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Background: Patients with Varicose veins (VV) show no obvious symptoms in

the early stages, and it is a common and frequent clinical condition. DNA

methylation plays a key role in VV by regulating gene expression. However, the

molecularmechanism underlyingmethylation regulation in VV remains unclear.

Methods: The mRNA and methylation data of VV and normal samples were

obtained from the Gene Expression Omnibus (GEO) database. Methylation-

Regulated Genes (MRGs) between VV and normal samples were crossed with

VV-associated genes (VVGs) obtained by weighted gene co-expression

network analysis (WGCNA) to obtain VV-associated MRGs (VV-MRGs). Their

ability to predict disease was assessed using receiver operating characteristic

(ROC) curves. Biomarkers were then screened using a random forest model

(RF), support vector machine model (SVM), and generalized linear model (GLM).

Next, gene set enrichment analysis (GSEA) was performed to explore the

functions of biomarkers. Furthermore, we also predicted their drug targets,

and constructed a competing endogenous RNAs (ceRNA) network and a drug

target network. Finally, we verified their mRNA expression using quantitative

real-time polymerase chain reaction (qRT-PCR).

Results: Total three VV-MRGs, namely Wnt1-inducible signaling pathway

protein 2 (WISP2), Cysteine-rich intestinal protein 1 (CRIP1), and Odd-

skipped related 1 (OSR1) were identified by VVGs and MRGs overlapping. The

area under the curves (AUCs) of the ROC curves for these three VV-MRGs were

greater than 0.8. RF was confirmed as the optimal diagnosticmodel, andWISP2,

CRIP1, and OSR1 were regarded as biomarkers. GSEA showed that WISP2,

CRIP1, and OSR1 were associated with oxidative phosphorylation, extracellular

matrix (ECM), and respiratory system functions. Furthermore, we found that

lncRNA MIR17HG can regulate OSR1 by binding to hsa-miR-21-5p and that

PAX2 might treat VV by targeting OSR1. Finally, qRT-PCR results showed that

the mRNA expression of the three genes was consistent with the results of the

datasets.

Conclusion: This study identified WISP2, CRIP1, and OSR1 as biomarkers of VV

through comprehensive bioinformatics analysis, and preliminary explored the
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DNA methylation-related molecular mechanism in VV, which might be

important for VV diagnosis and exploration of potential molecular mechanisms.
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Introduction

Varicose veins (VV) are a common manifestation of chronic

venous disease, commonly affecting the lower extremities, causing

twisted and dilated veins (Fukaya et al., 2018; Raetz et al., 2019).

Approximately 25% of adults suffer from varicose veins (Li et al.,

2014). VV can cause systemic symptoms, such as aching, heaviness,

cramping, throbbing, restlessness, and swelling in the legs (Gloviczki

et al., 2011). The exact pathophysiologicalmechanism of VV remains

controversial but might be related to genetic predispositions, defects

in the valves, weakening of the vascular walls, and high intravenous

pressure (Raetz et al., 2019). VV is sometimes dismissed as a mere

cosmetic issue, but in 20% of patients, it can lead to life-threatening

ulcers (Beebe-Dimmer et al., 2005). According to recent studies,

patients with VV are up to 5-fold more likely to develop deep vein

thrombosis. In addition, it may lead to peripheral arterial disease

(Chang et al., 2018). There is an economic burden on the society

because varicose diseases have serious consequences. In the

United States, more than 30 million adults suffer from VV,

resulting in direct medical costs of over $ 1 billion annually

(Gloviczki et al., 2011). Therefore, it is important to understand

the molecular mechanism underlying VV and to identify potential

biomarkers and drug targets that are likely to be effective in

preventing it.

