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Background: Proteasome 26S subunit, ATPase gene (PSMC) family members play a
critical role in regulating protein degradation and are essential for tumor
development. However, little is known about the integrative function and
prognostic significance of the PSMC gene family members in lung cancer.

Methods: First, we assessed the expression and prognostic features of six PSMC
family members in pan-cancer from The Cancer Genome Atlas (TCGA) dataset.
Hence, by focusing on the relationship between PSMC genes and the prognostic,
genomic, and tumor microenvironment features in lung adenocarcinoma (LUAD), a
PSMC-based prognostic signature was established using consensus clustering and
multiple machine learning algorithms, including the least absolute shrinkage and
selection operator (LASSO) Cox regression, CoxBoost, and survival random forest
analysis in TCGA and GSE72094. We then validated it in three independent cohorts
from GEO and estimated the correlation between risk score and clinical features:
genomic features (alterations, tumor mutation burden, and copy number variants),
immune profiles (immune score, TIDE score, tumor-infiltrated immune cells, and
immune checkpoints), sensitivity to chemotherapy (GDSC, GSE42127, and
GSE14814), and immunotherapy (IMvigor210, GSE63557, and
immunophenoscore). Twenty-one patients with LUAD were included in our local
cohort, and tumor samples were submitted for evaluation of risk gene and PD-L1
expression.

Results: Nearly all six PSMC genes were overexpressed in pan-cancer tumor tissues;
however, in LUAD alone, they were all significantly correlated with overall survival.
Notably, they all shared a positive association with increased TMB, TIDE score,
expression of immune checkpoints (CD276 and PVR), and more M1 macrophages
but decreased B-cell abundance. A PSMC-based prognostic signature was
established based on five hub genes derived from the differential expression
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clusters of PSMC genes, and it was used to dichotomize LUAD patients into high- and
low-risk groups according to the median risk score. The area under the curve (AUC)
values for predicting survival at 1, 3, and 5 years in the training cohorts were all >.71, and
the predictive accuracy was also robust and stable in the GSE72094, GSE31210, and
GSE13213 datasets. The risk score was significantly correlated with advanced tumor,
lymph node, and neoplasm disease stages as an independent risk factor for LUAD.
Furthermore, the risk score shared a similar genomic and immune feature as PSMC
genes, and high-risk tumors exhibited significant genomic and chromosomal
instability, a higher TIDE score but lower immune score, and a decreased
abundance of B and CD8+ T cells. Finally, high-risk patients were suggested to be
less sensitive to immunotherapy but had a higher possibility of responding to platinum-
based chemotherapy. The LUAD samples from the local cohort supported the
difference in the expression levels of these five hub genes between tumor and
normal tissues and the correlation between the risk score and PD-L1 expression.

Conclusion: Overall, our results provide deep insight into PSMC genes in LUAD,
especially the prognostic effect and related immune profile that may predict
therapeutic responses.
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1 Introduction

Lung cancer is the most prevalent cancer and a prominent cause of
cancer-related mortality worldwide (Thai et al., 2021). Non-small-cell
lung cancer (NSCLC) accounts for 85% of all lung cancers, with lung
adenocarcinoma (LUAD) being the most common subtype. Despite
great advances in the era of precision oncology, the 5-year survival of
patients with LUAD remains unsatisfactory (Miller and Hanna, 2021).
Meanwhile, LUAD is a disease with great heterogeneity, which results
in different outcomes for patients treated with the same regimens
(Memmott et al., 2021). Therefore, there is a practical need to develop
accurate and promising prognostic biomarkers and efficient
therapeutic targets for clinicians to tailor the most appropriate
treatment to prolong the survival of patients with LUAD.

Dysfunctional proteasomes correlate with cancer by disrupting the
degradation of proteins involved in regulating cell growth or death
(Mani and Gelmann, 2005). Protein degradation by the proteasome is
important for inflammation and antigen presentation in cancer and
has been associated with the response to immune checkpoint
inhibitors (ICIs) (Kalaora et al., 2020). The proteasome 26S
subunit, ATPase gene (PSMC) family consists of six members,
including PSMC1–6, which are essential components of the 19S
regulatory particle of the proteasome (Kamber Kaya and
Radhakrishnan, 2020). In addition, previous studies have revealed
that each of the six PSMC family members is crucial for carcinogenesis
and progression of different cancer types (Zhang Y. et al., 2020; Wang
et al., 2021). For instance, PSMC2, the most investigated one, has been
found to be upregulated in various types of cancer, including gastric
cancer (Liu et al., 2022), ovarian cancer (Zhu et al., 2021), and
hepatocellular carcinoma (Duan et al., 2021a), promoting tumor
cell proliferation and invasion. Similarly, with fewer studies, other
PSMC genes have been identified as sole oncogenes in certain cancers
(Xiaohang et al., 2018; Zhou et al., 2020; He et al., 2021). The
regulation of cancer cell development by PSMC genes has been
studied in multiple cancers but rarely in LUAD, and their function
as oncogenes was found to be correlated with dysfunctions in the cell
cycle (Liu Y. et al., 2021), PI3K/AKT/mTOR (Zhang Y. et al., 2020;

Wang et al., 2022), MAPK (Jang et al., 2015), and EMT pathways (He
et al., 2021). Furthermore, PSMC family genes have widely proved
their function in the regulation of cancer treatment. By using a
CRISPR experiment targeted at 19,052 genes, Shi et al. found that
PSMC6 was the only gene significantly associated with bortezomib
resistance in myeloma cells (Shi et al., 2017). The prevalence of PSMC
family gene genomic alterations in pan-cancers ranges from 1.1% to
2.5%, with amplification being the most common alteration type
(TCGA PanCancer Atlas Studies, www.cbioportal.org). Therefore,
assessing their expression levels is more reasonable.

Given that all six PSMC proteins form the foundation of the 19S
regulatory particle together, unfolding and translocating the substrate
(Rousseau and Bertolotti, 2018), it is more reasonable to examine
PSMC genes collaboratively. However, the relationship between
PSMC family members and the prognosis of patients with LUAD
remain unclear. Moreover, even though they are not pivotal
modulators that switch constitutive proteasomes to
immunoproteasomes, it is still unclear whether and how they
would shape tumor immunity and influence the response to ICIs
in LUAD. Recently, Md. Asad Ullah and his colleagues have
uncovered the genomic mutation, expression, and methylation
characteristics of PSMC genes (PSMC1–5, but missing PSMC6) in
LUAD (Ullah et al., 2022). Even though they shed light on the weak
correlation between the expression level of PSMC genes and IDO1 and
CD274, more comprehensive and in-depth research is required to
determine the PSMC family genes’ biological function and whether
they can be used as effective prognostication biomarkers for
therapeutic selection.

