
Applications of machine learning
in metabolomics: Disease
modeling and classification

Aya Galal1,2†, Marwa Talal1,3† and Ahmed Moustafa1,3,4*
1Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt, 2Institute of Global
Health and Human Ecology, American University in Cairo, New Cairo, Egypt, 3Biotechnology Graduate
Program, American University in Cairo, NewCairo, Egypt, 4Department of Biology, American University
in Cairo, New Cairo, Egypt

Metabolomics research has recently gained popularity because it enables the

study of biological traits at the biochemical level and, as a result, can directly

reveal what occurs in a cell or a tissue based on health or disease status,

complementing other omics such as genomics and transcriptomics. Like other

high-throughput biological experiments, metabolomics produces vast volumes

of complex data. The application of machine learning (ML) to analyze data,

recognize patterns, and build models is expanding across multiple fields. In the

same way, ML methods are utilized for the classification, regression, or

clustering of highly complex metabolomic data. This review discusses how

disease modeling and diagnosis can be enhanced via deep and comprehensive

metabolomic profiling using ML. We discuss the general layout of a metabolic

workflow and the fundamental ML techniques used to analyze metabolomic

data, including support vector machines (SVM), decision trees, random forests

(RF), neural networks (NN), and deep learning (DL). Finally, we present the

advantages and disadvantages of various ML methods and provide suggestions

for different metabolic data analysis scenarios.
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Introduction

Metabolomics is the study of small metabolites or chemical processes involving small

substrates in tissues or organisms. The metabolome is the representation of all metabolites

in any biological cell, tissue, or organ and their subsequent cellular products. It provides a

snapshot of the physiology of the cell under investigation and can be used to study

biological information on the biochemical level. This provides an avenue of study that

leads to understanding the biological phenotype, which can be used in the context of

health and disease (Gowda et al., 2008). Roger Williams introduced the concept of a

metabolic profile in the late 1940s (Gates and Sweeley 1978). He used paper

chromatography to suggest that schizophrenia presents characteristic metabolic

patterns in urine and saliva. Only with the technological advancements of the 1970s

and with the introduction of gas chromatography and mass spectrometry was the term

“metabolic profile” introduced (Griffiths and Wang 2009). The first comprehensive
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metabolomic tandem mass spectrometry database, Metabolite

and Chemical Entity Database (METLIN), was developed in

2005 by the Scripps Research Institute (Smith et al., 2005;

Guijas et al., 2018). In 2007, “The Human Metabolome

Project,” led by David S. Wishart, established the first draft of

a database with ~2,500 metabolites, ~1,200 drugs, and

~3,500 food components (David S. Wishart et al., 2007;

Wishart et al.,. 2009). Now, techniques such as mass

spectrometry and gas chromatography have advanced so that

they can detect thousands of independent features in a single

specimen, making identifying metabolites associated with a

disease or trait an increasingly difficult computational

challenge. The field of metabolomics has enabled a

comprehensive assessment of biological specimens and their

associated compounds. This improved understanding of the

biological system at the molecular level is crucial in aiding

disease diagnosis and therapeutic development (Gowda et al.,

2008). Within the omics field, metabolomics represents the

underlying layer that reflects all information expressed and

modulated by the upstream genetic regulation and processing

layers. It is the closest link to the phenotype. It is at the forefront

of personalized health, in terms of diagnosis and therapy,

through its direct applicability to the area of biomarker

discovery (Shah, Sureshkumar, and Shewade 2015; Aderemi

et al., 2021). Biological systems are complex and often require

the integration of several layers of omic data to decipher.

Metabolomics is a potential solution for this, as it represents

the product of the interaction between the various omic layers

(Hasin, Seldin, and Lusis 2017; Misra et al., 2018).

Metabolic disorders are biochemical aberrations that can be

detected through screening techniques or biomarker

identification. However, biomarker identification requires

extensive prior knowledge and numerous disease models for a

single biomarker to be successfully linked to a disease.

Metabolomics and other “omics” molecular profiling

techniques provide essential tools for discovering new disease

risk factors and biomarkers (Smith et al., 2005; Gowda et al.,

2008) without the typical hurdles of time and money. The most

studied metabolic disorders include diabetes mellitus (DM)

(Friedrich 2012; Guasch-Ferré et al., 2016; Ahola-Olli et al.,

2019; Sun et al., 2019; Hou, Wang, and Pan 2021),

cardiovascular disease (CVD) (Müller et al., 2021; Iida,

Harada, and Takebayashi 2019; Streese et al., 2021;

McGranaghan et al., 2020; Cavus et al., 2019; Ruiz-Canela

et al., 2017), and cancers (Gowda et al., 2008; Raffone et al.,

2020; Yang et al., 2020; Schmidt et al., 2021).

For the purposes of this review, the main metabolomic

experimental workflow can be divided into four main parts: 1)

sample retrieval and preparation, 2) separation and detection of

metabolites, 3) data processing, including data mining and

extraction, and 4) data analysis (Figure 1, Middle Panel).

Sample retrieval and preparation depend on the type of

material to collect. Metabolites can be measured from a

variety of different biological samples, e.g., tissue, biofluids,

and cell culture. Depending on the disease or trait under

investigation, the choice of specimen differs, as do the steps

required to prepare the sample for the corresponding

experiment. For example, tissue specimens should be

immediately quenched with liquid nitrogen after harvesting to

arrest the metabolism. Numerous sample preparation protocols

entailing the details of metabolite extraction, enrichment, and

depletion of proteins have been developed (Dettmer, Aronov,

and Hammock 2007; D. S. Wishart 2005; Want et al., 2007).

Separation and detection of metabolites can be achieved by two

main protocols: nuclear magnetic resonance (NMR) and mass

spectrometry and their assorted subtypes (Gowda et al., 2008).

Both techniques are capable of high-throughput measurements

of a large number of metabolites.

Metabolomics studies can be subclassified into three major

approaches: targeted analysis (Shulaev 2006; Griffiths and Wang

2009; Mookherjee et al., 2020), metabolite profiling,

i.e., untargeted analysis (Fiehn 2002; Halket et al., 2005), and

metabolic fingerprinting, which is also known as

exometabolomics and focuses on extracellular metabolites

while utilizing analytical profiling approaches (Allen et al.,

2003; Mapelli, Olsson, and Nielsen 2008; Silva and Northen

2015; Thomas et al., 2021). Targeted approaches are limited to a

set of predetermined metabolites of interest for identifying and

quantifying these specific metabolites. Untargeted approaches

are conducted to identify a comprehensive metabolic profile in a

specimen. The choice of metabolomics workflow and the

associated downstream steps depends on the choice of

experimental approach (Newgard 2017). Typically, untargeted

metabolomics experiments generate substantial volumes of

complex data requiring specialized computational processing

and interpretation methods. Data interpretation software

should ideally be capable of background noise elimination,

peak identification and alignment, and peak normalization.

While commercial and public domain software packages

attempt to perform some of these tasks, there is no universal

software for data extraction and analysis software. In

metabolomics, hundreds of metabolites are detected and

routinely analyzed. The complexity and magnitude of data

produced from metabolomic studies necessitate the use of

computational methods to analyze the data and elicit potential

trends.

Artificial Intelligence (AI), both as a concept and research

field, has gained attention across the twenty-first century.

With its various applications in understanding the

structures or trends in vast amounts of data collected or

generated from modern high-throughput experiments, AI

and machine learning (ML) offer countless possibilities. ML

is used to develop models that can tackle large-scale data and,

through learning, can solve complex problems. ML algorithms

are fundamentally based on the ability to build mathematical

models from a group of sample data (Dhall, Kaur, and Juneja
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2020). Typically, a dataset used for developing a machine

learning model is divided into a training subset, for

example, comprised ~70% of the available data and used in

the ML algorithm to build a model and make predictions, and

a testing subset, for example, ~30% of the data used to provide

an unbiased evaluation of the final model from the training

step. Often, an intermediate validation step is added to assist in

determining the most accurate model and obtaining optimal

model hyper-parameters. In this instance, the data can be

divided through a 60-20-20 split, where 20% of the data can act

as an additional validation set. The initial learning process

requires extensive data to allow the ML algorithm more

opportunities to learn and improve the model. The ability

of the algorithm to learn is formally through a mathematical

function that maps specific inputs to certain outputs. The

training dataset is used to guide the algorithms to make

predictions without being explicitly programmed. This is

achieved through a series of operations, where learning is

made on the basis of weights and biases that will eventually

make predictions in a finite number of steps (Cohen 2021).

