
Identification and validation of
neurotrophic factor-related
genes signature in HNSCC to
predict survival and immune
landscapes

Gaoge Peng1†, Hao Chi1†, Xinrui Gao1†, Jinhao Zhang2,
Guobin Song2, Xixi Xie2, Ke Su1, Binyu Song3, Jinyan Yang2,
Tao Gu1, Yunyue Li4, Ke Xu1, Han Li1, Yunfei Liu5* and
Gang Tian6*
1Clinical Medical College, Southwest Medical University, Luzhou, China, 2School of Stomatology,
Southwest Medical University, Luzhou, China, 3Department of Plastic Surgery, Xijing Hospital, Fourth
Military Medical University, Xi’an, China, 4QueenMary College, Medical School of Nanchang University,
Nanchang, China, 5Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-
University Munich, Munich, Germany, 6Department of Laboratory Medicine, The Affiliated Hospital of
Southwest Medical University, Luzhou, China

Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh

most common type of cancer worldwide. Its highly aggressive and

heterogeneous nature and complex tumor microenvironment result in

variable prognosis and immunotherapeutic outcomes for patients with

HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in

the development of malignancies but have rarely been studied in HNSCC. The

aim of this studywas to develop a reliable prognosticmodel based onNFRGs for

assessing the prognosis and immunotherapy of HNSCC patients and to provide

guidance for clinical diagnosis and treatment.

Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas

(TCGA) database, expression profiles of NFRGs were obtained from

502 HNSCC samples and 44 normal samples, and the expression and

prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were

randomly divided into training and test sets (7:3). GEO database of 97 tumor

samples was used as the external validation set. One-way Cox regression

analysis and Lasso Cox regression analysis were used to screen for

differentially expressed genes significantly associated with prognosis. Based

on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used

to construct a prognostic risk scoring system. ssGSEAwas applied to analyze the

immune status of patients in high- and low-risk groups.

Results: The 18 NFRGs were considered to be closely associated with HNSCC

prognosis and were good predictors of HNSCC. The multifactorial analysis

found that the NFRGs signature was an independent prognostic factor for

HNSCC, and patients in the low-risk group had higher overall survival (OS) than

those in the high-risk group. The nomogram prediction map constructed from

clinical characteristics and risk scores had good prognostic power. Patients in
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the low-risk group had higher levels of immune infiltration and expression of

immune checkpoints and were more likely to benefit from immunotherapy.

Conclusion: The NFRGs risk score model can well predict the prognosis of

HNSCC patients. A nomogram based on this model can help clinicians classify

HNSCC patients prognostically and identify specific subgroups of patients who

may have better outcomes with immunotherapy and chemotherapy, and carry

out personalized treatment for HNSCC patients.

KEYWORDS

head and neck squamous cell carcinoma, neurotrophic factor, prognostic signature,
nomogram, tumor microenvironment, immunotherapy

1 Introduction

Head and neck cancer is the seventh most common type of

cancer in the world, with a high incidence in Southeast Asia,

Brazil, and Central Europe (Kaidar-Person et al., 2018). An

estimated 700,000 new cases in 2018 augur well for a serious

prognosis, of which 350,000 are expected to be fatal (Bray

et al., 2018). At present, the treatment of HNSCC has been

based on various treatment methods, such as chemotherapy,

radiotherapy, and photodynamic therapy, and the survival

rate of HNSCC patients within 5 years after early disease

treatment is 70–90% (Lim et al., 2017). However, due to its

highly invasive and heterogeneous nature, the prognosis of

patients with HNSCC remains poor (Liang et al., 2021). At the

same time, most cases of HNSCC are diagnosed at an advanced

stage with poor medical treatment and require surgery to

dismember the organs needed to speak and swallow

(Hashim et al., 2019). For individuals in countries with

limited access to tertiary care centers, survival rates are

30%–40% (Sinha et al., 2003; Attar et al., 2010;