In this study, we hypothesized that PSMC family genes are
significant and that their expression may provide prognostic
prediction and therapeutic guidance for patients with LUAD. Based
on the transcriptomic profile of The Cancer Genome Atlas (TCGA)
and multiple other datasets, the expression patterns of PSMC and
related clinical, genomic, and tumor immune features were
investigated, and a robust and stable prognostic model was
developed. The results of this study are expected to yield a
comprehensive understanding of PSMC genes in LUAD and an
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improved predictive stratification tool with treatment indications for
patients with LUAD.

2 Materials and methods

2.1 Study design

A schematic diagram of the study design is presented in
Supplementary Figure S1.

2.2 Collection of LUAD datasets

RNA sequencing (RNA-seq) data and information on
clinicopathological features of patients with LUAD were obtained
from TCGA database (https://portal.gdc.cancer.gov) as the training
set. External validation datasets, including GSE72094 (n = 398),
GSE31210 (n = 226), and GSE13213 (n = 117), were obtained from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

2.3 Comparison of PSMC gene expression
between tumor and normal tissues

Analysis of the difference in the expression level of the six PSMC
genes between tumor and normal control samples in pan-cancer was
performed by using the GEPIA database (www.gepia.cancer-pku.cn/
index.html) (Zefang et al., 2017).

2.4 Development of the PSMC gene family
prognostic signature

First, consensus clustering was performed based on the expression
pattern of PSMC family genes in the TCGA and GSE72094 datasets by
using the R package “ConsensusClusterPlus.” The optimal number of
clusters was then selected based on an inspection of the Delta CDF
(change data feed) plot in these two cohorts. Kaplan–Meier survival
analysis was performed to assess the differences in survival between
clusters. Differentially expressed genes (DEGs) between clusters in
TCGA or GSE72094 datasets were determined by using the R package
“LIMMA” (version 3.50.3), and the FDR-adjusted p-value
of <.000001 was set as the threshold to select DEGs. After
screening out the overlapped cluster-related DEGs between TCGA
and GSE72094 datasets, three machine learning algorithms were used
to select candidate genes. Least absolute shrinkage and selection
operator (LASSO) Cox was performed using the R package
“glmnet” (version 4.1-4) with 10-fold cross validation, and
lambda.min () was chosen to select the best model. In the interim,
the R package “CoxBoost” (version 1.5) was used to perform CoxBoost
analysis with 10-fold cross validation. The optimal boosting steps were
optimized using the optimCoxBoostPenalty method. Survival random
forest was then performed using the R package “randomForestSRC”
(version 4.1-4). Finally, the overlapping candidate genes selected by all
three algorithms were applied to develop a risk signature. The
minimum criteria were used to confirm the penalty parameter (λ),
and the coefficients of the six genes were retained. The risk score
formula is as follows: risk score = the expression level of gene A × γA +

the expression level of gene B × γB +. . .+ the expression level of gene
Z × γZ, where γ indicates the coefficients. Based on the median risk
score, the patients with LUAD were classified into low- and high-risk
groups. Kaplan–Meier analysis was used to analyze the overall survival
(OS) of patients in the low- and high-risk groups. The “timeROC”
package in R Studio was used to calculate the area under the receiver
operating characteristic (ROC) curve (AUC), which is an important
standard for evaluating the prognostic ability of the PSMC signature.
According to the same formula, patients from the GSE72094,
GSE31210, and GSE13213 cohorts were dichotomized into low-
and high-risk groups based on the median risk score in each
cohort. Kaplan–Meier and ROC analyses were performed to
evaluate the performance of survival prediction at 1 to 5 years.

2.5 Comparison of predictive performance
between the established signature and
previously reported signatures in LUAD

The prediction accuracy for survival between the established
PSMC signature and seven other risk signatures (Zhang C. et al.,
2020; Al-Dherasi et al., 2021; Liu L-P. et al., 2021; Fan et al., 2021; Li
et al., 2022; Zhang et al., 2022; Zhu et al., 2022) was compared. The risk
score for each signature was calculated based on the formula retrieved
from the articles; these formulas are presented in Supplementary
Table S1.

2.6 Nomogram construction

A nomogram was constructed by combining the risk score and
clinicopathological parameters for the prediction of 1-, 3-, and 5-year
survival in patients with LUAD. The model’s discrimination
performance was assessed using AUC, and the R package “RMS”
was used to evaluate the heterogeneities in predicting the ability of the
model.

2.7 Genomic profile analysis

Genomic alterations in each sample in TCGA cohort were
analyzed using the R package “Maftools.” In the meantime, the R
package “GISTIC2.0” was used to analyze and visualize the copy
number variants (CNVs) in the genomic regions of each tumor sample
with the default parameters. Gain and loss in copy number were
identified using the default GISTIC threshold. Actionable alterations
in the TCGA-LUAD cohorts were identified using the OncoKB
database (https://www.oncokb.org/#/). Then, the difference in the
frequency of gene alterations or CNV between the groups was
compared using Fisher’s exact test.

2.8 Tumor immune microenvironment

To probe the correlation between the risk score and tumor
immune microenvironment (TME), the ESTIMATE algorithm was
used to determine the immune, stromal, and ESTIMATE scores of
each patient in TCGA cohort. The differences in the immune, stromal,
and ESTIMATE scores between the high- and low-risk groups were
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evaluated using the Wilcoxon test. The CIBERSORT algorithm
according to the “CIBERSORT” R package (CIBERSORT R script
v1.03; http://cibersort.stanford.edu/) was used to calculate the
proportion of 22 tumor-infiltrated lymphocytes (TILs) in the
tumor microenvironment. Other algorithms, including xCell (Aran
et al., 2017), TIMER (Li et al., 2020), MCP-counter (Becht et al., 2016),
TIP (Xu et al., 2018), quanTIseq (Finotello et al., 2019), and EPIC
(Racle et al., 2017), were also used to comprehensively evaluate TIL
levels in each tumor sample.

2.9 Calculation of T-cell dysfunction and
exclusion score

The T-cell dysfunction and exclusion (TIDE) score of each sample
was analyzed through the TIDE website (http://tide.dfci.harvard.edu/
login/) to predict the level of T-cell dysfunction and inhibition of
T-cell infiltration (Jiang et al., 2018). This computational method has
the capacity to predict the response of ICIs.