Having experienced the training dataset where the algorithm

was able to learn and build a general model, the next step is

testing the model’s performance on an independent dataset

that contains previously unseen data and producing

sufficiently accurate predictions. Predictions are based on

the algorithm’s ability to assign each input to the chosen

FIGURE 1
Principles of metabolomics experimental design and associated ML workflow. The left panel describes the various sources of metabolites.
Metabolite exposure can be through endogenous and exogenous means, e.g., human-encoded, microbiome-encoded, food, drugs, and toxins.
Metabolic dysbiosis can be associated with metabolic disorders, e.g., cancer, cardiovascular disease, intestinal disorders, and diabetes. The center
panel describes the typical flow and design of ametabolomic experiment, starting with the 1) study design where disease and control groups are
determined, 2) followed by sample selection, e.g., urine, stool, blood, and serum, 3) collected samples undergo pre-treatment and processing
according to experimental design, 4) data acquisition, e.g., through mass spectrometry or NMR, 5) feature selection involves the identification of
desired metabolite features that will undergo subsequent, 6) data processing through the quantification of metabolites, and finally, 7) data analysis
depends on the study design. The right panel describes the concepts of ML workflow and prediction, starting with 1) data wrangling and cleaning, 2)
matrix construction, where data from each metabolite is placed in a matrix in reference to the conditions, i.e., disease (marked in red), control
(marked in blue), 3) data are then divided into testing, validation and training datasets, 4) ML algorithm is applied, and 5) cross-validation, and testing of
the predictive power of the algorithm on a test dataset. Created with BioRender.com.
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statistical representation defined by the user. The better the

algorithm can learn from the input data provided, the more

accurate the algorithm can produce predictions

(Antonakoudis et al., 2020; Deepthi et al., 2020).

Constructing an ML model requires a series of steps: 1)

Defining the training dataset: it involves identifying the type of

data to be used as the training dataset; the input data would

change depending on the problem that needs to be addressed. 2)

Gathering the training dataset: a representation of the real-world

use requires a set of inputs that will address the problem under

investigation. 3) Input feature representation: The learned

function’s accuracy strongly depends on how the input object

is represented. Input objects are transformed into feature vectors,

which have several descriptive features. The number of features

must be sufficient to contain enough information to predict the

output accurately and not too large to affect the dimensionality.

4) Determining the type of algorithm to be used: this is the

algorithm that will be used to fit the data during the testing/

training phase into a model. The choice of the algorithm depends

on several factors, including the question the analysis is trying to

answer, the data, and the ML category used, i.e., supervised

learning, unsupervised learning, reinforcement learning, and

semi-supervised learning (it is expanded upon later). 5)

Training the algorithm: running the algorithm on the

gathered training dataset; this step might require additional

user input depending on the choice of the algorithm. Cross-

validation can be used to adjust hyper-parameters (variables that

determine how the algorithm is trained, e.g., learning rate,

number of branches, clusters, and epochs) and optimize

performance on a subset of the training set. 6) Validation: the

training phase is often followed by a validation step to fine-tune

the hyper-parameters of the classifiers. This validation step is

independent of the cross-validation performed on the training set

and uses a separate validation dataset. Validation is typically

necessary to compare the performance of the different candidate

classifiers: it is used to obtain performance parameters, including

accuracy, sensitivity, and specificity of the models, and to

estimate the models’ prediction error or bias. The model with

the best performance on the validation set is then chosen to move

forward to the testing phase. 7) Testing and evaluation: after

hyper-parameter adjustments and learning, the accuracy of the

learned function is assessed through the performance of the

algorithm on an entirely new testing dataset, independent of the

training and validation dataset (Figure 1: Principles of

Metabolomics experimental design and associated ML

workflow.).

Model performance assessment is an important step in properly

evaluating the validity of a model’s predictions and deciding which

model is best for a given problem. Model assessment methods are

varied, depend on the characteristics of the problem, and can include

a process known as hyper-parameter tuning, where they can be used

to control the learning process of the model. The most commonly

used assessment methods for classification problems are accuracy

(Gajda and Chlebus 2022), cross-entropy (Boubezoul, Paris, and

Ouladsine 2008; Gajda and Chlebus 2022), area under the curve

(AUC) (Airola et al., 2011; Yala et al., 2019; Gajda and Chlebus

2022), while for regression analysis, mean squared error (Bellet,

Habrard, and Sebban 2013), mean absolute error (Airola et al., 2011;

Bellet, Habrard, and Sebban 2013) and root mean squared error

(Nguyen et al., 2019) are more commonly employed. However,

other performance metrics are available, including variance and R2

coefficient, to name a few. Determining model specificity (the ability

of a model to identify true negatives correctly) and sensitivity (the

ability of a model to correctly identify true positives) (Trevethan

2017) are additional methods that can inform researchers and apply

some context to the data under investigation (Parikh et al., 2008;

Trevethan 2017).

With every newly discovered metabolite, the field of

metabolomics has grown, allowing for a comprehensive

assessment of biological specimens and their associated

compounds. This improved understanding of the human

body at the molecular and biochemical levels is crucial in

aiding disease diagnosis and therapeutic development

(Gowda et al., 2008). Over the years, the significant

contribution of AI and associated applications in various

biomedical fields has grown, demonstrating the application

of ML in disease prediction and diagnosis of multiple

diseases, including cardiovascular disorders, cancer, and

rare genetic diseases.

In 2019, an editorial published in Nature titled “Why the

metabolism field risks missing out on the AI revolution”

expressed concern with the lack of momentum in AI-assisted

applications in the field of metabolic research as opposed to

other areas, such as genetics, for example. The curation of high-

quality datasets, as well as the collective efforts of various institutions

and funding bodies over the past few years, has increased the

number of AI-assisted metabolomics studies. The number of

metabolomic publications with AI and ML-based methods has

been consistently on the rise, with very few publications (~1/

year) in the early 2000s, steadily rising to reach

~150 publications in 2021, and the number of ML-assisted

publications in 2022 promising to surpass this. The most used

MLmethods in metabolomic studies in the past years are RF, SVM,

logistic regression, and, more recently, DL (Figure 2).

The integration of metabolomics with analytical ML

techniques can be used to answer questions that other omics

approaches cannot answer alone (Gowda et al., 2008; Graham

et al., 2018; Turi et al., 2018; Jendoubi 2021). Here, we discuss

major ML approaches for analyzing metabolic profiles, focusing

on biomarker discovery and disease diagnosis.

Types of machine learning algorithms

ML algorithms can be used to analyze ever-increasing

amounts of generated and accumulated data. ML
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algorithms are traditionally divided into supervised,

unsupervised, semi-supervised, and reinforcement

learning (Figure 3). For the purposes of this review,

we focus on ML algorithms used in metabolomic

studies, mainly supervised and unsupervised

algorithms. The algorithms highlighted in the

following sections do not exclusively belong to any of

the mentioned ML categories; rather, the same

algorithms can be used for multiple learning categories

(e.g., k-Nearest Neighbor can be used in supervised and

unsupervised learning).

Machine learning categories

Supervised learning

Supervised learning involves inferring a function from a

labeled dataset input and a specific expected result (output),

i.e., an input-output pair. With data containing continuous

values, linear regression analysis is commonly used for

objectives such as forecasting, prediction, and process

optimization (Biswas, Saran, and Wilson 2021). Logistic

regression is used with the classification into two

categories. Classification for more than two categories can

be performed using Support Vector Machines (SVM),

decision trees, Random Forest (RF), and other methods

(refer to Figure 3).