Pruegsanusak et al., 2012; Nandakumar and Nandakumar,

2016). Although the recurrence rate is unacceptably high

after the patient recovers. In fact, nearly half of oral cancer

patients will have a recurrence (Kademani et al., 2005; Koo

et al., 2006; Haddad and Shin, 2008), and the 5-year survival

rate in this condition is 35%–45%, which is frustrating

(Kademani et al., 2005; Bell et al., 2007). To quell these

adverse consequences, and to recognize that HNSCC is one

of the most inflammatory tumor microenvironments (TME)

of all solid tumors, treatment of head and neck cancer has

begun to shift to immunotherapy (Horton et al., 2019). Now

immunotherapy has become a model for cancer treatment and

has received widespread attention as a precision medicine

program for the treatment of solid malignancies (Xie et al.,

2017). Since risk stratification based solely on tumor size,

lymph node and distant metastases (TNM staging), and

histological grade are not sufficient to predict prognosis in

patients with HNSCC, such as squamous cell carcinoma of the

tongue versus squamous cell carcinoma of the oral cavity,

therefore there is an urgent need for more accurate models that

predict prognosis (Kim et al., 2017; Gao et al., 2022). Nerve

growth (Tumor neurogenesis) in the tumor

microenvironment has recently been shown to be critical

for cancer progression. Neurotrophic factors such as nerve

growth factor (NGF), and brain-derived neurotrophic factor

(BDNF), are considered drivers of neurogenesis during

development and regeneration, playing a key role in the

crosstalk between tumor cells and nerves (Gao et al., 2018).

Studies have shown that nerves release neurotransmitters to

promote tumor growth, and tumors secrete neurotrophic

factors from each other, stimulate nerve growth and tumor

cells to stimulate proliferation, survival, migration, and/or

invasion, and favor tumor angiogenesis, while neurotrophic

growth factors secreted by cancer cells can also drive the

growth of nerves in solid tumors (Jobling et al., 2015;

Chopin et al., 2016; Griffin et al., 2018). The effect of

growing nerves on tumors has also been studied in other

cancers, such as tumor cells and nerve endings such as

laryngeal cancer and colorectal cancer by secreting and

absorbing neurotrophic factors; Causing peripheral invasion

(PNI) and promoting tumor progression (Hou et al., 2021;

Zhang et al., 2022a). Tumor denervation of prostate, stomach,

and pancreatic cancers reduces tumor growth and invasion;

The presence of nerves is associated with metastasis and

increased tumor grading (Rowe et al., 2020). Some studies

have shown that BDNF protects neuroblastoma cells from

chemotherapeutic agent-induced cytotoxicity. In the Triple-

Negative Breast Cancer (TNBC) brain metastasis model,

BDNF was shown to autocrine regulate the expression of

the BDNF-tumor cell trophic carnosine kinase receptor B

(TrkB) gene, thereby increasing the migration activity of

cells (Zimmer, 2021). Nerve growth factor (NGF) from

cancer cells causes increased nerve density in the tumor

microenvironment (Rowe et al., 2020), while nerve cells

expressing nerve growth factor (NGF) receptors of NTRK1

(TRKA) and NGFR (p75NTR) were found, and it was thought

that there was a correlation between a large amount of NGF

produced by cancer cells and the presence of nerves (p = 0.02)

(Griffin et al., 2020). NGF has a promoting effect on various

cancers, and anti-NGF has been shown to reduce tumor
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proliferation (Ye et al., 2011). In addition, we also found that

NGF has the potential to selectively affect the proliferation of

breast cancer cells rather than normal breast epithelial cells, so

NGF may be the best treatment target for specific cancer types;

The effect of NGF on cancer cells varies depending on the

expression status of TrkA and/or p75NTR and varies with the

use of chemotherapy drugs, and may have a greater impact on

immune or drug therapeutic effects (Noh et al., 2017). This

neurotrophic effect of NGF in cancer may be associated with a

large number of human malignancies as well as other

neurotrophins and may have an effect on cancer pain

(Griffin et al., 2018).

In recent years, with the development of molecular biology

techniques and bioinformatics, new biomarkers have the

potential to become effective and specific prognostic factors

for different types of cancer, including HNSCC. As far as we

know, although there are a large number of studies exploring

the mechanism and role of neurotrophic factors in various

cancers, research on determining the prognosis of HNSCC as a

target for immunotherapy through neurotrophic factor-

related genes is still a blank. In view of the fact that its

value and mechanism in the diagnosis and prognosis of

HNSCC have not yet been clarified, this study used the

TCGA-HNSC dataset to comprehensively analyze the

relationship between the expression differences of NFRGs

and the prognosis of HNSCC and screened out 18 reliable

NFRGs. On this basis, we further constructed a prognostic

model based on NFRGs, made a risk-scoring formula, and

analyzed the correlation between the prognosis model and the

immune microenvironment, gene mutation burden, and

immunosuppressive point therapy, as well as the sensitivity

of chemotherapy drugs. Through the comprehensive analysis

of genomic data and clinically relevant data, we aim to

demonstrate the value of NFRGs in predicting the

prognosis of patients with HNSCC and improving the

diagnosis of patients with HNSCC, and exploring more

effective personalized treatment options.