2.10 Assessment of the sensitivity to
immunotherapy

The association between the PSMC risk score and the response to
atezolizumab (an anti-PD-L1 blockade) was evaluated in the
IMvigor210 cohort using the R package
“IMvigor210CoreBiologies.” Transcriptomic, survival, and
therapeutic response data (including durable clinical benefit [DCB],
complete response [CR], partial response [PR], stable disease [SD],
progressive disease [PD]) were retrieved from the dataset. Meanwhile,
the GSE63557 dataset containing AB1-HAmesothelioma mice treated
with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4)
blockade was used to investigate the difference in the risk score
between responders and non-responders (Lesterhuis et al., 2015).
Immunophenoscore (IPS) is an algorithm used to assess the
immunophenotype of a tumor sample by integrating the levels of
MHC molecules, immunomodulator effector cells, and suppressor
cells, which is positively correlated with enhanced immunogenicity
(Charoentong et al., 2017). Each sample from TCGA-LUAD cohort
was analyzed using the Cancer Immune Group Atlas (TCIA, https://
tcia.at/home) website.

2.11 Evaluation of chemotherapy response

First, the sensitivity of LUAD patients to chemotherapeutic
drugs, including docetaxel, paclitaxel, vinblastine, gemcitabine,
cisplatin, erlotinib, gefitinib, doxorubicin, and etoposide, was
predicted using the Genomics of Drug Sensitivity in Cancer
(GDSC; https://www.cancerrxgene.org) database. The half
maximal inhibitory concentration (IC50) of each drug in an
individual sample was determined using the R package
“pRRophetic.” Subsequently, the transcriptomic and clinical
data of patients with LUAD receiving adjuvant chemotherapy
or not were retrieved from the GSE42127 (mainly treated with
carboplatin plus taxanes) and GSE14814 datasets (cisplatin/
vinorelbine). Only LUAD samples were retained for further
analysis in both datasets.

2.12 Real-time polymerase chain reaction

Twenty-one patients with LUAD were included in our local
cohort, and tumor samples were submitted for evaluation of the
risk gene and PD-L1 expression. The study protocol was approved
by the ethical committee of Jiangsu Cancer Hospital (approval no.
2021-090-01), and all participants provided informed consent. Patient
clinical data are presented in Supplementary Table S2. Total RNA was
extracted from the collected tissues using the TRIzol reagent
(Invitrogen, CA, United States), and cDNA was synthesized using a
high-capacity cDNA reverse transcription kit (Thermo Fisher
Scientific, CA, United States) according to the manufacturer’s
protocol. Real-time PCR was performed to detect the expression of
GNPNAT1, LDHA, SEC61G, PLEK2, and C1QTNF6 using PowerUp
SYBR Green Master Mix (Thermo Fisher Scientific, CA, United
States). All samples were analyzed using an ABI 7900HT PCR
machine (Thermo Fisher, CA, United States). The gene expression
levels were normalized to those of GAPDH. Primer sequences for the
genes were as follows: GNPNAT1 (forward primer: 5′-ACTCCTATG
TTTGACCCAAGTCT-3′, reverse primer: 5′-TCTGTTAGCTGA
CCCAATACCT-3′); LDHA (forward primer: 5′-ATGGCAACT
CTAAAGGATCAGC-3′, reverse primer: 5′-CCAACCCCAACA
ACTGTAATCT-3′); SEC61G (forward primer: 5′-GCAGTTTGT
TGAGCCAAGTCG-3′, reverse primer: 5′-CCAGCCGAATGGAGT
CCTT-3′); PLEK2 (forward primer: 5′-GCGATGGTTCATCCTTCG
G-3′, reverse primer: 5′-ATAGCCCCGGTGATCTCAAAG-3′);
C1QTNF6 (forward primer: 5′-TGCCTGAGATCAGACCCTACA,
reverse primer: 5′-GCCCACTGAGAAGGCGAAG-3′); and
GAPDH (forward primer: 5′-CTGGGCTACACTGAGCACC-3′,
reverse primer: 5′-AAGTGGTCGTTGAGGGCAATG -3′).

2.13 PD-L1 staining

PD-L1 status was assessed using an anti-PD-L1 antibody
(22C3) (Agilent, CA, United States), and all stained slides for
PD-L1 membrane staining were reviewed by two independent
pathologists. The tumor proportion score (TPS) is defined as the
percentage of viable tumor cells showing partial or complete
membrane staining relative to all viable tumor cells present in
the sample, and samples with TPS ≥1% were classified as PD-L1
positive (Reck et al., 2016).

2.14 Statistical analysis

The patients were divided into the high- and low-risk groups
using the median cutoff of the expression level or the risk score.
Comparisons in clinical demographics between two groups were
assessed with Student’s t-test or the Wilcoxon test. Student’s t-test
or the Wilcoxon test was used to compare clinical demographics
between samples with high expression and low expression and
between groups with high and low risk scores. Differences in OS
were compared between groups with Kaplan–Meier curves, Cox
regression, and log-rank tests. The correlation between the PSMC
gene or risk score and other variables was conducted by
Spearman’s correlation analysis. The time-dependent area
under the receiver operating characteristic curve (AUC) was
used to evaluate the predictive power of the risk score on OS,
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and a higher value of AUC represented higher accuracy. The
statistical difference in distribution in three or more groups
was examined by the Kruskal–Wallis test and that of two
groups was compared by the Wilcoxon test. All statistical
significances were determined using a two-sided p0.05 cutoff.
All statistical analyses were performed using R software
(version 4.0.5), the Bioconductor (http://bioconductor.org/)
package, and GraphPad Prism 9.0 (GraphPad Software).