Unsupervised learning

In unsupervised machine learning, the algorithm learns

patterns from unlabeled data. The algorithm takes a dataset

with only inputs and attempts to find a structure in the data

by grouping or clustering the data points (Dhall, Kaur, and Juneja

2020). Unlike supervised learning, where the algorithm learns

from data that has been labeled, classified, or categorized,

unsupervised algorithms identify trends or commonalities in

the data and respond based on the presence or absence of

these commonalities in the data. This analysis can have

various goals, from identifying hidden data trends to reducing

redundancy, i.e., dimensionality reduction using Uniform

Manifold Approximation and Projection (UMAP) (McInnes,

Healy, and Melville 2018) and t-distributed stochastic

neighbor embedding (t-SNE) (Van Maaten and Hinton 2008),

or grouping together similar data (Dhall, Kaur, and Juneja 2020),

i.e., clustering. Examples of unsupervised algorithms include

k-means clustering, hierarchical clustering, anomaly detection,

neural networks (NN), principal component analysis (PCA),

independent component analysis (ICA), and apriori algorithms.

Semi-supervised learning

Semi-supervised learning falls between unsupervised and

supervised learning. It combines a small amount of labeled

data with a large amount of unlabeled data during the

FIGURE 2
Metabolomic publications using machine learning in data analytics over the past 2 decades. PubMed was searched using the keywords
“metabolomics” and “machine learning” from 2002 to 2022. Results were manually filtered to remove review articles and irrelevant publications. The
counted publications include studies that use any of the mentioned ML algorithms in the context of metabolomic analysis, including classification
problems, biomarker discovery, peak identification, metabolomic data analysis tools, and others. Only ML algorithms employed for disease
model building are considered. (A) The total number of publications per year. (B) The number of publications using MLmethods per year. The y-axis
in (A) and (B) are different because in (B), it indicates only the MLmethods discussed in this review. The total number of publications across panels (A)
and (B) varies because publications often utilize multiple ML algorithms.
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training process and uses context to identify data patterns (Dhall,

Kaur, and Juneja 2020). For example, this method can be used for

classification problems that require a supervised learning

algorithm to achieve the end goal; however, it would not

require extensive labeling. It is faster than supervised learning

because it involves a mixture of labeled and unlabeled data.

Examples include generative models, low-density separation,

Laplacian regularization, and heuristic approaches. This

approach is not commonly used in the field of metabolomics,

with few published applications (Libbrecht and Stafford Noble

2015; Migdadi et al., 2021; Abram and Douglas, 2022; Iqbal et al.,

2022).

Reinforcement learning

This method was adopted to direct unsupervised ML by

rewarding desired behavior and punishing undesired ones.

Positive feedback strengthens the model’s ability to connect

target inputs and outputs (Dhall, Kaur, and Juneja 2020).

FIGURE 3
Machine learning algorithms categories. ML algorithms are divided into four main classes: Supervised, Unsupervised, Semi-supervised, and
Reinforcement learning. The category choice depends on the type and nature of the data under investigation, i.e., labeled or unlabelled data.
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FIGURE 4
Representation of most commonly used ML algorithms with functional categorization accompanied by graphical representations of each
algorithm and some potential applications. The most frequently used algorithms can be grouped into regression (linear and logistic), clustering
(k-means, k-NN, hierarchical clustering, NN), and classification (Naive Bayes, SVM, Decision trees). Created with BioRender.com.
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Examples include Monte Carlo, Q-learning,

State–action–reward–state–action (SARSA), Q-learning

Lambda, SARSA-Lambda, and Deep Q-Learning (DQN), to

name a few. Reinforcement learning is often converged

around fields such as game theory, operations research, and

swarm intelligence, as they are highly dependent on using

robotics.

On the functional level, different ML algorithms are mainly

geared toward solving regression, clustering, or classification

problems. A representation of different ML algorithms with

functional categorization is depicted in Figure 4, and brief

descriptions of the most commonly used ML algorithms are

indicated in Table 1. Supervised ML algorithms are by far the

most commonly used in the field of metabolomics. For this

review, six algorithms centering around supervised learning are

highlighted in the following section, and the application of these

algorithms to metabolomic data will be expanded upon.

Machine learning algorithms

Regression analysis

Regression analysis is a group of statistical procedures

used to estimate the relationship between a dependent variable

(outcome or response) and one or more independent variables

(predictors, covariates, or features). This method of statistical

analysis progressed from the least-squares method to the

regression. It can be used in a variety of fields. In order to

interpret the output in real-world relationships, a number of

assumptions are made, such as that the sample is

representative of the entire population and that no errors

occurred when measuring the independent variables (Vetter

and Schober 2018). Regression analysis is used for two distinct

purposes: inferring causal relations between the variables

under investigation and prediction (Baumgartner, Böhm,

and Baumgartner 2005).

Linear regression

Linear regressionmodels the relationship between dependent

and independent variables by fitting a straight line (linear

equation) to the observed data (Schneider, Hommel, and

Blettner 2010). Predictions based on linear regression are

simple: data trend is observed, then a prediction is made on

the basis of that trend (Casson and Farmer 2014; Vetter and

Schober 2018). While not all data follow a linear trend, linear

regression is often the first attempt used to understand data and

for predictive analyses.

TABLE 1 Key applied machine learning algorithms.

Algorithm Description

Linear regression A linear approach to model a relationship between dependent and independent variables (Schneider, Hommel, and Blettner 2010)

Logistic Regression Models the probability of an event ocuring out of two alternatives by defining the logarithmic odds of the event is a linear
combination of independent variables (Stoltzfus 2011)

k-means clustering Partitions data into groups of similar kinds of items by finding the similarity between the items using euclidean distance.
(MacQueen 1967)

Partial Least Squares (PLS) Reduces the dimensionality of correlated variables to a smaller set of variables that can then be used as predictors. Used when there
is a high number of colinear variables. (Garthwaite 1994)

Linear Discriminant Analysis (LDA) Finds a linear combination of features that can separate two or more object classes. Uses a generalization of Fischer’s linear
discriminant. (Riffenburgh 1957)

Boosting algorithms Involves training a sequence of weak models, where each model compensates for the weakness of its predecessors. Thereby
improving the overall predictive ability of the model. (Kearns and Valiant 1989)

Support Vector Machines (SVMs) Based on finding a hyperplane that best divides a dataset into two classes (Boser, Guyon, and Vapnik 1992; Ben-Hur et al., 2002)

Naïve Bayes Assigns class labels, i.e., feature values to problem instances (Bzdok, Altman, and Krzywinski 2018; Hastie et al., 2009).

k-Nearest Neighbors (k-NN) Finding the distances between a query and all similar examples in the dataset, selecting the specified number of examples (K) closest
to the query, when used for classification, the most frequent labels are counted and when used for regression, the labels are averaged
(Altman 1992)

Decision Trees Uses a tree-like model of decisions and consequences to predict the value of a target variable by learning simple decision rules from
available data features (Shalev-Shwartz and Ben-David 2014)

Random Forest (RF) Builds on the concept of multiple decision trees and takes the majority for classification and the average for regression (Hastie et al.,
2009; Ho 1995)

Principal Component Analysis (PCA) A dimensionality reduction technique that projects data onto a subspace of lower dimension that is able to retain the most variance
among the data points. (Wold, Esbensen, and Geladi 1987; Jolliffe 2005)

Neural Networks (NN) A network of functions where the inputs and outputs are intertwined and interact with each other (Hinton and Salakhutdinov
2006)
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Logistic regression

A statistical model used to predict a binary outcome (one

scenario out of two possible alternatives) based on a set of

independent variables (those that influence the outcome)

using a logarithmic odds scale (Stoltzfus 2011). Typically,

logistic regression analysis is used for classification purposes

and when dealing with binary outcomes i.e., two categories.

Decision trees

A statistical decision support tool that uses a tree-like model

of decisions and possible consequences. Each tree is similar in

structure to that of a flowchart. Each node represents a test, e.g.,

taking a vitamin, each subsequent branch represents the outcome

of the test, i.e., “yes” or “no” for taking the vitamin, and each leaf

node represents a class label (Shalev-Shwartz and Ben-David

2014; Kamiński, Jakubczyk, and Szufel 2018). Decision trees

consist of three types of nodes: decision, chance, and end

nodes (Kamiński, Jakubczyk, and Szufel 2018). Decision trees

are constructed to iteratively identify the feature that most

effectively divides the available data into groups with a high

distinction between the groups in terms of outcome while

maintaining a low within-group variation.