2 Materials and methods

2.1 Data sources

We downloaded the TCGA-HNSC cohort from the TCGA

database (https://portal.gdc.cancer.gov/), which includes

502 HNSCC samples and 44 normal samples. Of these,

501 HNSCC samples with complete clinical information were

included in the follow-up analysis. The sample size of HNSCC

patients at the M stage varied greatly. This stage was

consequently excluded from the analysis. Based on relevant

clinical information, the HNSCC cohort was randomly

divided into training risk groups and test risk groups using

the cart R software package. The ratio is 7:3. The model is

externally validated using the GSE41613 dataset collected in

GEO (Gene Expression Omnibus) as a validation set (N = 97).

2.2 Model construction

The model was constructed using univariate Cox regression

analysis to screen for prognostically associated neurotrophic

factor-related genes in the HNSCC cohort. Subsequently,

neurotrophic factor-related genes (p < 0.05) significantly

associated with prognosis in patients with HNSCC were

incorporated into the Least Absolute Shrinkage and Selection

Operator (LASSO) COX regression models, and the key genes

and their regression coefficients were determined using the R

package “glmnet” (Friedman et al., 2010). The risk fraction is

generated using the following formula: risk fraction =

ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×

CoefmRNA2 +. . ExpressionmRNAn × CoefmRNAn。

2.3 Model formulas

The risk score of all patients is calculated according to the

output model equation, and then the optimal cut-off value is

calculated using the R packet “survminer” all HNSCC patients

are divided into high-risk and low-risk groups, and the survival

curves of high-risk and low-risk groups are plotted. PCA analysis

using R software and “pec” R packages are used to calculate the

c-index. Time-dependent ROC curve analysis was performed

using the “survivalROC” R package to assess the predictive power

of genetic traits.

2.4 Independent prognostic analysis and
nomogram predictive model construction

Univariate Cox regression and multivariate Cox regression

analysis were used to assess whether the risk score was an

independent prognostic factor. Using the “rms” R packet, a

line plot was constructed using risk score, age, tumor stage,

and model gene expression to predict the overall survival at 1, 3,

and 5 years in HNSCC patients in the TCGA dataset.

2.5 Immunoassay of risk signatures

Currently recognized methods, including XCELL (Aran et al.,

2017; Aran, 2020), TIMER (Chen et al., 2018; Li et al., 2020),

QUANTISEQ (Finotello et al., 2019; Plattner et al., 2020),

MCPCOUNT (Dienstmann et al., 2019), EPIC (Racle et al.,

2017), CIBERSORT (Chen et al., 2018; Zhang et al., 2022b) and

CIBERSORT-ABS (Tamminga et al., 2020) is used to measure

immune infiltration scores. Spearman correlation analysis was
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used to explore the correlation between risk fraction and immune

cells. To distinguish the immune infiltrative status of patients in the

high-risk and low-risk groups, we used a single-sample GSEA

(ssGSEA) method to calculate the immune cell characteristics of

patients with HNSCC. At the same time, we collected 19 inhibitory

immune checkpoints with therapeutic potential from Auslander’s

study to compare their differences between high- and low-risk

groups (Auslander et al., 2018). We obtained the gene set

associated with cancer-immune circulation from the website

developed by Xu et al (http://biocc.hrbmu.edu.cn/TIP/) Xu et al

(2018). and the gene set that was positively correlated with the

clinical response to the anti-PD-L1 drug (atezolizumab) from the

research features of Mariathasan (Mariathasan et al., 2018). Using

the GSVA algorithm (Hänzelmann et al., 2013)to calculate the

enrichment scores of genetic signatures positively correlated with

the cancer immune cycle and immunotherapy between the high-risk

and low-risk groups, the p-value <0.05 was considered to have a

significant difference’. The ggcor’R software package is used to

analyze the correlation between risk scores and the two genetic

traits described above.

2.6 Somatic mutation analysis

We downloaded the mutation data available to patients with

TCGA-HNSC from the TCGA Data Portal (https://portal.gdc.

cancer.gov/). Somatic mutation data is stored in mutation

annotation format (MAF), and we analyze mutation data

from HNSCC samples using maftools (Mayakonda et al.,

2018). We calculated the individual tumor mutation burden

(TMB) score for each HNSCC patient and explored the

relationship between risk score and TMB. The TMB score is

calculated as follows: (Total Mutation/Total Coverage Base) ×

10̂6 (Robinson et al., 2017).