3 Results

3.1 Expression and correlation of PSMC genes
with survival in pan-cancer

First, we evaluated the expression levels of the six PSMC family
members in 24 types of cancer in TCGA database and found that
PSMC5 was the most predominant in all types of cancer except

FIGURE 1
Expression of proteasome 26S subunit, ATPase (PSMC) genes across different types of cancer. (A) Heatmap representing the expression level of the six
PSMC family genes in pan-cancer. (B) Forest plots illustrating the hazard ratio of the expression levels of PSMC genes related to overall survival using univariate
Cox analysis. (C) Comparison of the expression levels of the six PSMC family genes between tumor and normal tissues in 24 types of cancer. Cancer types
labeled black indicated no significant difference between tumor and normal tissues; red indicated that the expression level was significantly upregulated
in the tumor tissues; and green indicated that the expression level was significantly downregulated in the tumor tissues.
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FIGURE 2
Correlation between PSMC gene expression and the prognostic and genomic features in lung adenocarcinoma (LUAD). (A) Kaplan–Meier curves
stratified by the expression level of each PSMC gene family member. Patients were classified into high- or low-expression groups based on the median
expression cutoff value of each PSMC gene. (B) Differences in the mutation counts between the high- and low-expression groups of each PSMC gene. (C)
Genomic difference between the high- and low-expression groups of each PSMC gene. Those genes with log (odds ratio) over 0weremore prevalent at
the high-expression level. (D) Differences in the genomic alterations of driver genes, including EGFR, ALK (translocation), KRAS, BRAF, PIK3CA, and ERBB2.
Also, those genes labeled with the red color had a significant difference in prevalence between high and low expression levels. (E) Expression correlation
between each PSMC gene. (F) Protein expression of each PSMC gene in LUAD revealed by immunochemistry in the Human Protein Atlas. *p < .05, **p < .01,
***p < .001, and ****p < .0001.
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ovarian cancer, whereas PSMC2 and PSMC6 had a relatively lower
expression level in pan-cancer (Figure 1A). Using univariate Cox
analysis, the relationship between the expression levels of the six
PSMC family members and OS was investigated. Notably, only in
LUAD, the expression levels of all six PSMC family members were
substantially linked with inferior OS (Figure 1B). In addition, the
expression levels of all six PSMC family genes were significantly
different between tumor and normal tissues in the majority of
these 24 cancers, particularly LUAD (Figure 1C). Thus, we focused
on studying the integrative role of PSMC family genes in LUAD based
on these preceding data. PSMC family genes were rarely mutated in
pan-cancers, with amplification as the predominant mutational type
(Supplementary Figure S2A); in LUAD, their alterations were likewise
uncommon (Supplementary Figure S2B). Then, we analyzed the DNA
methylation pattern of PSMC family genes in LUAD (Supplementary
Figure S2C), which revealed great heterogeneity between patients.
Commonly but slightly, the methylation levels of CpG(s) were found
to be negatively correlated with the mRNA expression level of PSMC
family genes (Supplementary Figure S2D). The methylation of CpG(s)
was not significantly associated with the OS of LUAD patients, with
the only exception of cg17757000 (PSMC4), cg10840864, and
cg07117700 (PSMC5, Supplementary Figure S2E). As mRNA
expression of PSMC genes was more prevalent than methylation
and genomic alterations and their expression level was more
significantly related to the prognosis of LUAD patients, we focused
on their expression level in the subsequent study.

3.2 Correlation between PSMC genes and
clinical, genomic, and TME features in LUAD

According to the findings of the pan-cancer analysis, all six PSMC
genes were identified as oncogenes in LUAD, since patients with
overexpression of each PSMC gene had a shorter OS (Figure 2A).
Across all six PSMC genes, only PSMC2 and PSMC4 exhibited a
significant correlation with lymph nodemetastasis stage and neoplasm
disease stage (p < .05, Supplementary Figure S3A), and groups with
PSMC2 and PSMC4 overexpression had a higher number of patients
with advanced lymph node metastasis and neoplasm disease stages.
Additionally, LUAD samples with advanced neoplasm disease stage
had increasing expression level of the PSMC gene (Supplementary
Figure S3B). Except for PSMC6, groups with overexpression of the
other five PSMC genes had significantly higher levels of mutation
counts than those with low expression levels (Figure 2B). Intriguingly,
all PSMC genes displayed a weak but significant positive correlation
with mutation counts (Supplementary Figure S3C), which may
account for the fact that nearly all genes with a significantly higher
prevalence were present in the overexpression groups (Figure 2C).
Subsequently, we investigated the actionable genomic alterations
associated with PSMC genes and found that EGFR was significantly
more prevalent in samples overexpressing PSMC genes, with the
exception of PSMC4 and PSMC5 (Figure 2D). As a gene known to
be mutually exclusive of EGFR, KRASwas significantly more prevalent
in samples with lower expression levels of PSMC1 and PSMC2
(Figure 2D). In addition, PSMC family gene expression was
significantly positively correlated with each other in LUAD
(Figure 2E), supporting the hypothesis that PSMC genes should be
studied collectively. The six PSMC family members were widely
detected in LUAD samples from the HPA database (Figure 2F;

Supplementary Figure S4), revealing their comprehensive existence
in LUAD samples.

Six PSMC genes exhibited different correlations with tumor-infiltrated
immune cells but with concordance in the enrichment ofM1macrophages
and exclusion of memory and plasma B cells revealed by the CIBERSOFT
algorithm (Figure 3A). By performing integration analysis using multiple
algorithms, we found that the exclusion of B cells and enrichment of
M1 macrophages was a constant feature of all PSMC genes (Figure 3B).
Notably, all PSMC genes were significantly positively correlated with
immune checkpoint genes, including CD276 (B7-H3), PVR (CD155),
and TNFRSF12A (Figure 3C). LUAD patients with PSMC gene
overexpression had significantly lower immune scores, except for
PSMC2 (Figure 3D; Supplementary Figure S3D). In contrast,
PSMC2–4 genes were negatively correlated with the TIDE score,
indicating an immune profile with dysfunction or exclusion in T cells
(Figure 3E; Supplementary Figure S3E).

3.3 Identification of PSMC-related genes and
construction of a PSMC family gene-based
prognostic signature

Based on the expression pattern of PSMC family genes, unsupervised
consensus clustering of LUAD samples in TCGA (Figures 4A, B) and
GSE72094 datasets (Figures 4C, D) revealed two distinct clusters. It is
noteworthy that patients from the two clusters had significantly different
OS in both TCGA andGSE72094 cohorts (Figure 4E). A total of 5,217 and
1,682 DEGs were identified between the two clusters in TCGA and
GSE72094 cohorts, respectively, of which 891 were shared by these two
datasets (Figure 4F; gene lists are presented in Supplementary Table S3).
DEGs in TCGA andGSE72094 cohorts were both significantly enriched in
the cell cycle, proteasome, and DNA repair pathways, which revealed a
consistent difference in the molecular function between PSMC clusters
(Supplementary Figure S5). Then, through multiple machine learning
algorithms including LASSO-Cox, CoxBoost, and survival random forest,
five hub genes (GNPNAT1, LDHA, SEC61G, PLEK2, and C1QTNF6)
were screened out (Figure 4G; details about candidate genes screened out
by eachmachine learning algorithm are presented in Supplementary Table
S4). All five genes were highly upregulated in tumor tissues relative to
normal tissues (Figure 4H) and were associated with disease progression
(Figure 4I). Meanwhile, the expression of all five genes was significantly
positively correlated with the expression of the PSMC family genes
(Figure 4J). The PSMC-related prognostic prediction signature was
calculated using the following formula:

PSMC risk score = .101 × GNPNAT1 expression +.101 × LDHA
expression +.0188 × SEC61G expression +.0739 × PLEK2 expression
+.113 × C1QTNF6 expression.