DNA methylation is the most prevalent DNA modification and

plays an important role in both eukaryotic and prokaryotic life

processes (Yang et al., 2020). As an epigenetic mechanism, it can

influence gene expression through processes that affect DNA

structure and stability, and chromatin structure (Kundu and

Peterson, 2009; Jiang et al., 2014). Furthermore, DNA methylation

is the main epigenetic form of gene expression regulation in

mammals (Huang et al., 2015), mostly occurring on CpG islands

in the gene promoter region, where methylation can repress gene

transcription (Qin et al., 2015). Studies have shown that DNA

methylation status might be involved in the regulation of

atherogenesis, diabetes, inflammation, and hypertension (Friso

et al., 2008; Ling and Groop, 2009; Turunen et al., 2009).

Smetanina et al. (2018) delivered new viewpoints that

MFAP5 might play an important role in VV as a master

regulator. At meantime, the study provided a preliminary

evidence that DNA methylation critically effected on the initiation

and progression of VV through function enrichment and systems

biology analyses. It was the first study combining OMIC data,

including transcriptomics and methylation data, to study the

mechanism of VV pathogenesis. Based on the results, we further

explored the DNAmethylation-related molecular mechanism in VV

with same datasets using comprehensive bioinformatics analysis.

Besides, whole transcriptome data from 45 samples in

GSE36809 dataset were first extacted to analyze the relationship

between biomarkers and related miRNA, lncRNA in VV (Xiao et al.,

2011; Seok, 2015).

Machine learning can train computers to perform tasks by

identifying patterns in massive datasets to determine the rules or

algorithms that optimize task completion (Lynch and Liston, 2018).

Machine learning has been reported to predict secondary structural

features of proteins (Wang et al., 2021) and facilitate the discovery of

biomarkers for predicting diseases (Kourou et al., 2015; Lynch and

Liston, 2018). It is alsowidely used in the prognosis and diagnosis of a

variety of diseases (Wang and Huang, 2011; Kourou et al., 2015),

such as in Yang’s research, machine learning can predict the

carcinogenic or non-carcinogenic risk genotype of unknown HPV

(Yang et al., 2022). Therefore, machine learning can be used to

explore biomarkers of VV.

In this study, DNAmethylation-relatedmolecularmechanism in

VV was investigated for the first time through the comprehensive

bioinformatics analyses on transcriptome data, and the biomarkers of

VV (WISP2, CRIP1, and OSR1) were identified using three machine

learning models. Furthermore, a biomarkers-related lncRNA-

miRNA-mRNA-drug network was predicted, which might

provide a reference for clinical research and treatment of VV.

Materials and methods

Data collection

In this study,mRNA expression andmethylation data of VV and

normal samples were obtained from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The mRNA

expression data of seven VV and seven normal samples were

obtained from the GSE68309 dataset, while the GSE68319 dataset

contained methylation data of seven VV samples and seven normal

samples the patient sources for theGSE68319 andGSE68309 datasets

were the same. In addition, whole transcriptome data of 45 blood

samples were acquired from the GSE36809 dataset.

Identification of differentially methylated
CpGs sites

DMCs were obtained by comparing the methylation sites of

VV and normal samples in the GSE68319 dataset using the
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“ChAMP” (version 2.20.1) R package with a screening condition

of p < 0.05 (Tian et al., 2017). The “Rideogram” R package

(version 0.2.2) was then used to visualize the chromosome

annotation information of DMCs (Hao et al., 2020). Finally,

we compared the distribution of CpG sites in different regions

within genes to obtain differentially methylated regions (DMRs)

using the “UpSetR” (version 1.4.0) R package (Conway et al.,

2017).

Functional enrichment analysis of
methylation-regulated genes

In the GSE68309 dataset, differentially expressed genes

(DEGs) between VV and normal samples were compared

using the “edgeR” (version 3.34.1) R package with the

screening condition of |log2FC| > 0.5, p < 0.05 (Robinson

et al., 2010). The expression of DEGs was shown by the

volcano plot drawn by the “ggplot2” R package (version 3.3.5)

(Zhang and Wang, 2022). We then corresponded DMCs to the

corresponding genes based on methylation annotation

information, and the methylation levels were upregulated for

hypermethylated genes and downregulated for demethylated.