Random forest (RF)

A statistical classification method composed of an assembly

of many decision trees constructed during the training phase.

Generally outperforming decision trees as they correct the

observed overfitting. New objects are classified based on the

attributes of the data. Each tree is classified and gives a vote for

the chosen attribute. When used for classification, the

classification with the most votes is chosen, and when used

for regression purposes, the average votes are used (Hastie et

al., 2009; Dhall, Kaur, and Juneja 2020). RFmodels are among the

most frequently used algorithms for prediction or classification

purposes, with various omics applications from understanding

the human gut microbiome, differentiating between healthy and

disease metabolome, investigating the pregnancy metabolome,

cancer diagnosis to the more recent COVID-19 diagnosis and

classification of COVID-19 severity. Key studies using these ML

algorithms for metabolomic understanding will be highlighted

later.

Support vector machines (SVM)

Proposed in 1992 by Boser, Guyon, and Vapnik, SVMs

(Boser, Guyon, and Vapnik 1992) has been popular

classification tools in many fields, including bioinformatics

and biological data analysis in general (Saeys, Inza, and

Larrañaga 2007). SVMs split training observations into two

classes by constructing a hyperplane, a decision boundary that

separates the data points into two classes. The distance between

the hyperplane and the nearest data points of each class is called

the margin, and the points onto which this margin hits are called

the “support vectors”. The SVM is constructed so that the margin

on either side of the hyperplane is maximized (Figure 5) (Vapnik

2006). In many cases, the data points cannot be fully segregated.

Here, the SVM will try finding a “soft margin” that allows the

misclassification of a few points while minimizing the cost of the

training points that are on the wrong side of the classification

boundary (Cortes and Vapnik 1995).

In the case of data that are not linearly separable, the data

points are mapped into a higher dimensional feature space in

which they become linearly separable (Cortes and Vapnik 1995)

(Figure 6). This is known as the “kernel trick” and gives SVMs

major advantage over other statistical multivariate methods, such

as PCA, Partial Least Squares (PLS), and Orthogonal Projections

to Latent Structures (OPLS), which cannot be applied to

nonlinear cases. A variety of different kernel functions can be

employed to transform the data, including the linear kernel,

polynomial kernel, sigmoid kernel, and Gaussian radial basis

function (RBF) kernel (Powell 1987), (Broomhead and Lowe

1988). A major drawback of SVM is that it is natively restricted to

binary classification problems, i.e., it can only discriminate

between two classes. However, it does not scale well with large

datasets because of its computational complexity.

It is often beneficial to perform feature selection before

training multivariate algorithms, such as SVMs, by only

selecting subsets of features, in the case of metabolites, on

which supervised learning is employed (Guyon 2003).

Reducing the number of variables used for model building

can simplify the interpretability of the data analysis results

and prevent overfitting, which is often caused by non-

informative input features (Liu and Motoda 2012). Feature

selection methods have been reviewed elsewhere (Miao and

Niu 2016). Popular feature selection methods used with SVM

models in metabolomics studies include recursive feature

elimination (RFE) (Guan et al., 2009; R. Shen et al., 2018),

L1 norm SVM (Zhou et al., 2010) (Guan et al., 2009) (Zhou

et al., 2010) and variable importance in projection (VIP) ((Zhang

et al., 2018), (Cheng et al., 2019) (Z. Chen et al., 2021)).

Deep learning (DL)

Deep learning (LeCun, Bengio, and Hinton 2015) has

risen to prominence as the most popular type of machine

learning algorithm recently. It uses artificial neural networks

(ANN) to construct complex relationships relating input

variables to the outcome, advancing classifier performance

beyond typical machine learning techniques, particularly in
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circumstances involving large-scale datasets with high

dimensionality. The potential of deep learning is endless;

however, it is an intensive process that requires considerable

computational power, and its results are often difficult to

interpret. In the case of metabolomics studies, it is difficult to

evaluate from the model, which features affect classification

the most. Deep learning’s recent success has been fueled by an

increase in computing power—particularly the introduction

of graphics processing units, or GPUs —, as well as the

availability of large-scale data sets to use for training the

models.

Although there are applications of unsupervised deep

learning, including autoencoders (Rumelhart, Hinton, and

Williams 1985; Hinton and Salakhutdinov, 2006; Hinton and

Salakhutdinov 2006) and generative adversarial networks

(Goodfellow et al., 2014 (Goodfellow et al., 2014)), in this

review, we focus on supervised deep learning.

An artificial NN is composed of units, termed neurons,

that combine multiple inputs and produce a single output.

The network approximates the functions that link inputs

(e.g., gene expression levels, metabolite concentrations) to

desired outputs (e.g., disease risk). Neurons are organized

into several layers, with an input layer, an output layer, and

intermediate layers, called “hidden layers” (LeCun, Bengio,

and Hinton 2015). The variables from the input layer are

multiplied by specific values called weights and fed into the

neurons of the first hidden layer. Each neuron takes the

input, and applies a nonlinear activation function to it, such

FIGURE 5
Support Vector Machines (SVM) construct a hyperplane to separate data into two classes. Axes represent different features. Green triangles and
blue circles represent different conditions (e.g., disease vs. control). The margin (red dotted line) is the distance between the hyperplane and the
support vectors (the nearest data point of each class).

FIGURE 6
The “kernel trick” - non-linearly separable data points are mapped into a higher dimensional feature space in which they become linearly
separable. Axes represent different features. Green triangles and blue circles represent different conditions (e.g., disease vs. control). The hyperplane,
in this case, becomes a two-dimensional plane.
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as sigmoid (Narayan 1997) or rectified linear unit (ReLU)

(Glorot et al., 2011), and modifies the outcome by adding a

bias to it. The output is then passed on to the next hidden

layer. Finally, the outputs of the hidden layers are linearly

combined in the output layer and often passed through a

classifier function, e.g., a Softmax function, to produce an

output value. During supervised NN training, the tunable

parameters of the network, i.e., the weights and biases, are

optimized so that the distance between the network’s

computed outcome and the experimentally determined

outcome is minimized (Figure 7).

Weights and biases are usually randomly initialized in an

artificial neural network and then gradually optimized with the

aid of a backpropagation algorithm. A cost function (e.g., the

sum of squared errors, cross-entropy) computes the difference

between the network’s output and the desired output. The

derivative of the cost function with respect to the weight can

be used to evaluate how a slight change in a particular weight

affects performance. The parameters of the network are

adjusted in a direction that minimizes the cost. This process

FIGURE 7
Basic neural network architecture. Circles represent neurons. w1, w2, and w3 represent weights by which values calculated inside neurons are
multiplied before being passed on to the next layer. In the hidden layer neurons, values are passed into an activation function (e.g., the ReLU
function), while the output layer neuron applies a classifier function (e.g., the Softmax function) to input values.

FIGURE 8
Gradient descent; initial network parameters (weights and
biases) are adjusted in a direction that travels down the slope of the
cost function (green curve) until the minimum is reached.
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is termed gradient descent because it travels down the slope of

the cost function in steps until, optimally, it reaches its global

minimum (Figure 8). However, cost functions are often

complicated in reality, with many local minima and saddle

points to which gradient descent could converge. Since the

slope in these regions is also zero, it is almost impossible to

escape them. Stochastic gradient descent (Bottou 2010) offers a

more efficient approach, in which only a subset (minibatch) of

the training data is selected at random and used for cost

minimization. Using different mini-batches for each

calculation provides enough stochasticity to avoid getting

stuck in local minima and saddle points, in addition to

drastically reducing computation time and cost.

An artificial NN is considered ‘deep’ when it contains more

than one hidden layer. It has been shown that a single hidden

layer can approximate any function that maps input patterns to

output patterns, given that sufficient neurons are employed

(Cybenko 1989), (Hornik, Stinchcombe, and White 1989).

However, using more hidden layers improves generalization

and leads to more accurate modeling (LeCun, Bengio, and

Hinton 2015). Some commonly used types of artificial NN

include feed-forward NN, recurrent neural networks,

convolutional neural networks (CNN), and deep Boltzmann

machines. For an excellent review of NN types, refer to Min

et al., 2016 (Min, Lee, and Yoon 2016); for potential applications,

refer to (Mendez, Broadhurst, and Reinke 2019; Pomyen et al.,

2020).