Subsequently, LUAD patients in all training and validation
cohorts were dichotomized into high- or low-risk groups according
to the median risk score (Supplementary Figure S6). The high-risk
group had significantly higher expression levels of the PSMC family
genes than the low-risk group (Figure 4K).

3.4 Evaluation and validation of the PSMC
signature

To evaluate the predictive performance of the established PSMC
signature, Kaplan–Meier survival and time-dependent ROC analyses
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were performed in both the training and validation cohorts. In the
training cohort, the median OS (mOS) in the low-risk group was
doubled compared to that in the high-risk group (77.27 vs.

34.20 months, p < .0001), and the prediction accuracy of the
PSMC signature for survival at 1 to 5 years was >.71 (Figure 5A).
Consistent with this result, low-risk patients in the validation cohorts

FIGURE 3
Correlation between PSMC genes and immune profile in lung adenocarcinoma (LUAD). (A) Correlation analysis between PSMC genes and the tumor-
infiltrated immune cell profile in LUAD using the CIBERSOFT algorithm. (B) Correlation between the expression of PSMC genes and abundance of B cells and
M1 macrophages revealed using multiple computational algorithms. (C) Correlation analysis between PSMC genes and immune checkpoints. Difference in
the immune score (D) and T-cell dysfunction and exclusion (TIDE) (E) score between high- and low-expression groups. *p < .05, **p < .01, ***p < .001,
and ****p < .0001.
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FIGURE 4
Construction of a PSMC gene-based prognostic signature. (A) CDF plot displaying the consensus distribution and the relative changes in the area under
the CDF curve in the TCGA-LUAD cohort. (B) Consensusmatrix heat map depicting consensus values on a white to blue color scale in TCGA-LUAD database.
(C)CDF plot displaying the consensus distribution and the relative changes in the area under the CDF curve in the GSE72094 cohort. Y-axis, relative change in
the area under the CDF curve and y-axis; k, the number of consensus clusters. (D) Consensus matrix heat map depicting consensus values on a white to
blue color scale in the GSE72094 cohort. (E) Kaplan–Meier curves showing the overall survival of patients in different clusters in TCGA (left) and GSE72094
(right) cohorts. (F) Venn plot showing the overlapped cluster-related DEGs between the TCGA and GSE72094 cohorts. (G) Venn plot revealing the overlapped
candidate genes found using LASSO-Cox, CoxBoost, and survival random forest. (H)Difference in the expression level of screened-out genes between tumor
and normal tissues. (I) Forest plot of the hazard ratio (HR) of the candidate genes. (J) Pearson’s correlation coefficient between the expression levels of PSMC
family genes and candidate genes. (K) Differences in the expression levels of PSMC family genes between high- and low-risk groups. Patients with LUAD in
TCGA cohort were dichotomized according to the median risk score. *** p < .001.
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(including GSE72094, GSE31210, and GSE13213) had significantly
superior OS compared to high-risk patients (Figures 5B–D). In all
three validation cohorts, the PSMC signature demonstrated robust
and stable predictive accuracy for 1- to 5-year survival (Figures 5B–D).
Multivariate Cox regression analysis revealed that the PSMC risk score
was an independent risk factor in both the training (Figure 5E) and
validation cohorts (Supplementary Figure S7). We then compared the
predictive accuracy of the PSMC signature to that of previously
reported LUAD risk signatures, and the results revealed that our
risk signature outperformed these signatures in terms of survival
prediction (Figure 5F). We also investigated the risk function of
the PSMC signature in pan-cancer (Figure 5G) and found that,
except for LUAD, a higher PSMC risk score indicated an inferior
OS in the other nine cancer types, including low-grade glioma (LGG),
prostate adenocarcinoma (PRAD), pancreatic adenocarcinoma

(PAAD), kidney renal papillary cell carcinoma (KIRP), cervical
squamous cell carcinoma, endocervical adenocarcinoma (CESC),
liver hepatocellular carcinoma (LIHC), glioblastoma (GBM),
urothelial bladder carcinoma (BLCA), and head and neck
squamous cell carcinoma (HNSC).

3.5 Correlation of the signature with
clinicopathological characteristics

Patients with LUAD at advanced tumor (T), lymph node (N), or
neoplasm disease stage had significantly higher PSMC risk scores
(Figure 6A). According to these findings, the high-risk group included
more patients with advanced T, N, and tumor disease stages
(Figure 6B).

FIGURE 5
Evaluation and validation of the risk signature. Kaplan–Meier survival analysis and time-dependent ROC curves at 1–5 years in the training (A) and
validation cohorts, including GSE72094 (B), GSE31210 (C), and GSE13213 (D). (E)Multivariate Cox regression analysis of the hazard ratio (HR) of the PSMC risk
score and other clinicopathological features in the training cohort. (F) Comparison of the predictive accuracy for 1- to 5-year survival between the PSMC
signature and previously reported risk signatures in LUAD. (G) Forest plot showing the HR of the PSMC risk score from the TCGA dataset in pan-cancer.
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3.6 Construction of a nomogrambased on the
risk score and clinical factors

By integrating the risk score with stage, sex, and age, a nomogram
was developed that could robustly predict the survival probabilities at
1–5 years (Figure 7A). The AUC of the nomogram was >.75 at 1- to 5-
year survival, outperforming the risk score alone and any other
clinicopathological factors (Figure 7B).