MRGs were obtained from the intersections of the

demethylated and highly expressed genes as well as the

hypermethylated and the low-expressed genes. The

enrichment analysis of Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene ontology (GO) was performed

using “clusterProfiler” R package (Version 4.0.2) to find the

functions and related pathways of the MRGs with the

significance threshold of p < 0.05 (Yu et al., 2012).

Identification of diagnostic genes

Weighted gene co-expression network analysis (WGCNA)

can cluster modules by gene expression similarity and screen

modules with highly correlated traits based on the correlations

between modules and traits to find target genes (Langfelder and

Horvath, 2008). In this study, we used normal and VV samples as

trait data. Total seven normal and seven VV samples in the

GSE68309 dataset were used as trait data for WGCNA using the

“WGCNA” R package (version 1.70-3) to identify VV-associated

genes (VVGs). First, the samples were clustered to determine

whether outlier samples needed to be removed. Based on the

clinical trait information, sample clustering and clinical trait heat

maps were subsequently drawn. To ensure that the interactions

between genes maximally conformed to a scale-free distribution,

we determined the soft threshold. Based on the optimal soft

threshold, we set the minimum number of genes per genemodule

to 100 and the cutting height to MEDissThres = 0.7, according to

the criteria of the hybrid dynamic tree cutting algorithm, to draw

the module clustering tree. The modules significantly associated

with VV were then identified as key modules based on their

correlations with the traits. Finally, scatter plots were drawn for

keymodules to show the correlations between genes andmodules

(Module Membership, MM) and between genes and traits (Gene

Significance, GS), with the threshold values: |GS| > 0.5, |MM| >
0.7, and p ≤ 0.05 to screen VVGs. The VVGs were then

intersected with the MRGs to obtain VV-associated MRGs

(VV-MRGs). To assess the disease prediction ability of VV-

MRGs, receiver operating characteristic (ROC) curve was plotted

by the “pROC” (version 1.18.0) R package (Robin et al., 2011).

The area under the curve (AUC) value refers to the area under the

ROC curve. The larger the value, the more accurate is the

prediction. VV-MRGs with AUC values >0.8 were used as

diagnostic genes.

Identification of biomarkers by machine
learning algorithms

To screen biomarkers, we calculated the importance of

diagnostic genes using three machine learning methods:

random forest model (RF), support vector machine model

(SVM), and generalized linear model (GLM) (Qu et al., 2022;

Wang et al., 2022). The models were analyzed using the

“DALEX” R package (version 2.3.0) to plot residual

distributions, and algorithmic power box line plots to obtain

the best model from which biomarkers were obtained (Floyd

et al., 2022). The nomogram of biomarkers was constructed using

the “RMS” (version 6.1-0) R package to derive the relationship

between biomarkers and diseases, and the calibration curves

plotted by “RMS” (version 6.1-0) R package were used to

validate the model (Qiu et al., 2022).

Gene set enrichment analysis of
biomarkers

To further investigate the relevant signaling pathways and

potential biological mechanisms in VV samples, we used the

“clusterProfiler” (version 3.18.1) and the “org.Hs.eg.db” (version

3.12.0) R packages to perform single-gene GO and KEGG

enrichment analyses for the diagnostic genes (Li et al., 2021). The

median expression values of the diagnostic genes were used to classify

the samples into high- and low-risk groups. GSEA enrichment

analysis was then performed for all genes, with the threshold set

at |NES| > 1, p < 0.05, and q < 0.25 (Subramanian et al., 2005).

Competing endogenous RNA and drug
target networks

We downloaded the drug targets from the binding database.

We then constructed a protein-protein interaction (PPI) network
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between drug targets and biomarkers based on the STRING

database (von Mering et al., 2003), and selected drug targets with

an interaction score >0.7. In order to investigate the relationship

for gene expression of biomarkers with targeting miRNA and

corresponding lncRNA, the relative information from 45 blood

samples within GSE36809 dataset was exteacted. We searched for

miRNAs related to biomarkers from the miRwalk and miRDB

databases (Liu et al., 2020), merged the results of the two

databases, and obtained candidate miRNAs interacting with

biomarkers (mRNAs). Next, we searched for miRNAs that

crossed with the candidate miRNAs in the GSE36809 dataset,

and used the “tidyr” (version 1.1.4) R package to calculate the

correlations between biomarkers (mRNAs) and miRNAs

(Mangiola et al., 2021). Furthermore, we used miRNAs to

predict the lncRNAs in the Starbase database (Li et al., 2014).