DL has only recently been used in the analysis of omics data,

and the application of DL in metabolomics, in specific, is still

emerging and comparatively low compared to other omics.

Metabolomic studies that use DL algorithms are, therefore,

much fewer than those that utuseilize other ML algorithms.

Use of ML approaches in metabolomic
studies

Recently, ML techniques have been used for the analysis of

metabolomics data from numerous diseases. For the purposes of

this review, we are focusing on key studies that used the

aforementioned ML approaches in metabolomic

investigations, categorized according to the conditions being

studied. For examples of metabolomic studies using ML

approaches, refer to Table 2 and Supplementary Table S1.

Cancer

Ovarian cancer

In one of the earliest studies, Yu et al. developed an SVM

classification model that achieved an average sensitivity of

97.38% and an average specificity of 93.30% for distinguishing

cancer from healthy tissue, using a dataset provided by the

National Cancer Institute containing serum metabolomic data

from ovarian cancer and normal tissue (Yu et al., 2005).

The research group of Guan et al. also extensively studied

ovarian cancer metabolites. In 2009, they constructed classifiers

using linear and non-linear SVM to diagnose ovarian cancer

from serum metabolites with over 90% accuracy, significantly

better than a random classifier (Guan et al., 2009).

The same research team published in 2010 (Zhou et al., 2010)

how they evaluated a customized fSVM algorithm (SVM for

functional data classification (Rossi and Villa 2006)) coupled

with ANOVA feature selection for detecting of ovarian cancer

using serum metabolites. One of the tested models achieved

100% accuracy in split validation and 98.9% in leave-one-out

cross-validation.

In a third study published in 2015 (Gaul et al., 2015), the

authors were able to generate a further SVM model capable of

identifying early-stage ovarian cancer with 100% accuracy, this

time using a panel of sixteen serum metabolites selected by RFE.

Eleven of the sixteen metabolites were identified, including

phosphatidylinositol, as well as the lysophospholipids

lysophosphatidylethanolamine and lysophosphatidylinositol.

Metabolomic analysis has also been found to predict ovarian

cancer recurrence. An SVM prediction model was employed by

Zhang et al. with ten significant plasma biomarkers, yielding area

under the curve (AUC) values reaching 0.964 (Zhang et al.,

2018). The results showed a clear clinical advantage over the most

commonly used clinical biomarker, CA125, which by contrast,

produced an AUC value of only 0.6126.

Breast cancer

An interesting metabolomics study on breast cancer by

Henneges et al. focused on modified nucleosides (degradation

products of cellular RNA metabolism) and ribosylated

metabolites in urine samples (Henneges et al., 2009). From a set

of 35 pruned metabolites, 44 pairwise combinations of metabolite

features were employed for SVM-based analysis. The sensitivity and

specificity of this model were 83.5% and 90.6%, respectively.

S-adenosylhomocysteine (SAH) was the most commonly

recurring compound in the metabolite pairs, underlining its

importance for RNA methylation in cancer pathogenesis.

In another study conducted on breast cancer samples,

Alakwaa et al. demonstrated that DL could reliably predict

estrogen receptor status (Alakwaa, Chaudhary, and Garmire

2018). The authors used feed-forward networks with a

sigmoid activation function and a softmax classifier on a

dataset containing 162 metabolites. The predictions were

compared to traditional ML methods like RF, SVM,

prediction analysis for microarrays (PAMs), generalized

boosted models, recursive partitioning and regression trees

(RPART), and linear discriminant analysis, with DL models
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TABLE 2 Examples of metabolomics studies utilizing ML algorithms.

# Author Journal Publication
year

Area
of
investigation

ML
algorithm
used

Brief
description

Findings Doi

1 Shen et al Cell 2020 COVID-19 Random Forest Identification of
severe COVID-19
cases based on
molecular
signatures of
proteins and
metabolites

Severity identification
was conducted on
18 non-severe and
13 severe patients.
Identified
29 important
variables (22 proteins,
7 metabolites) - >
Incorrect
classification of
1 patient

doi: 10.1016/j.cell.
2020.05.032. Epub
2020 May 28. PMID:
32492406; PMCID:
PMC7254001

Model was tested on
an independent
cohort of 10 patients
- > all severe patients
correctly identified
except 1

2 Han et al Nature 2021 Human gut
microbiota

Random Forest Identification of
distinct
metabolites to
differentiate
between different
taxonomic groups

The model revealed
subsets of chemical
features that are
highly conserved and
predictive of
taxonomic
identification

doi: 10.1038/s41586-021-
03707-9. Epub 2021 Jul
14. PMID: 34262212;
PMCID: PMC8939302

e.g., over-
representation of
amino acid
metabolism

3 Liang et al Cell 2020 Human
pregnancy
metabolome

Linear
regression

Untargeted
metabolomic
profiling and
identification of
metabolic changes
in human
pregnancy

Detection of many of
the previously
reported pregnancy-
associated metabolite
profiles

doi: 10.1016/j.cell.
2020.05.002. PMID:
32589958; PMCID:
PMC7327522

>95% of the
pregnancy associated
metabolites are
previously
unreported

4 Hogan et al EBioMedicine 2021 Influenza Gradient
boosted
decision trees
and random
forest

Untargeted
metabolomics
approach for
diagnosis of
influenza infection

Untargeted
metabolomics
identified 3,318 ion
features for further
investigation

doi: 10.1016/j.ebiom.
2021.103546. Epub
2021 Aug 19. PMID:
34419924; PMCID:
PMC8385175

Described LC/Q-TOF
method in
conjunction with
machine learning
model was able to
differentiate between
influenza samples
(pos/neg) with
sensitivity and
specificity over 0.9

(Continued on following page)
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TABLE 2 (Continued) Examples of metabolomics studies utilizing ML algorithms.

# Author Journal Publication
year

Area
of
investigation

ML
algorithm
used

Brief
description

Findings Doi

5 Bifarin et al J
Proteome Res

2021 Renal Cell
Carcinoma

Partial Least
Squares

A 10-metabolite
panel predicted
Renal Cell
Carcinoma within
the test cohort
with 88% accuracy

A total of
7,147 metabolites
were narrowed down
to a series of 10 and
tested with 4 ML
algorithms all of
which were able to
correctly identify
RCC status with high
accuracy in the test
cohort

doi: 10.1021/
acs.jproteome.1c00213.
Epub 2021 Jun 23. PMID:
34161092

Random Forest
Recursive
feature
elimination

K-NN

6 Tiedt et al Ann
Neurology

2020 Ischemic Stroke Random Forest
classification

Identified
4 metabolites
showing high
accuracy in
differentiating
between Ischemic
stroke and Stroke
Mimics

Levels of
41 metabolites
showed significant
association with
Ischemic stroke
compared to controls.
Top 4 metabolites
show high accuracy
in differentiating
between stroke and
mimics

https://doi.org/10.1002/
ana.25859

Linear
discriminant
analysis

logistic
regression

K-NN

naive Bayes

SVM

7 Liu et al Mol
Metabolite

2021 Diabetic kidney
disease

Linear
discriminant
analysis

Serum integrative
omics provide
stable and
accurate
biomarkers for
early warning and
diagnosis of
Diabetic Kidney
Disease

combination of a2-
macroglobulin,
cathepsin D, and
CD324 could serve as
a surrogate protein
biomarker using
4 different ML
methods

doi: 10.1016/j.molmet.
2021.101,367. Epub
2021 Nov 1. PMID:
34737094; PMCID:
PMC8609166

SVM

Random Forest

Logistic
regression

8 Oh et al Cell Metab 2020 Cirrhosis Random Forest Comparison of the
dysregulation
between gut
microbiome in
differentiating
between advanced
fibrosis and
cirrhosis

Identified a core set of
gut microbiome that
could be used as
universal non-
invasive test for
cirrhosis

doi: 10.1016/j.cmet.
2020.06.005. PMID:
32610095; PMCID:
PMC7822714

9 Delafiori et al Anal Chem 2021 COVID-19 ADA tree
boosting

Combine ML with
mass spectrometry
to differentiate
between COVID-
19 in plasma
samples within
minutes

Diagnosis can be
derived from raw data
with diagnosis
specificity 96%,
sensitivity 83%

doi: 10.1021/
acs.analchem.0c04497.
Epub 2021 Jan 20. PMID:
33471512; PMCID:
PMC8023531

Gradient tree
boosting

Random forest

partial least
squares

SVM

10 Jung et al Biomed
Pharmacother

2021 Coronary artery
disease

Logistic
regression

10-year risk
prediction model
based on 5 selected
serum metabolites

provided initial
evidence that blood
xanthine and uric
acid levels play
different roles in the
development of
machine learning
models for primary/
secondary prevention
or diagnosis of CAD.

doi: 10.1016/j.biopha.
2021.111,621. Epub
2021 May 10. PMID:
34243599

(Continued on following page)
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TABLE 2 (Continued) Examples of metabolomics studies utilizing ML algorithms.