3.7 Comprehensive analysis of the genomic
profiles between high- and low-risk groups

The top altered genes in the high- and low-risk groups are shown
in Figures 8A, B, respectively. Using Fisher’s exact test, the
significantly different prevalence of the genes is illustrated in
Figure 8C. Notably, almost all the significantly different genes were
more prevalent in the high-risk group, including TP53, RP1L1, TTN,
CSMD3, and SMARCA4, with the exception of NCR1 and EPC1.
Consistent with this feature, we found that the high-risk group had
significantly higher mutation counts (Figure 8D). In the
GSE31210 cohort, patients with LUAD with EGFR mutations had
the lowest risk score, whereas those with KRAS mutations had the
highest risk score (Figure 8E). Meanwhile, we found that more regions
with CNV occurred in the high-risk group (Figure 8F). Consistent
with the trend in genetic alterations, CNV was significantly more
prevalent in the high-risk group, including representative
amplification at 12p12.1, 12q15, 2q14.1, 3q26.2, 14q13.3, q24.21,
and 8q21.13 and deletions at 17p13.3, 8p23.3, 9p21.3, and 8q24.21
(Supplementary Table S5). DEGs between the high- and low-risk
groups were significantly enriched in the focal adhesion, extracellular
matrix (ECM)-related pathway, cell cycle, and p53 pathway
(Supplementary Figure S8).

3.8 PSMC signature was correlated with the
immune profile in LUAD

The high-risk group had a significantly lower immune score than
that of the low-risk group (Figure 9A). The PSMC risk score was
significantly positively correlated with the TIDE score (R = .32), which
was mostly attributable to the T-cell exclusion feature (R = .47,
Figure 9B). The abundance of tumor-infiltrated lymphocytes was
investigated using XCELL, CIBERSOFT, and TIMER (Figure 9C).
Combined with the results from these three algorithms, the high-risk
group had a lower immune-inflamed TME characterized by a higher
abundance of M1macrophages but a lower abundance of CD4+ T cells
and B cells, which was consistent with the aforementioned findings in
the TME related to PSMC family genes. Moreover, more HLA family
genes were upregulated in the low-risk group, showing a negative
correlation between the PSMC risk score and HLA family genes
(Figures 9D, F). In contrast, a positive correlation was identified
between the risk score and HLA-G, HLA-C, HLA-A, and HLA-B
(Figures 9D, F). Regarding the association between immune
checkpoints, we found 21 immune checkpoints that were
significantly positively correlated with the PSMC risk score,
particularly CD276, TNFSF4, TNFRSF9, and CD274 (Figures 9E,
F). Meanwhile, NELL1, CD40LG, and eight other immune
checkpoints were negatively correlated with the PSMC risk score.

3.9 Evaluation of the therapeutic response
to ICI

Based on the difference in the immune profiles between the high- and
low-risk groups, we hypothesized that low-risk patients may bemore likely
to respond to ICIs. In the IMvigor210 cohort, patients in the low-risk group
had better survival rates than those in the high-risk group (Figure 10A).
Relatively more patients with an objective response (CR/PR) or SD were
present in the low-risk group (Figure 10B). By integrating with the TMB
value, it was demonstrated that patients in the high-TMB/low-risk group
had more patients with DCB to the ICI (Figure 10C). Furthermore,
patients with PR and PD had the lowest and highest risk scores,
respectively (Figure 10D). Although there was no significant difference
between patients with and without the objective response to atezolizumab,
patients with DCB to this ICI regimen had notably lower risk scores than
those with PD (Figure 10D). In concordance with this result, responders to
the CTLA4 blockade in the GSE63557 cohort also had a significantly
reduced risk score (Figure 10E). In addition, the IPS, IPS-CTLA4, IPS-
CTLA4-PD1-PD-L1-PD-L2, and IPS-PD1-PDL1-PDL2 scores were
significantly higher in the low-risk group (Figure 10F).

3.10 Evaluation of chemotherapy response

Based on the analysis of the GDSC database, it was demonstrated that
the high-risk group was more chemosensitive, with lower IC50 values for
docetaxel, paclitaxel, vinblastine, gemcitabine, cisplatin, doxorubicin, and
etoposide (Figure 11A). However, the low-risk group was significantly
more sensitive to erlotinib than the high-risk group. Next, we compared the
clinical benefits between high- and low-risk LUAD patients treated with
adjuvant chemotherapy (ACT) in the GSE42127 and GSE14814 datasets.
In the absence of ACT, high-risk patients had significantly shorter survival
than low-risk patients in the GSE42127 dataset (Figure 11B). However, this
difference diminished when ACT was administered (Figure 11C). It is
noteworthy that ACT did not improve the outcomes for low-risk patients
(Figure 11D); in contrast, high-risk patients treated with ACT had a
relatively longer survival than those treated with observation alone;
however, the difference was not statistically significant due to the
limitation in the sample size (Figure 10E). The GSE14814 dataset
corroborated these findings (Figures 11F–I).

3.11 External validation

First, in our local cohorts, we compared the expression levels of the five
hub genes in tumor and normal tissues and found that all five genes were
overexpressed in tumor tissues (Figure 12A). The 21 LUAD patients were
also dichotomized into the high- (n = 10) and low-risk (n = 11) groups
based on the median risk score calculated using the same formula. As we
identified a positive correlation between the risk score and PD-L1
expression in TCGA cohort, we also validated the variance in PD-L1
expression levels in the local cohort. A higher TPS level and PD-L1-positive
fraction were identified in the high-risk group (Figures 12B, C).

4 Discussion

Although a number of prior studies have suggested that all the
PSMC genes were oncogenic in a single tumor type, we revealed that
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LUAD was the only cancer type in which all six PSMC genes were
associated with a worse outcome by integrated pan-cancer analysis.
Through immunochemistry analysis of the HPA database, all six
PSMC genes were found to be differentially expressed in the
LUAD samples, validating their expression and prognostic
significance (Wang et al., 2020; Kao et al., 2021). A single in vitro

investigation revealed that PSMC6 suppression could reduce the
growth and metastasis of LUAD cells, leaving the function of
additional PSMC genes in LUAD unknown (Zhang et al., 2021).
These unfavorable prognostic functions were consistently associated
with a distinct genomic and immune profile in LUAD, including
increased TMB and CD276 expression, an immune cold feature

FIGURE 6
Correlation of the signature with clinicopathological characteristics. (A) Differences in the risk score between patients with different clinicopathological
factors. (B) Comparing the distribution of patients with different clinicopathological factors between high- and low-risk groups. ****p < .0001; ns: not
statistically significant.
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characterized by a lower immune score due to the exclusion of B cells,
enrichment of M1macrophages, and a higher TIDE score. This feature
was also shared by the PSMC risk signature that was established based
on the expression pattern of PSMC family genes in LUAD. In addition,
proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib,
are effective antitumor drugs for treating multiple myeloma (Kumar
et al., 2014). The expression levels of PSMC family genes are related to
the sensitivity to proteasome inhibitors (Acosta-Alvear et al., 2015),
which have been widely investigated in lung cancer (Rohondia et al.,
2020). We also found that the upregulation of PSMC family genes was
correlated with immune regulation-related pathways, DNA
replication, endocytosis, and cell cycle pathways. Consequently, it is
possible that the overexpression of PSMC family genes is a result of an
increase in tumor immunology and cell metabolism, which is also

supported by the results from previous studies (Qin et al., 2019; Duan
et al., 2021b; He et al., 2021; Kao et al., 2021; Yang et al., 2021).