Finally, mRNA-miRNA and miRNA-lncRNA were obtained

based on the above analysis, and a ceRNA network was

constructed using Cytoscape software (Shannon et al., 2003).

The lncRNA-miRNA-mRNA-drug network was also

constructed based on the potential therapeutic drugs identified

in the previous step.

Quantitative real-time polymerase chain
reaction validation

Seven patients with VV were recruited from Tianjin First

Central Hospital. The study met the ethical requirements of

Tianjin First Central Hospital. Samples from diseased and

normal venous vessels of VV were taken from the

participants, and RNA was extracted using TRIzol Reagent

(REF:15596018) provided by Ambion. Reverse transcription

was performed using the sweScript RT I First strand cDNA

Synthesis All-in-OneTM Kit (REF:15596018) (Servicebio

Technology Co., Ltd., in Wuhan, Hubei Province, China).

PCR was performed using the 2xUniversal Blue SYBR Green

qPCR Master Mix (CAT-G3326-05) kit (Servicebio Technology

Co., Ltd., in Wuhan, Hubei Province, China) (Bachman, 2013).

The PCR conditions were as follows: pre-denaturation at 95°C for

1 min followed by 40 cycles, each of denaturation at 95°C for 20 s,

55°C for 20 s, and extension at 72°C for 30 s. GAPDHwas used as

an internal reference for gene detection. Primer sequences are

shown in Table 1. The expressions of WISP2, OSR1, and

CRIP1 in diseased and normal venous vessels were compared

by analysis of variance (ANOVA), and p < 0.05 was considered as

significant.

Results

Identification of differentially methylated
CpGs sites

The whole flowchart of the study was shown in Supplementary

Figure S1. Total 1645 DMCs were screened between VV and normal

samples, including 1208 upregulated and 437 downregulated sites,

and the results are shown in Supplementary Table S1. Volcano maps

were drawn based on the DMCs (Figure 1A). There were 891 CpG

sites with annotation information, and Figure 1B shows the locations

of the DMCs on the chromosomes. The regional distribution of

DMCs in the different genes is shown in Figure 1C. Most (72.7%) of

the CpG sites were located within the gene.

Functional enrichment analysis of
methylation-regulated genes

In the GSE68309 dataset, 52 DEGs were screened out

between VV and normal samples, including 38 upregulated

and 14 downregulated DEGs (Supplementary Table S2).

Volcano and heat maps of DEGs were shown in Figures 2A,B.

The demethylated and the highly expressed genes as well as the

hypermethylated and the low expressed genes were intersected to

obtain four MRGs: WISP2, OSR1, MSX1, and CRIP1, which are

shown in Figure 2C. We then annotated the above four MRGs

using the KEGG pathway and GO function to explore the

biological significance of each gene. A total of 201 GOs and

one KEGG pathway were enriched, as shown in Supplementary

Table S3. Figure 2D showed the enrichment of the top eight GOs:

middle ear morphogenesis, connective tissue development,

embryonic hindlimb morphogenesis, embryonic forelimb

morphogenesis, hindlimb morphogenesis, forelimb

morphogenesis, mesenchymal cell proliferation, and

mesenchyme morphogenesis. KEGG enrichment was shown in

Figure 2E, and its pathway has been determined to be Human

T-cell leukemia virus 1 infection.

TABLE 1 Primers used for reverse transcription-quantitative PCR.

