the LASSO algorithm,

containing B cells, endothelial cells, macrophages, NK cells, and other

cells (Table 1). Then, the pIRS systemwas constructed based on these

five prognosis-related immune-infiltrating cell types. According to

the cut-off value obtained in the entire training set (0), we divided the

samples into low and high pIRS groups, and there were 766 samples

and 228 samples respectively in the low and high pIRS groups

(Figure 3A). Similarly, the samples in the validation set (GSE20685)

were also divided into low and high pIRS groups with 106 and

221 samples, respectively (Figure 3B). Moreover, the KM curves in

the training set and the validation set both suggested that the BC

patients with the low pIRS had better clinical prognosis compared to

the high pIRS (p < 0.05, Figures 3A,B). The AUROC values in the

training set and the validation set were respectively 0.787 and 0.731,

which indicated the built pIRS system with the five prognosis-

associated immune-infiltrating cell types was good, and was well

verified in validation dataset due to the consistency with that in the

training set (Figures 3A,B).

FIGURE 2
The receiver-operator characteristic (ROC) curves for The
Cancer Genome Atlas (TCGA) dataset, and the validation sets
GSE65194, GSE29044, and GSE42568. Black, red, blue, and green
curves separately represent the TCGA dataset, GSE29044,
GSE42568, and GSE65194. The data at the bottom of the figure
represents the parameters of ROC curves. AUROC, area under the
receiver-operator characteristic curve.

TABLE 1 The prognosis-associated immunoinfiltrating cell types
identified by LASSO algorithm.

Symbol Multi-variate cox regression analysis

HR 95% CI p-value LASSO coefficient

B cells 0.468 0.319–0.684 8.89E-05 −0.5092

Endothelial 1.203 1.077–1.649 2.52E-02 0.0908

Macrophages 2.188 1.447–3.052 2.73E-03 0.0912

NK cells 1.021 1.005–1.219 8.16E-03 0.0252

Other Cells 0.827 0.679–0.911 6.64E-03 −0.0216

Note: HR, hazard ratio; CI, confidence interval; NK, natural killer.
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Identification of independent clinical
factors related to prognosis and
assessment of a nomogram survival model

To better clarify the correlation between the independent

clinical factors and recurrence prognosis, we developed a

nomogram survival model. According to the results of Cox

regression analyses, age and pathologic stage were selected as

the significantly independent clinical prognostic factors in the

training set (p < 0.05, Table 2). Then we studied on the

relationship between age or pathologic stage and recurrence

prognosis, the result showed that the BC patients aged below

60 years old and with lower pathologic stages (Stage I, Stage II,

and Stage III) had higher survival ratio (p < 0.05), which was

consistent with the actual situation (Figures 4A,B).

To provide a quantitative method to predict the probability

of recurrence, a nomogram survival model with the 3-year and 5-

year survival probability based on age, pathologic stage and the

FIGURE 3
The Kaplan-Meier (KM) curves and receiver-operator characteristic (ROC) curves showing the correlation of low/high prognostic immune risk
score (pIRS) groups and the actual survival prognosis. (A) The KM curves (above) and ROC curve (below) for the training set. (B) The KM curves (above)
and ROC curve (below) for the validation set GSE20685. In KM curves, black and red curves separately represent the samples in low and high pIRS
groups. In ROC curves, the points marked in the figure indicate the corresponding specificity and sensitivity values when pIRS value is the cutoff
point (0). TCGA, The Cancer Genome Atlas; AUC, area under the receiver-operator characteristic curve.
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pIRS model was built (Figure 5A). The 3-year or 5-year survival

probability predicted by the nomogram survival model were

compared with the actual 3-year or 5-year survival ratio. It

was found that the c-indexes for the 3-year prediction and 5-

year prediction were 0.7449 and 0.7493, respectively, which were

higher than 0.7000, and indicated that the nomogram survival

model was reliable (Figure 5B). Besides, the AUROC value, Spe

value, Sen value and C-index of the nomogram survival model

were 0.826, 0.941, 0.683 and 0.749, respectively, which were

higher than those of the age-based model, and pathologic

TABLE 2 The screening results of the independent clinical prognostic factors in the training set.