Five genes have been identified as regulators or effectors that
are involved in PSMC-related disease progression in LUAD.
Metabolic reprogramming is a hallmark of malignancy that
satisfies the growing need for the active metabolism and
proliferation of cancer cells. The hexosamine biosynthetic
pathway (HBP) is a key glucose- and nitrogen-related
metabolism pathway in which glucosamine-phosphate
N-acetyltransferase 1 (GNPNAT1) plays an essential regulatory
function (Kaushik et al., 2016). However, little is known regarding
the specific functions of GNPNAT1 and HBP in lung cancer. Kim
et al. discovered that hindering HBP through the inhibition of key
enzymes involved has antitumor effects preferentially in lung

FIGURE 7
(A)Nomogram constructed for predicting probabilities of 1-, 3-, and 5-year overall survival (OS) in TCGA dataset by integrating the risk score and clinical
factors, including stage, sex, and age. (B) ROC analyses of 1-, 3-, and 5-year OS for the nomogram and clinical factors.
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cancer with a KRAS/LKB1 co-mutant (Kim et al., 2020). In line
with the findings of the present study, another study also found
that upregulation of GNPNAT1 was associated with an inferior

outcome in LUAD, combined with a negative correlation between
B cells and CD4+ T cells (Liu W. et al., 2021). Consistent with our
results, other PSMC signature-related genes, including LDHA

FIGURE 8
Comprehensive analysis of the genomic profiles between high- and low-risk groups. Oncoplots showing the top 20 prevalent genes in the (A) high and
(B) low-risk groups. (C) Significantly different prevalent genes in the high- and low-risk groups. **p < .001 and ***p < .0001. (D) Differences in the mutation
counts between different risk groups. (E)Differences in the risk group among LUAD patients with various driver genetic alterations in EGFR, KRAS, or ALK from
the GSE31210 cohort. (F) Comparison of significant regions with amplification or deletion between the high- (left) and low- (right) risk groups.
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(Wu et al., 2020), SEC61G (Zheng et al., 2021), PLEK2 (Wu et al.,
2020), and C1QTNF6 (Zhang & Feng, 2021), have been shown to
be risk genes in lung cancer in vitro, mediating the development,

growth, and metastasis of lung cancer. However, none of them has
previously uncovered a direct or indirect relationship with PSMC
or proteolysis, with the exception of C1QTNF6, which is involved

FIGURE 9
Immune profile correlating with the established PSMC gene-based prognostic signature. (A) Differences in the immune, stromal, and ESTIMATE scores
between the high- and low-risk groups. (B) Correlation between PSMC risk and TIDE scores. (C) Tumor-infiltrated lymphocyte profile analyzed using XCELL,
CIBERSOFT, and TIMER. (D)Differences in the expression levels of HLA family genes between the high- and low-risk groups. (E) Differences in the expression
levels of immune checkpoint genes between the high- and low-risk groups. (F) Correlation between the PSMC risk score and the expression of HLA
family genes or immune checkpoints. *p < .05, **p < .01, ***p < .001, and ****p < .0001; ns: not statistically significant.
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in the complement activation pathway and participates in the
proteolytic cascade (Murayama et al., 2015). As a pivotal
constituent of the TME, the complement cascade is involved in
the regulation of the innate immune system, and previous studies
have indicated that the complement activation alternative
pathway might play a crucial dual role in carcinogenesis (Su
et al., 2020). As cancer cells could benefit from the

immunosuppressive effect caused by complement activation,
therapeutic strategies targeting the complement pathway have
been suggested as potential therapies for patients with LUAD
that could be developed in the future (Kleczko et al., 2019). To the
best of our knowledge, this is the first study to elucidate their
significance in the prognostic regulatory process of PSMC family
genes in LUAD; however, additional research is required to offer

FIGURE 10
Evaluation of the therapeutic response to the immune checkpoint inhibitor. (A) Kaplan–Meier plot of overall survival for patients with low- or high-risk
scores in the IMvigor210 cohort. The distribution of patients who had CR, PR, SD, or PD to atezolizumab in the high- and low-risk groups (B) or with TMB
stratification (C). (D)Differences in the risk score among patients who had different clinical benefits from atezolizumab. (E)Difference in the risk score among
mice who had different clinical benefits to CTLA4 blockades in the GSE63557 dataset. (F) Association between IPS and risk score. DCB, durable clinical
benefit; CR, complete response; PR, partial response; SD, stable disease; and PD, progressive disease. *p < .05, **p < .01, and ****p < .0001.
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deeper insights into the regulatory network between PSMC and
these genes.

The PSMC signature that we established had a robust and stable
performance in distinguishing LUAD patients with worse outcomes.
Although it was primarily explored in LUAD, pan-cancer analysis
revealed that it also has predictive value for numerous cancer types,
thus validating its importance. The genomic alterations and CNV
associated with the risk score may contribute to inferior survival in
high-risk patients. High-risk patients had a significantly higher
prevalence of TP53 and SMARCA4 alterations, which were both
demonstrated to be risk biomarkers associated with worse survival in
lung cancer patients (Jiao et al., 2018; Schoenfeld et al., 2020). Consistent
with genomic alterations, CNV features were also attributed to the
difference in survival between the high- and low-risk groups. More
Amp12p12.1 (KRAS), Del17p13.3 (TP53), and Amp12q15 (CDK4 and
MDM2) mutations have been found in the high-risk group, and genes
involved in these focal regions are not only associated with prognosis

(Wagner et al., 2011) but also with treatment response in LUAD (Kato
et al., 2017; Sitthideatphaiboon et al., 2022). This significant genomic and
chromosomal instability associated with the PSMC signature may be
caused by dysfunction in the DNA repair pathways (Bakhoum and
Cantley, 2018), which are the main signaling pathways correlated with
PSMC gene expression. Numerous studies have demonstrated that the
TME plays a crucial role in tumorigenesis, progression, and metastasis of
LUAD (Chen and Zhou, 2021;Wei et al., 2021). Another study found that
the survival of patients with LUAD was associated with tumor-infiltrating
immune cell levels in the TME (Jin et al., 2021).