Sequence name Forward primer (59-39) Reverse primer (39-59)

WISP2 CTGGATGGCTGTGGCT AACTGGGGTCCTTGGG

OSR1 AGTGGACGCTGGGCTA GGGCTTGGGTTGAATG

CRIP1 AAATGTGGGAAGACGCT GGTGGTTGCAGTAGGGT

GAPDH CCCATCACCATCTTCCAGG CATCACGCCACAGTTTCCC
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Identification of diagnostic genes

The sample clustering plot showed that there were no outlier

samples in the GSE68309 dataset (Figure 3A). The sample

clustering and clinical trait heat map showed that the VV and

normal samples were clustered well (Figure 3B). The network

approximated a scale-free distribution when the power threshold

was four (Figure 3C). A total of 23 modules were segmented by

the hybrid dynamic shear tree algorithm, and 11 modules were

obtained after merging, and the module clustering tree was

shown in Figure 3D. The correlations between MODULE and

grouped traits were shown in Figure 3E. Among the 11 modules,

the brown module (R2 = 0.53, p = 0.05) had a high and significant

positive correlation with VV. Therefore, the brown module was

identified as the key module, with18631 genes. The MM and GS

scatter plots of the brown module were shown in Figure 3F, and

126 VVGs were obtained (Supplementary Table S4). The

intersection of VVGs and MRGs was used to obtain three

VV-MRGs: WISP2, CRIP1, and OSR1 (Figure 3G). As shown

in Figure 3H, the AUC values for WISP2, CRIP1, and OSR1 were

FIGURE 1
Identification of differentially methylated CpGs sites (DMCs). (A) Volcanomaps of the DMCs in GSE68319 dataset. (B) The locations of DMCs on
chromosomes. (C) The regional distribution of DMCs in different genes.

FIGURE 2
Functional enrichment analysis of Methylation-Regulated Genes (MRGs). (A) Heatmap of Differentially expressed genes (DEGs) between VV
samples and normal samples in GSE68309 dataset. (B) Volcano map of DEGs in GSE68309. (C) A Venn diagram of the demethylated genes and the
highly expressed genes, and a venn diagram of the hypermethylated genes and the low expressed genes. (D) The GO enrichment analysis of MRGs.
(E) The KEGG analysis enrichment of MRGs.
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FIGURE 3
Identification of diagnostic genes. (A) The sample clustering plot in the GSE68309. (B) Sample dendrogram and sample-trait clustering
heatmap. (C) Filtering of soft thresholds. The horizontal axis represents the weight parameter β, and the vertical axis on the left is the Scale Free
Topology Model Fit. The higher the square of the correlation coefficient is, the closer the network is to the distribution of the scale-free network. The
vertical axis of the figure on the right represents the average connectivity of all genes in the corresponding module, which is close to 0 and
presents a gentle trend. The network is closer to the scale-free network. (D)Module clustering dendrograms. The top half is a hierarchical clustering
tree of genes and the bottom half is gene modules. Genes clustered into the same branch are grouped into the samemodule, with different colours
representing different modules. (E) Heat map of the relationship between gene modules and traits. Positive correlations are in red, negative
correlations in blue. (F)MM and GS scatter plots for brown modules. The horizontal coordinates shows the correlation between genes and modules
(MM) and the vertical coordinates shows the correlation between genes and traits (GS). (G) The Venn diagram of MRGs and brown module genes
(VVGs). (H) ROC curves of WISP2, CRIP1, and OSR1.
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0.878, 0.816, and 0.816, respectively. Moreover, their combined

AUC was 0.905 and displayed excellent diagnostic performance.

Identification of biomarkers by machine
learning algorithms

The machine learning residual distribution and algorithm

capability box line plots were shown in Figures 4A,B, where

the RF algorithm outperformed the SVM and GLM

algorithms. We then obtained three biomarkers, WISP2,

CRIP1, and OSR1, from RF (Figure 4C). The biomarker

nomogram was shown in Figure 4D. The calibration curves

were plotted in Figure 4E. The results showed that the model

passed the calibration degree test with p > 0.05, and the ROC

area was 0.900 with good discriminatory ability. Overall, the

predictive ability of the model was excellent. The decision

curve graph showed that the net benefit of all three

biomarkers was higher than that of individual biomarkers

(Figure 4F). The clinical curves showed that the biomarkers

were better predictors of prognosis (Figure 4G).