# Author Journal Publication
year

Area
of
investigation

ML
algorithm
used

Brief
description

Findings Doi

Purine-related
metabolites in blood
are applicable to
machine learning
model development
for CAD risk
prediction and
diagnosis

11 Wallace et al J Pathol 2020 Cancer Linear
discriminant
analysis

Comparison
between metabolic
profile of tumor
patients and the
predictive ability
of machine
learning algorithm
to interpret
metabolite data

Application of
machine learning
algorithms to
metabolite profiles
improved predictive
ability for hard-to-
interpret cases of
head and neck
paragangliomas
(99.2%)

doi: 10.1002/path.5472.
Epub 2020 Jul 1. PMID:
32462735; PMCID:
PMC7548960

12 Kouznetsova
et al

Metabolomics 2019 Bladder cancer Logistic
regression

Elucidate the
biomarkers
including
metabolites and
corresponding
genes for different
stages of Bladder
cancer, show their
distinguishing and
common features,
and create a
machine-learning
model for
classification of
stages of Bladder
cancer

The best performing
model was able to
predict metabolite
class with an accuracy
of 82.54%. The same
model was applied to
three separate sets of
metabolites obtained
from public sources,
one set of the late-
stage metabolites and
two sets of the early-
stage metabolites.
The model was better
at predicting early-
stage metabolites
with accuracies of
72% (18/25) and 95%
(19/20) on the early
sets, and an accuracy
of 65.45% (36/55) on
the late-stage
metabolite set.

doi: 10.1007/s11306-019-
1,555-9. PMID: 31222577

13 Murata et al Breast Cancer
Res Treat

2019 Breast Cancer Multiple
logistic
regression

Combinations of
salivary
metabolomics and
machine learning
methods show
potential for non-
invasive screening
of breast cancer

Polyamines were
identified to be
significantly elevated
in saliva of breast
cancer patients

doi: 10.1007/s10549-019-
05330-9. Epub 2019 Jul 8.
PMID: 31286302

14 Liu et al BMC
Genomics

2016 Major Depressive
Disorder

SVM Identifying the
metabolomics
signature of major
depressive
disorder subtypes

Random Forest ~80% accuracy in
classification of
melancholic
depression

doi: 10.1186/s12864-
016-2,953-2. PMID:
27549765; PMCID:
PMC4994306
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displaying the highest accuracy (AUC 0.93). This DLmethod also

identified eight unique metabolic pathways that seem to promote

breast cancer. The study’s findings suggest that DL may be used

to deduce the topology of affected biochemical pathways from a

network analysis of a metabolomics data set.

The predictive abilities of five potential urinary biomarkers

for breast cancer were evaluated by Kim et al. (Kim et al., 2010).

Multivariate methods (linear and Gaussian SVM algorithms,

decision trees, and RF) were shown to outperform univariate

methods by about 6.6–12.7%. It is noteworthy, however, that the

linear SVM model scored the lowest in specificity.

Endometrial cancer

Cheng et al. (Cheng et al., 2019) applied 4 ML algorithms-

SVM, Partial Least Square-Discriminant Analysis (PLS-DA), RF,

and LR-to identify metabolomic biomarkers in cervicovaginal

fluid for endometrial cancer detection. The SVM and RF

techniques displayed the greatest accuracy of 78% (75%

sensitivity and 80% specificity) in the testing dataset.

Hepatocellular carcinoma

Xue et al. (Xue et al., 2008) applied stepwise discriminant

analysis (SDA) and SVM algorithms to identify a set of 13 serum

metabolites to distinguish between patients with hepatocellular

carcinoma and healthy controls with 75% accuracy. The

metabolites included carbohydrates, amino acids, fatty acids,

cholesterol, and low molecular weight organic acids.

Lung cancer

A more recent study used SVMs with untargeted

lipidomics to identify features most important for early-

stage lung cancer detection (Wang et al., 2022). Lung

plasma lipidomic profiling was carried out on

311 participants using mass spectrometry. Using SVM

feature selection, nine lipids were chosen for developing a

liquid chromatography-mass spectrometry-based targeted

assay. The authors validated the ability of these nine lipids

to detect early-stage cancer across multiple independent

cohorts, including a hospital-based lung cancer screening

cohort of 1,036 participants and a prospective clinical

cohort containing 109 participants, in which the assay

reached more than 90% sensitivity and 92% specificity. The

selected lipids were also shown to be differentially expressed in

early-stage lung cancer tissues in situ. This assay, which the

authors named “Lung Cancer Artificial Intelligence Detector,”

shows promise for the early detection of lung cancer and large-

scale screening of high-risk populations for cancer prevention.

Squamous cell carcinoma

In their 2019 study, Hsu et al. uncovered potential metabolic

biomarkers for oral cavity squamous cell carcinoma (Hsu et al.,

2019). They constructed a three-marker panel consisting of

putrescine, glycyl-leucine, and phenylalanine, using an SVM

model that can discriminate cancerous from adjacent non-

cancerous tissues with high sensitivity and specificity based on

receiver operating characteristic (ROC) analysis.

RF and SVM also demonstrated favorable results in the

identification of esophageal squamous cell carcinoma tissue

based on differential metabolites (Z. Chen et al., 2021).

Among the three models evaluated, RF had the highest

predictive performance (100%), but required more

computational time (8.99 s), compared to PLS and SVM

models, which showed similar predictive performance (95%)

and similar computational time (1.27 s and 1.11 s). It is of

note, however, that the three models prioritized different

features.

Non-Hodgkin’s lymphoma

Bueno Duarte et al., 2020, identified a panel of 18 urine

metabolites that can differentiate diffuse large B-cell lymphoma

patients from healthy individuals with 99.8% accuracy using an

SVM model (Duarte et al., 2020).

Renal cell carcinoma

In another cancer study, Bifarin et al. (Bifarin et al., 2021),

identified candidate urine metabolic panels for renal cell

carcinoma (RCC) as a noninvasive diagnostic assay.

Information from patients and controls was gathered and

divided into the model and test cohorts. Multiple ML

algorithms were used to test the predictive ability. These

include RF, KNN, linear kernel SVMs, and RBF kernel SVMs.

A total of 7,147 metabolomic features were identified from the

NMR and MS platforms. These were then merged and filtered to

only those that showed a greater than 1-fold change between the

RCC and control samples, and highly positively correlated

features were removed. This hybrid model resulted in a

selection of 10 metabolites for a panel. RCC status was tested

across the used ML models, and all of them were able to predict

RCC status accurately.

Osteosarcoma

An RF classifier demonstrated superiority over an SVM

model, with an accuracy of 85% versus 81% for the

classification of osteosarcoma and benign tumor patients
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using both X-ray image features and serummetabolomic data (R.

Shen et al., 2018).

Non-cancer conditions

Coronavirus disease (COVID-19)

With the onset of the COVID-19 pandemic, research groups

across the globe conducted numerous investigations trying to

understand if there was any biological reasoning behind disease

heterogeneity, in terms of disease severity, presentation, and even

mortality rate. For example, Chen et al. (B. Shen et al., 2020)

combined proteomic and metabolomic profiles of 31 COVID-19

patients (18 non-sever, 13 severe) to create anMLmolecular classifier,

which was eventually able to identify potential blood biomarkers for

severe COVID-19. The devised RF model identified 29 variables of

priority (22 proteins, sevenmetabolites); thismodel had a 0.957 AUC

in the training set. Subsequent testing of the model against an

independent cohort of 10 patients revealed accurate identification

of severe COVID-19 patients for all but one of the cohort. The

incorrectly identified patients had potential confounding factors,

i.e., age, long period of administration of non-traditional medicine,

and several comorbidities. The generated classifier was again tested

against a model with 29 randomly selected molecules. The randomly

generated model exhibited low accuracy when compared with the

classifier.