Great advances have been made in treating patients with LUAD,
especially with the rapid development of immunotherapy, and patient
survival has significantly improved (Sun et al., 2020; Wen et al., 2021).
However, only a quarter of LUAD patients respond to PD-1/PD-
L1 inhibitor monotherapy (Reck et al., 2022). TMB is an important
predictor of response to immunotherapy, and higher TMB has been
shown to be positively correlated with better immunotherapy response

FIGURE 11
Evaluation of chemotherapy response. (A) Differences in the sensitivity of chemotherapy between high- and low-risk patients. *p < .05, **p < .01, ***p <
.001, and ****p < .0001. Kaplan–Meier survival analysis of the LUAD patients administered without (B) or with (C) adjuvant chemotherapy in the
GSE42127 dataset. Kaplan–Meier survival analysis showing the survival difference in the low- (D) and high-risk groups (E) treated with or without ACT in the
GSE42127 dataset. Similarly, Kaplan–Meier survival analysis showing the difference in survival between the high- and low-risk patients without (F) or with
ACT (G) in the GSE14814 dataset. Kaplan–Meier survival analysis of low- (H) or high-risk patients (I) treated with ACT or observation alone. IC50, the half
maximal inhibitory concentration; ACT, adjuvant chemotherapy; and OBS, observation.
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in various types of tumors (Yarchoan et al., 2017). Although we found
that LUAD patients in the high-risk group had significantly higher
TMB levels, it was suggested that they were less sensitive to ICIs.
Despite wide acknowledgement that a high TMB value
(>10 mutations/MB) is associated with elevated neoantigen load,
which could be recognized by the immune system and thus
increase the sensitivity of immunotherapy (McGranahan et al.,
2016), increasing contradictory evidence has emerged challenging
the application of TMB as a reliable biomarker for ICI (McGrail
et al., 2021). As the cancer-immunity cycle comprises seven steps, of
which the release of cancer cell antigens is the first, malfunctions in
other steps may also hinder the efficacy of ICIs (Chen Daniel and
Mellman, 2013). We found a notable downregulation of HLA family
members in high-risk groups, indicating a relative defect in cancer
antigen presentation or T-cell priming and activation (Braun et al.,
2021). Meanwhile, the TMEmay also contribute to a lower response to
ICIs in the high-risk group, especially if there is a deficiency in CD8+

T cells and B cells. A previous study found that the level of peripheral
IgM+ memory B cells could serve as a positive biomarker for

predicting the efficacy of PD-1 monotherapy in NSCLC patients
(Xia et al., 2021). Meanwhile, the lack of tumor-infiltrated CD8+

T cells has been suggested as a reason for primary resistance to
immune checkpoint inhibitors (Horton et al., 2021). Interestingly,
the negative correlation between the PSMC signature and TILs may be
a reason for the lower immune score and possible lower efficacy of
immunotherapy for high-risk patients even with high TMB values and
neoantigen loads. In this study, multiple immune checkpoints were
positively correlated with the risk score, especially CD276 and CD274.
CD276, also known as B7 homolog 3 protein (B7-H3), is
overexpressed in tumor cells and contributes to the development of
lung cancer (Yonesaka et al., 2018). The combination of blocking
CD276 and PD-1 using antibodies successfully inhibited tumor
growth and increased tumor-infiltrated CD8+ T and NK cell levels
(Lee et al., 2017). Notably, blocking CD276 using multiple strategies,
such as antibody–drug conjugates, antibody-dependent cell-mediated
cytotoxicity, antibodies, and CAR-T cells, have been evaluated in
clinical trials and have shown promising antitumor effects (Zhou and
Jin, 2021).

FIGURE 12
External validation in our local cohorts. (A) Evaluating the expression difference between tumor (n = 21) and normal tissues (n = 11) using real-time
polymerase chain reaction (PCR). (B) Representative images of PD-L1 staining of tumor tissues from the high- or low-risk LUAD patients. (C)Difference in the
expression level between the high- (n = 10) and low-risk groups (n = 11). The expression level of PD-L1 was depicted as the tumor proportion score (TPS).
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There are several limitations to this study. Due to the lack of
coexistence of genomic and transcriptomic data in other validation
datasets, the genomic feature correlated with PSMC genes or the
signature was investigated only in TCGA cohort. Even though the
current study is the first to our knowledge to identify the unique
genomic feature associated with PSMC genes or its signature,
additional research is required to confirm the association. Second,
based on the genomic, TME feature, and immunotherapy dataset
enrollment, we suggested the application of PSMC signature in
predicting the responders to immunotherapy. Unfortunately, we
were unable to access any LUAD cohort with both transcriptome
and treatment responses to immunotherapy to conduct bioinformatics
analyses. Also, in the meantime, TCGA cohort did not collect details of
treatment information, therefore prohibiting us from analyzing the
relationship between treatment selection and patient survival stratified
by the risk score. Future prospective studies should be conducted to
confirm our findings using large cohorts with additional long-term
survivors. In addition, although we conducted some validation tests
using local LUAD samples, the sample size was small. Also, because
the RNA sample we collected was insufficient for RNA-seq, many of
the public datasets’ findings were not confirmed in our local cohorts.
Because we did not perform mechanistic analysis, the regulatory
pathway was not elucidated in detail. To investigate it, additional
experimental methods are required.

Thus, we estimated the expression level of PSMC gene family
members and constructed a prognostic signature based on the
integrative expression pattern of PSMC gene family members.
Furthermore, the correlation between clinical characteristics, TME,
patient prognosis, and risk score was identified. Significant differences
were observed in the percentage of immune cells and the prognosis of
patients between the low- and high-risk groups. In addition, there was
a statistically significant difference in the response to immunotherapy
and chemotherapy between the low- and high-risk groups. Our results
indicate that PSMC gene family members play a pivotal role in
predicting the prognosis of LUAD patients and provide guidelines
for oncologists to select optimal strategies such as immunotherapy,
chemotherapy, and combination therapy.
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