Gene set enrichment analysis enrichment
analysis of biomarkers

First, theWISP2 diagnostic gene was used for single-gene GSEA

enrichment analysis, and 262 GO enrichment profiles and 27 KEGG

pathways were obtained, including extracellular structure tissue,

collagen fibril tissue, collagen-containing ECM and its structural

components, focal adhesion, and receptor interactions

(Supplementary Tables S5, S6; Figures 5A,B). Single-gene GSEA

enrichment analysis was also conducted with the CRIP1 diagnostic

gene, and 178 GO enrichment conditions and 21 KEGG pathways

were obtained, including external encapsulating structure

organization, oxidative phosphorylation, respiratory system,

organelle inner membrane, structural components of ECM,

structural components of ribosomes, and ECM receptor

interactions, etc. (Supplementary Tables S7, S8; Figures 5C,D).

OSR1 diagnostic gene was used for single-gene GSEA

enrichment analysis, and 206 GO enrichment conditions and

24 KEGG pathways were obtained, including external

encapsulating structure organization, collagen fiber organization,

cell organelle internal membrane, respiratory system, metabolism of

FIGURE 4
Identification of biomarkers by machine learning algorithms. (A) The machine learning residual distribution. (B) Algorithm capability box line
plots. (C) 3 biomarkers WISP2, CRIP1, and OSR1 obtained from the random forest model (RF). (D) The nomogram of WISP2, CRIP1, and OSR1. (E) The
calibration curves of nomogram. (F) The decision curve. (G) The clinical curves.
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toxic substances by cytochrome p450, ECM structure components

that constitute tensile strength, electron transfer activity

(Supplementary Tables S9, S10; Figures 5E,F).

Competing endogenous RNA and drug
target networks

A total of 12 drug targets were obtained, of which two were

high-scoring targets. Specifically, the WISP2 gene predicted LRP5,

HDAC1, IGF1,WNT2, and CTNNB1 drug targets, the CRIP1 gene

predicted STK3, STK4, CBFB, and DBI drug targets, and the

OSR1 gene predicted VHL, PAX2, and EGLNA drug targets,

among which, STK3 and STK4 were high-scoring drug targets

(Figure 6A). The miRNAs associated with the biomarkers in the

miRwalk and miRDB databases were merged to obtain

513 candidate miRNAs (Figure 6B). We identified 26 miRNAs

in the GSE36809 dataset. Based on the ceRNA network, miRNA

and mRNA expressions were negatively correlated, and three

miRNAs with negative correlations were retained: hsa-miR-21-5p

(cor = −0.29, p = 0.05), hsa-miR-1236-3p (cor = −0.4, p = 0.007),

and hsa-miR-3916 (cor = −0.41, p = 0.005) were the predicted

miRNAs, and the correlation results were shown in Figure 6C. We

then used four miRNAs to predict lncRNAs in the starbase database

and intersected the results to obtain the lncRNA of hsa-miR-21-5p,

and kept one lncRNA with negative correlation: MIR17HG

(cor = −0.31, p = 0.04) (Figure 6D). The constructed ceRNA

network was shown in Figure 6E. The lncRNA-miRNA-mRNA-

drug was constructed based on the potential therapeutic drugs

identified in the previous step (Figure 6F). We found that lncRNA

MIR17HG could regulate OSR1 by binding to hsa-miR-21-5p and

that PAX2, EGLN1, and VHL might treat VV by targeting OSR1,

CTNNB1, IGF1, LRP5, WNT2, HDAC1 by targeting WISP2, and

STK4, CBFB, STK3, and DBI by targeting CRIP1.

Quantitative real-time polymerase chain
reaction validation

To further validate biomarker expression, we used qRT-PCR to

compare the gene expression ofWISP2,OSR1, andCRIP1 in diseased

and normal venous vessels. The results showed that the expression of

theWISP2 gene in diseased vessels was significantly upregulated, and

that of OSR1 and CRIP1 genes in diseased vessels was significantly

downregulated (Figure 7), as compared to normal samples.