Type 2 diabetes (T2D)

Shomorony et al. (Shomorony et al., 2020) identified a set of

cardiometabolic biomarkers beyond the standard clinical

biomarkers that can be used to stratify individuals into disease

types and stages. Data features from 1,385 diverse modalities

(microbiome, genetics, metabolome, advanced imaging) were

collected from 1,253 self-assessed healthy individuals. A linear

regression ML algorithm was used to identify whether there

were any associated covariates. This was then validated through

correlation analysis to identify any significant associations between

features. Network analysis was performed to determine whether the

identifiedmodalities had biomarker signatures that corresponded to

underlying biological systems. Finally, using the identified features,

cluster analysis was performed to stratify participants into subsets

consistent with their respective health status. The findings were

validated in an independent cohort of 1,083 females. The authors

highlighted several novel biomarkers in diabetes signature and gut

microbiome health, i.e., 1-stearoyl-2 dihomo-linoleoyl-GPC and

cinnamoyl glycine, respectively.

Nonalcoholic fatty liver disease (NAFLD)

universal gut-microbiome signatures can be used to predict

various diseases. This is true for Oh et al. (Oh et al., 2020) who

used stool microbiome from 163 nonalcoholic fatty liver

(NAFLD) disease patients and applied an RF ML algorithm

with a differential abundance analysis to identify microbial

and metabolomic signatures to detect cirrhosis and the

authors were able to test the generated model and its ability

to differentiate between cirrhosis and fibrosis. The model was

able to correctly distinguish between the various stages of

fibrosis with high accuracy AUC 0.85. The incorporation of

further information into the model, i.e., serum AST levels,

showed marked improvement in model performance with

AUC 0.94.

Perakakis et al. trained models for the non-invasive diagnosis

of non-alcoholic steatohepatitis (NASH) and NAFLD (Perakakis

et al., 2019) from serum samples. SVMmodels including 29 lipids

or combining lipids with glycans and/or hormones were shown

to classify the conditions with 90% accuracy, and a 10-lipid-

model could detect liver fibrosis with 98% accuracy.

Acute myocardial ischemia (AMI)

A multilayer perceptron (MLP) neural network-based model

achieved superior results in detecting acute myocardial ischemia

(AMI) from serum metabolites in a rat model compared to several

other classification algorithms, including SVM, RF, Gradient tree

boosting (GTB), and LR (Cao et al., 2022). The model achieved

accuracy of 96.67% in the rat model and 88.23% in predicting AMI

type II in human autopsy cases of sudden cardiac death.

Chronic kidney disease (CKD)

In an attempt to classify chronic kidney disease patients from

serum metabolites, Guo et al. (Guo et al., 2019) constructed two

NN; a two-layered fully connected multi-layer NN with MLP

with 128 neurons in the hidden layer, and a three-layered CNN

with 16 and 32 neurons in the two hidden layers, respectively.

The MLP achieved accuracy of 90.4%, while the CNN reached

accuracy of 90.6%. Both NNs, as well as an SVM model, were

outperformed by an RF classifier with 100% accuracy. A possible

reason is the rigorous feature reduction steps performed prior to

model application; DL methods specialized in the analysis of

high-dimensional data and in this study, from thousands of

measured metabolites, only five were retained for the final

models.

Frontiers in Genetics frontiersin.org17

Galal et al. 10.3389/fgene.2022.1017340

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1017340


Celiac disease

In one of the earliest and highly cited studies, metabolic

signatures of celiac disease, detected by NMR, were used to

construct an SVM model able to differentiate celiac disease

patients from healthy controls with 83.4% accuracy using

serum metabolites and 69.3% using urine metabolites. After a

12-month gluten-free diet, the same model correctly classified all

but one of the patients as healthy (Bertini et al., 2009).

Multiple Sclerosis (MS)

Waddington et al. used ML models including SVM, RF,

k-NN, decision tree, and least absolute shrinkage and selection

operator (LASSO) logistic regression to predict the tendency of

multiple sclerosis patients treated with beta interferons to

develop anti-drug antibodies (Waddington et al., 2020).

Among the five classification models tested for predicting

future immunogenicity from serum metabolomics data, SVMs

were one of the most successful at differentiating between cases

with and without drug resistance.

Major depressive disorder

Metabolomic signatures associated with certain conditions

may still persist after disease remission, as shown in a study by

Hung et al., 2021. Eight plasma metabolites were identified as

significantly differentially-expressed in patients with major

depressive disorder (MDD) with full remission compared with

healthy controls. These were then used to construct an SVM

model capable of differentiating patients with MDD with full

remission from healthy controls with predictive accuracy of

nearly 85% (Hung et al., 2021).

Schizophrenia

Chen et al. uncovered metabolic biomarkers that can

differentiate between schizophrenia patients with violence and

those without violence (X. Chen et al., 2020). RF and SVM

analyses unveiled ten and five plasma metabolites, respectively.

The common metabolites formed a biomarker panel, including

the ratio of L-asparagine to L-aspartic acid, vanillylmandelic acid,

and glutaric acid, yielding an AUC of 0.808.

Autism spectrum disorders

In a study conducted by Chen et al., urine organic acids were

detected in children with autism spectrum disorder (ASD) and

combined with three algorithms, PLS-DA, SVM, and eXtreme

Gradient Boosting (XGBoost), for the diagnosis of autism (Hung

et al., 2021; Q. Chen et al., 2019). The work proved that autism

spectrum disorders present with characteristic metabolic

biomarkers that can be investigated for diagnosis of the

condition as well as for future research on the pathogenesis of

autism and possible interventions.

Gestational age

Another application of ML in metabolomics is the

investigation of the human pregnancy metabolome conducted

by Liang et al. (Liang et al.,. 2020), where the authors were able to

identify a series of compounds (460) and associated metabolic

pathways (34) that were significantly changed during pregnancy.

The authors were able to construct a linear regression model that

correlates certain plasmametabolites with time in gestational age;

this model is in high accordance with the ultrasound. An

additional two to three metabolites were able to identify the

time of labor, e.g., prediction of 2, 4, 6, or 8 weeks to the time of

delivery.

Methodological studies

The right choice of ML algorithm is a crucial factor for the

success of a metabolomics study. Analysis results usually

depend more on the data (type, quantity, quality) than the

applied algorithm. Complex, multivariate approaches may be

suitable for large, multidimensional datasets; however, in the

case of simple, linearly separable data, conventional

statistical approaches often outperform ML. Therefore, a

large number of metabolomic studies make an effort to

compare the predictive ability of different ML algorithms

to each other, as well as to more traditional statistical

methods.

One of the comprehensive comparative studies is the work

by Mendez et al. (Mendez, Reinke, and Broadhurst 2019), in

which the authors compared 8 ML algorithms, partial least

squares regression (PLS), principal component regression

(PCR), principal component logistic regression (PCLR), RF,

linear kernel SVM, non-linear SVM with RBF, linear and non-

linear ANN, for the binary classification of ten clinical

metabolomic datasets. As for the ANNs, the linear network

was composed of two layers, with a small number of linear

neurons in the hidden layer and a single sigmoidal neuron in

the output layer. For the non-linear NN, the activation

function of the hidden layer neurons was changed to a

sigmoidal function. Both networks were implemented using

stochastic gradient descent with a binary cross-entropy loss

function. The authors expected non-linear machine ML

algorithms, especially the DL models, to outperform linear

alternatives. Nevertheless, SVM and ANN only slightly
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surpassed PLS across all datasets, while RF performed poorly.

In conclusion, no single DL or ML algorithm could be

identified as superior.

In another 2019 study, Vu et al. evaluated the performance of

five classification algorithms (PLS, OPLS, Principal component-

Linear Discriminant Analysis (PC-LDA), RF, and SVM) using

TABLE 3 Pros and cons of ML algorithms and applicability within the field of metabolomics.