Clinical
characteristics

TCGA (N =
1,009)

HR Uni-variables cox HR Multi-variables cox

95%CI P 95%CI P

Age (years, mean ± SD) 58.32 ± 13.20 1.031 1.018–1.043 1.66E-06 1.033 1.018–1.047 5.34E-06

Pathologic M (M0/M1/-) 875/19/115 4.111 2.385–7.084 3.59E-08 1.294 0.618–2.709 4.94E-01

Pathologic N (N0/N1/N2/N3-) 471/335/114/71/18 1.602 1.345–1.908 7.45E-08 1.184 0.890–1.576 2.47E-01

Pathologic T (T1/T2/T3/T4/-) 255/591/124/35/4 1.439 1.178–1.757 3.45E-04 0.964 0.714–1.302 8.11E-01

Pathologic stage (I/II/III/IV/-) 164/574/232/17/22 2.098 1.672–2.632 1.22E-10 1.744 1.065–2.858 2.72E-02

Histology type (Basal/Her 2/LumA/Lum B/Normal/-) 139/67/420/191/24/168 1.129 0.955–1.336 1.56E-01 — — —

ER Status (Positive/Negative/-) 596/178/235 0.995 0.644–1.537 9.81E-01 — — —

HER2 Status (Positive/Negative/-) 114/647/248 1.030 0.585–1.811 9.20E-01 — — —

PR Status (Positive/Negative/-) 518/253/238 0.926 0.629–1.362 6.96E-01 — — —

Vital status (Dead/Alive/-) 148/846/15 — — — — — —

Overall survival time (months, mean ± SD) 42.42 ± 40.54 — — — — — —

Note: TCGA, the cancer genome atlas; HR, hazard ratio; CI, confidence interval; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; SD,

standard deviation.

FIGURE 4
The Kaplan-Meier (KM) curves for the independent clinical prognostic factors in the training set. (A) The KM curves for age (black and red curves
separately represent the samples aged no more than 60). (B) The KM curves for pathologic stage. Black, red, purple, and blue curves represent the
samples in stage I, stage II, stage III, and stage IV, respectively. HR, hazard ratio.
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stage-based model (Figure 5C; Table 3). These results implied

that the nomogram survival model had a better predictive ability

than age-based and pathologic stage-based models.

Identification of DEGs between low and
high pIRS groups and functional analysis

Based on the criteria of |log2 FC| > 0.5 and FDR <0.05, a total of
539 DEGs were identified between the low and high pIRS groups in

the training set, including 365 downregulated genes and

174 upregulated genes. After that, these identified DEGs were

sent for KEGG pathway enrichment analysis, and with the

threshold of FDR <0.05, six significant KEGG pathways were

significantly enriched, including cytokine-cytokine receptor

interaction (FDR = 1.250E-03), chemokine signaling pathway

(FDR = 1.536E-03), B-cell receptor signaling pathway (FDR =

2.481E-02), T-cell receptor signaling pathway (FDR = 1.828E-02),

Toll-like receptor signaling pathway (FDR = 1.903E-02), and

antigen processing and presentation (FDR = 1.623E-02) (Table 4).

Discussion

In this study, five immune-infiltrating cells were chosen to

construct the dIRS system, and it was found the five immune-

FIGURE 5
The construction and evaluation of the nomogram survival model. (A) The nomogram survival model based on age, pathologic stage, and the
prognostic immune risk score (pIRS) values. (B) The diagram showing the consistency of the predicted and the actual survival probabilities. (C)
Comparison of the predictive abilities of the age-based model (black), the stage-based model (red), and the nomogram survival model (blue). OS,
overall survival.

TABLE 3 The parameters for the age-based model, the stage-based
model, and the nomogram survival model.

ID AUROC Specificity Sensitivity C-index

Age 0.549 0.655 0.582 0.641

Stage 0.594 0.673 0.541 0.680

Nomogram 0.826 0.941 0.683 0.749

Note: AUROC, area under the receiver-operator characteristic curve.
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infiltrating cell types-consisted dIRS system could distinguish BC

patients from normal controls. Then, five prognosis-related

mmune-infiltrating cells were identified to build the pIRS

system, and the results showed that the pIRS system was good

to predict the BC prognosis. In addition, a nomogram survival

model was built based on the significantly independent clinical

prognostic factors (age and pathologic stage) and pIRS, which

could have a better predictive ability for BC. Finally, we identified

539 DEGs between the low and high pIRS groups, which were

significantly enriched in six KEGG pathways.