Discussion

VV is a common peripheral vascular disease presenting twisted

and dilated veins, usually in the lower extremities (Hamdan, 2012).

Weakening of venous wall, valve dysfunction, and increased

intravenous pressure are commonly considered to be its main

causes (Hamdan, 2012). VV caused severe underlying vascular

insufficiency including eczema, infection, venous ulceration,

superficial thrombophlebitis, loss of subcutaneous tissue, and

lipodermatosclerosis (Hamdan, 2012; Raffetto et al., 2020).

Therefore, early identification of high-risk factors in VV patients

FIGURE 5
GSEA enrichment analysis of biomarkers. (A) GO enrichment ofWISP2. (B) KEGG analysis ofWISP2. (C) GO enrichment of CRIP1. (D) KEGG
analysis of CRIP1. (E) GO enrichment of OSR1. (F) KEGG analysis of OSR1.
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FIGURE 6
ceRNA and drug targets networks analysis. (A) Protein-protein interaction (PPI) network between drug targets and biomarkers based on String
database. (B) The miRNAs associated with biomarkers in miRwalk and miRDB databases. (C) Correlation between OSR1 and 4 miRNAs. (D)
Correlation between miR-21-5p expression and MIR17HG. (E) A ceRNA network. (F) A lncRNA-miRNA-mRNA-drug network. Blue ovals: gene;
Yellow rectangles: miRNAs; Red ovals: drug targets; Green diamonds: lncRNAs.

FIGURE 7
The expression of three biomarkers in qRT-PCR experiments. (A) The WISP2 expression in diseased and normal venous vessels. (B) The OSR1
expression in diseased and normal venous vessels. (C) The CRIP1 expression in diseased and normal venous vessels.
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and early implementation of targeted preventive interventions will

reduce the occurrence of VV and avoid wastage of healthcare

resources.

In our study, three VV-MRGs, WISP2, CRIP1, and OSR1,

were identified as potential biomarkers. Wnt1-inducible

signaling pathway protein 2 (WISP2) is a secreted intracellular

protein that is cell-specific and multifunctional (Hammarstedt

et al., 2013; Grünberg et al., 2014). ThatWISP2 has been reported

to be possibly regulated by the typical Wnt and TGF-β pathways
for treatment of obesity and metabolic diseases, and developing

new therapeutic strategies (Grünberg et al., 2018). In addition, it

is regulated by the Wnt signaling pathway and IGF-1 to improve

the metabolic status of animals (Alami and Liu, 2021). It can

promote several types of tumors; for example, ovarian cancer cell

proliferation by targeting ERK and YAP (Shi et al., 2020).

However, the role of WISP2 in VV has not been previously

reported, and we speculate that it may regulate VV through the

Wnt signaling pathway. As an intracellular protein, WISP2 has

been reported to be an important regulator of BMP4 action.

Cysteine-rich intestinal protein 1 (CRIP1), a LIM protein

subfamily, contains a short LIM structural domain (Cai et al.,

2017). CRIP1-positive circulating and splenic monocytes have

been reported to play an important role in the inflammatory

process associated with hypertension, and CRIP1 may influence

the interaction of the immune system and the pathogenesis of

hypertension (Schweigert et al., 2021). In addition, it can regulate

the growth and differentiation of eukaryotic cells (Cai et al.,

2017). Therefore, it is hypothesized that CRIP1 regulates VV

through the immune system and inflammation.

Odd-skipped related 1 (OSR1) is an odd-skipped family zinc-

finger protein (So and Danielian, 1999). OSR1 plays a vital role in

heart and urogenital development, such as of kidneys and colon

(Wang et al., 2005; Zhang and Jiang, 2020). In our study, it was

found to play an important role in VV, suggesting that it can be a

novel target for further studies.