Algorithm Pros Cons Metabolomic application

Linear Regression - Excellent for linearly separable data - Assumes linear relationship between dependent
and independent variables

- Unknown relationship between dependent and
independent variables

- Easy implementation - Outliers have significant impact - Forecasting tasks

- Prone to overfitting

Logistic Regression - Simple implementation - Easily outperformed by other algorithms - Multiclass classification, i.e., when output class only
has two possible outcomes e.g., cancer detection (yes
or no)

- No Feature scaling needed - Heavily reliant on proper identification of data - Linear relationship between dependent and
independent variables

- No hyper-parameter tuning needed

Naive Bayes - Fast predictions of dataset classes - Assumes all features are independent - Dataset with highly independent features

- Good for datasets with categorical
variables

- For multi-class predictions

Support Vector
Machines (SVMs)

-Works well for data that can be easily
seperated with clear margin of
separation

- Requires more training time for large datasets - Medium sized dataset

- Effective for high dimension data - Does not perform well when dataset has high level
of noise i.e. overlapping target classes

- Large number of features

- Linear relationship between dependent and
independent variables

k-Nearest
Neighbors (k-NN)

- Easy implementation - Slow performance on large datasets - Small datasets with small number of features

- Can solve multi-class problems - Data scaling required - Unknown relationship between dependant and
independent variables

- No data assumption needed - Not for data with high dimensionality i.e. large
number of features

- Useful for targeted metabolomics approaches

- Sensitive to missing values, outliers and imbalance
data

Decision Trees - Scaling or normalization of data not
needed

- Data sensitive - Known to suffer from a high chance of overfitting

- Able to handle missing values - Might need more time to train trees

- Easy to visualize - High chance of overfitting

- Automatic feature selection

Random Forest (RF) - Good performance on imbalanced
or missing data

- Predictions are uncorrelated - Identification of variables with high importance

- Able to handle huge amounts of data - Influence of dependent variable on independent
variable is unknown, i.e., Black box

- Useful for datasets with small sample population

- Feature importance extraction - Data sensitive - Useful for metabolic fingerprinting approaches

- Low chance of overfitting

Neural
Networks (NN)

- Flexible network architecture
i.e., can be used for regression and
classification

- Influence of dependent variable on the
independent variable is unknown, i.e., Black box

- Data with a non-linear relationship between
dependant and independent variables

- Good with nonlinear data - Highly dependant on training data - Large datasets with a stipulation on time and cost

- Can handle large number of inputs - Prone to overfitting and generalization - Can be applied to raw metabolomic data for feature
extraction and multivariate classification combined
into a single model

- Fast predictions once trained - Extremely hardware dependant i.e., the larger the
datasets, the more expensive and time-consuming
the modeling process

- Integration of multi-omics data, i.e., collected over
different times, multiple analytical platforms,
biofluids, or omic platforms

- Useful for metabolic profiling
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simulated and experimental 1D 1H NMR spectral data sets (Vu

et al., 2019). Datasets with clear group separation were classified

equally well by all five models. However, when the data contained

subtle differences between classes, OPLS produced the best

results, as it was able to identify the useful discriminant

features with good classification accuracy. It is noteworthy

that although RF and PC-LDA classified the data more

accurately than the other models, they achieved so using the

wrong discriminant features.

The superiority of SVM and RF classifiers was demonstrated

in an evaluation of seven classification techniques using both

simulated and real metabolomics datasets (Trainor, DeFilippis,

and Rai 2017). In the simulated datasets, the classifiers performed

as follows (from least to greatest error): SVM, RF, Naïve Bayes,

sparse PLS, ANN, PLS, and k-NN, while SVM and RF

consistently outperformed the rest over the real datasets.

Expanding on the gut microbiome, Han et al. (Han et al.,

2021) used RF models to identify sets of metabolites that are

able to provide taxonomic distinction and classify the origin

of microbial supernatants while also providing insights into

highly conserved chemical features that are predictive of

taxonomic identity. Han et al. were able to construct a

chemical standard library-informed metabolomics pipeline

that is both customizable and expandable. This method was

used to construct an atlas of metabolic activity that can

enable functional studies of the gut microbial

communities and was validated using RF ML algorithms.

Concluding remarks

In this work, we provided a review of popular ML techniques

as well as key studies that have applied them for the stratification

of metabolites from various conditions.

RF and SVMhave been among themost widely used algorithms

in metabolomic studies. Although DL is a comparatively new player

in the field, it is undoubtedly paving its way to metabolomics - and

generally to the other omics and integrative multi-omics studies - as

evident by the growing number of reports that use NNs in

metabolomic analyses.

Cancer is by far the most studied condition, with ML

algorithms having been applied to the supervised classification

of cancer versus control sample sets frommetabolic data obtained

from various cancer types, including ovarian, breast,

endometrial, lung and liver cancer, renal carcinoma,

squamous cell carcinomas, osteosarcoma, and lymphomas.

Choosing the appropriate ML algorithm is crucial to the

success of a metabolomics study. It is essential for researchers to

be informed of the benefits of each ML approach and to choose

one that best suits their needs to obtain reliable and interpretable

outcomes. However, after reviewing a number of studies that

compared different ML methods, no specific conclusion can be

drawn regarding the choice of the algorithm. ML methods that

produce good results in some investigations might perform

poorly in others. The dimensionality, quality, and

characteristics of input data and appropriate feature selection

techniques play a significant role in the performance and

behavior of the ML methods and their outcomes.

In addition, the choice of hyper-parameters and how they

are tuned can influence the results remarkably. Accordingly, a

detailed methodology for selecting the most suitable ML

algorithm is a topic that needs further investigation.

However, we can offer some insight into the pros and cons

of each of the popular algorithms discussed in this review, as

well as some suggested recommendations regarding their

applications within the metabolomics field (Table 3) (Kell

2005; Kourou et al., 2015; Libbrecht and Stafford Noble,

2015; Soofi and Awan 2017; Malakar et al., 2018; Shinde

and Shah 2018; Liebal et al., 2020).

Significantly altered metabolites generated by

metabolomic experiments and unveiled by machine

learning approaches can serve as a starting point for a

number of investigations. Biomarker discovery is a definite

main target. Nevertheless, their actual predictive ability needs

to be further experimentally validated. Further investigations

like enrichment studies and pathway analysis can provide new

insights into the roles the identified metabolites play in the

pathophysiology of various conditions. Additionally, the

feasibility of targeting specific metabolites for disease

treatment can be explored.

It is noteworthy that most of the reviewed work was

published within the last 5 years, which aligns with the

obvious rise in popularity ML has gained in recent years,

enabled by an increase in computation power, efficiency and

accessibility of ML tools, familiarity with the field and abundance

of data. As more and large metabolomic data sets become

available, it is expected that ML techniques, especially DL, will

play a bigger role in building informative and predictive models

that can be used to provide high-definition, personalized clinical

diagnosis, and treatment.
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Glossary

ML Machine Learning

AI Artificial Intelligence

DM Diabetes mellitus

CVD Cardiovascular Disease

NMR Nuclear Magnetic Resonance

MS Mass Spectrometry

AUC Area Under the Curve

SVM Support Vector Machine

k-NN K-Nearest Neighbor

NN Neural Networks

RF Random Forests

UMAP Uniform Manifold Approximation and Projection

t-SNE t- stochastic neighbor embedding

PCA Principle Component Analysis

ICA Independent Component Analysis

PLS Partial Least Squares

OPLS Orthogonal Projections to Latent Structures

RBF Radial Basis Function

DL Deep Learning

ANN Artificial Neural Network

CNN Convolutional Neural Networks

PAM Prediction Analysis for Microarrays

RPART Recursive Partitioning And Regression Trees

PLS-DA Partial Least Square-Discriminant Analysis

SDA Stepwise discriminant Analysis

MLP Multilayer perceptron

GTB Gradient tree boosting

CKD Chronic Kidney Disease

MDD Major Depressive Disorders

XGBoost eXtreme Gradient Boosting

PC-LDA Principle component-Linear Discriminant Analysis

LASSO Least Absolute Shrinkage and Selection Operator

PCR Principal component regression

PCLR Principal component logistic regression
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