Based on five infiltration types (B cells, CD8 + T cells,

endothelial cells, NK cells, and other cells), the dIRS system of

BC was constructed in our study, and it was found that the dIRS

value was significantly decreased in the BC tissues compared with

the normal tissues, and the AUROC values for the training set

and validation sets were all above 0.7, which indicated that the

dIRS system had high accuracy for BC diagnosis. T follicular

helper cell activation of B cells induced by immune checkpoint

inhibitors contributes to the anti-tumor response in BC models,

and thus T follicular helper cells and B cells are involved in the

immunotherapy of BC (Hollern DP et al., 2019). Tumor-

infiltrating B-cells (TIL-B) has influences on the improved

clinical prognosis of BC patients, which can generate

sustained humoral immune responses and effective anti-tumor

immunity in the tumor (Garaud S et al., 2019). Through

promoting the proliferation and activity of CD8+ T cells and

making tumor cells sensitive to T-cell recognition, class I histone

deacetylase (HDAC) inhibitors damage BC cell growth (McCaw

TR et al., 2019). Both CD4+ and CD8+ T cells are correlated with

immune responses, while they have different effects on the

disease progression and clinical outcomes of BC patients

(Huang et al., 2015). Endothelial cell has interactions with the

tumor microenvironment, and its proliferation, invasion, and

migration are inhibited by miR-7 expression in BC patients (Cui

et al., 2017). The combination of epidermal growth factor

receptor (EGFR)-chimeric antigen receptor (CAR) NK-92 cells

with oncolytic herpes simplex virus (oHSV) can lead to a higher

mortality of MDA-MB-231 BC cells and better outcomes of BC

mice, indicating that oHSV-1 therapy combined with EGFR-

CAR NK-92 cells is promising in treating the brain metastases of

BC (Frings et al., 2011; Chen et al., 2016). Combined with our

results, it can be inferred that the dIRS system based on the five

immune-infiltrating cell types might be valuable for the diagnosis

of BC patients.

The present study also screened five prognosis-associated

immune-infiltrating cell types (B cells, endothelial cells,

macrophages, NK cells, and other cells) to establish the pIRS

system, and the AUROC values of the pIRS system for different

datasets were both above 0.7, which manifested that the built

pIRS system was good. Tumor-associated macrophages (TAMs)

in BC microenvironment function as tumor-promoting cells,

which contributes to tumor progression and can induce

treatment-resistance in BC models (Cassetta and Pollard,

2017; Qiu SQ et al., 2018). High density of TAMs is

significantly related to the malignant phenotype and negative

hormone receptor status in BC, and TAMs infiltration can be

considered as a prognostic factor in patients with the tumor

(Zhao et al., 2017). Additionally, a nomogram survival model was

also established using age, pathologic stage and the pIRS system,

and ROC curves showed that the nomogram survival model had

a better predictive ability. Therefore, we can speculate that the

pIRS system based on the five prognosis-associated cell types

might be better and effective in predicting the prognosis of BC

patients.

Finally, 539 DEGs between the low and high pIRS groups

were identified, and were significantly enriched in six significant

pathways, including chemokine signaling pathway, B-cell

receptor signaling pathway, T-cell receptor signaling pathway,

and Toll-like receptor signaling pathway. Overexpressed C-C

motif chemokine receptor 2 (CCR2) promotes the progression of

early-stage BC via stromal-dependent C-C motif chemokine

ligand 2 (CCL2) expression, therefore, chemokine signaling

can affect the therapy and outcomes of BC patients (Brummer

et al., 2018). B-cell receptor plays important roles in the

development and maturation of normal B-cells, and B-cell

receptor signaling is involved in the tumorigenesis of various

B-cell malignancies (Niemann and Wiestner, 2013). T-cell

receptor pathway may be correlated with the pathogenesis of

extranodal NK/T-cell lymphoma, and the inducible T cell kinase

(ITK) involved in T-cell receptor pathway may serve as a

TABLE 4 The six significant pathways involving the differential expressed genes.

Name Size ES NES p-value FDR

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 23 −0.5505 −2.4319 0 1.250E-03

KEGG_CHEMOKINE_SIGNALING_PATHWAY 16 −0.5553 −2.1649 0 1.536E-03

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 2 −0.5660 −1.5536 6.221E-03 2.481E-02

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 4 −0.5795 −1.7560 1.192E-03 1.828E-02

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 4 −0.6483 −1.7249 1.553E-03 1.903E-02

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 14 −0.4876 −1.6439 3.492E-03 1.623E-02

Note: KEGG, kyoto encyclopedia of genes and genomes; ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate.
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candidate target for treating the lymphoma patients expressing

ITK (Tomoko et al., 2018). The toll-like receptor signaling

pathway has correlations with the risk, progression, and

survival of BC patients, which provides novel ideas for

improving the therapeutic strategies of the disease (Kidd et al.,

2013). Thus, the identified DEGs enriched pathways of

chemokine signaling pathway, B-cell receptor signaling

pathway, T-cell receptor signaling pathway, and Toll-like

receptor signaling pathway might be correlated with the

progression and prognosis of BC patients. However, the

specific roles of these pathways in BC warrant to be further

investigated.

Although tumor stage and molecular markers had been

applied for the diagnosis and treatment of BC, this study

constructed the dIRS system, pIRS system, and nomogram

survival model to improve the predictive accuracy of BC.

However, our findings need to be further validated by more

in vitro and in vivo experiments in the future. Additionally, the

application of the dIRS and pIRS systems to clinical detection

methods will be another important task for our future work.

Conclusion

In conclusion, our study reveals the roles of immune cells in the

diagnosis and prognosis of BC.With the rapid development of high-

throughput technology, we are confident that our proposed dIRS

system and the pIRS system based on the immune-infiltrating cells

may have great potential in the diagnosis, treatment evaluation, and

prognosis of BC. These findings may provide much-needed

comprehensive clinical information to improve the personalized

management of BC patients.
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