GSEA showed that WISP2, CRIP1, and OSR1 are

associated with oxidative phosphorylation, ECM, and

respiratory system functions. Oxidative phosphorylation

maintains homeostasis in all animals and plants (Wilson,

2017), and also plays an important role in vascular

endothelial cells (ECs) (Li Q. et al., 2021). ECM

remodeling processes regulate VV by venous hypertension

(Barallobre-Barreiro et al., 2016). In addition, some

respiratory system functions, such as pulmonary embolism

(PE) has relationship with VV by venous thromboembolism

(VTE) (Otero et al., 2013). Therefore, oxidative

phosphorylation, extracellular matrix, and respiratory

system might impact VV and provide new directions for

further studies on VV.

Drug discovery is a time-consuming, costly, and complex

process (Overington et al., 2006; Scannell et al., 2012).

Reasonable drug target selection is an efficient strategy to

reduce the risk of preclinical drug development

(Arrowsmith, 2011; Quan et al., 2018). In addition,

promising and potentially high clinical efficacy drug

targets have been identified, which is a key step in drug

discovery (Dahlin et al., 2015). In this study, 12 drug targets,

including IGF-1, VHL, CBFB, and STKK3, were identified by

constructing PPI network between drug targets and

biomarkers. Among them, it was shown that VHL was

associated with elevated vascular endothelial growth factor

(VEGF) concentration (Gordeuk et al., 2004). VHL

mutations were associated with the development of

vascular tumors, such as renal clear cell carcinoma,

pheochromocytoma, pancreatic neuroendocrine tumors,

and central nervous system hemangioblastoma. Moreover,

IGF-1 factor was found to be associated with skin

abnormalities, cause localized or diffuse hyperkeratotic

plaques with or without hyperpigmentation, and increase

the prevalence of VV and psoriasis (Sandru et al., 2021),

which is consistent with our study. In addition, STK3 and

STK4 are the top two drug targets in predicted drug targets.

STK3/4 are important kinases in the Hippo signaling

pathway (Cho et al., 2021). Their pharmacological

inhibitors are reportedly effective in treatment of acute

myeloid leukemia (Bata et al., 2022), and recent data

indicate that they are potential therapeutic molecules for

suppressing the Hippo signaling pathway, thereby

improving tissue repair (Fan et al., 2016). However, their

function in VV and contribution to its therapeutic molecules

have not been investigated. To the best of our knowledge,

CBFB, LRP5, HDAC1, CTNNB1, WNT2, DBI, EGLN1,

PAX2, STK3, and STK4 are the first reported drug

targets in VV, and further experiments are needed to

validate them.

By competitively binding to miRNA response elements

(MREs) on mRNA, lncRNAs can cushion and restrain the

protein expression of target mRNA, which is called the

competitive endogenous RNA (ceRNA) mechanism.

Studies have reported that ceRNA and drug target

networks can provide effective and innovative therapeutic

strategies for diseases. For example, analysis of ceRNA

networks and identification of potential drug targets for

drug-resistant leukemia cell K562/ADR (Liu et al., 2021),

and ceRNA networks provide potential biomarkers and

therapeutic targets for colorectal cancer (Wang et al.,

2019), and in SARS-CoV-2 infection (COVID-19) (Arora

et al., 2020). Therefore, it can provide novel and effective

targets for the development of innovative therapeutic

strategies against VV. In this study, lncRNA-miRNA-

mRNA-drug network was built, and we found that lncRNA

MIR17HG can regulate OSR1 by binding to hsa-miR-21-5p,

and PAX2 might treat VV by targeting OSR1. Our study

identified VV drug targets and their interrelations with

miRNAs and lncRNAs; however, further studies are

needed to provide new directions for its treatment.
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In conclusion, WISP2, CRIP1, and OSR1 are possibly

important biomarkers for VV diagnosis, exploration of

potential molecular mechanisms, progression, and

treatment. However, our study had some limitations.

Statistically significant biomarkers were only determined by

bioinformatics analysis in this study, but further validation,

such as animal experiments and clinical trials is required.

Some underlying mechanisms in VV require

further investigation, such as gene knockdown and

overexpression.
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