2.7 Drug sensitivity

The treatment response of patients in the high- and low-risk

groups was assessed using the pRRophetic R software package,

which was determined by each HNSCC patient in Cancer Drug

Susceptibility Genomics (GDSC) (https://www.cancerrxgene.

org/)and Cancer Therapeutics Response Portal (CTRP)

(https://portals.broadinstitute.org/ctrp/) determined by the

semi-maximum inhibitory concentration (IC50) (Geeleher

et al., 2014).

2.8 Statistical analysis

Statistical analysis is carried out using R software v4.1.3.

p-values < 0.05 are considered statistically significant, and FDR

(false detection rate) q < 0.05 is considered statistically

significant.

3 Results

3.1 Identification of candidate NFRGs

Figure 1 shows the flow chart of the study protocol. To find

biomarkers that can effectively predict the prognosis of HNSCC,

we developed a risk score model based on neurotrophic factor-

related genes to assess the prognosis of HNSCC patients. Clinical

information and mRNA expression of 546 HNSCC samples were

collected and downloaded from The Cancer Genome Atlas

(TCGA). The gene set of neurotrophic factors was obtained

from the Genecard database, which contains 2601 genes. A

heat map was created based on the difference in mRNA

expression between tumor samples (n = 502) and normal

samples (n = 44) (Figure 2A). The differential expression

analysis of genes based on |log2FC|>0.5 was performed on

HNSCC tumor tissues by applying the “limma” R package,

and 562 genes with up-regulated expression and 152 genes

with down-regulated expression were obtained (Figure 2B).

We performed univariate Cox analysis of differentially

expressed NFRGs by the “survival” R package and extracted

305 prognostically relevant NFRGs (p < 0.05). Next, we subjected

these 305 NFRGs to lasso regression analysis and obtained

31 NFRGs (Figures 2C,D), and further downscaled these high-

dimensional data by a multifactorial Cox proportional risk

regression model, and finally identified 18 NFRGs, namely

TGFB1, IL10, CDKN2A, ADIPOQ, EPO CHAT, LPL, TAC1,

CTSG, CYP2D6, DES, RNASE3, PGK1, SFRP1, TRIB3, TMEFF2,

GRIA3, and EFNB2. And the corresponding regression

coefficients coef were obtained as 0.2934, −0.9684, −0.0727,

0.3209, −0.3963, 0.3167, 0.1622, 1.5022, −0.1324, −0.4854,

0.0532, 0.8230, 0.3546, −0.0934, 0.3191 0.9016, −0.4756 and

0.2471. In multivariate Cox analysis, the linear prediction

model was built based on 18 NFRGs weighted by their

regression coefficients. 18 NFRGs weighted by their

correlation coefficients were given by the formula: risk score

as = (0.2934 × TGFB1 expression level) + (−0.9684 ×

IL10 expression level) + (−0.0727 × CDKN2A expression

level) + (0.3209 × ADIPOQ expression level)+(−0.3963 × EPO

expression level) + (0.3167 × CHAT expression level) + (0.1622 ×

LPL expression level) + (1.5022 × TAC1 expression level) +

(−0.1324 × CTSG expression level)+(-0.4854 ×

CYP2D6 expression level) + (0.0532 × DES expression level)

+ (0.8230 × RNASE3 expression level) + (0.3546 ×

PGK1 expression level) + (−0.0934×SFRP1 expression level) +

(0.3191 × TRIB3 expression level) + (0.9016 ×

TMEFF2 expression level) + (−0.4756 × GRIA3 expression

level) + (0.2471 × EFNB2 expression level).
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FIGURE 1
Workflow of the study.

FIGURE 2
Identification of candidate NFRGs. (A)Heatmap of the difference inmRNA expression between tumor samples and normal samples. (B)Volcano
map of NFRGs with differential expression. (C) Adjustment of parameters and (D) cross-validation in the LASSO model.
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3.2 Validating the accuracy of the NFRGs
model to predict patient prognosis

To verify the accuracy of the prognostic model we

constructed, patients included in the study (n = 546) were

randomly divided into training cohorts and test cohorts (train:

test = 7:3). In the training cohort, mortality in surviving HNSCC

patients increased with increased risk (Figures 3A,B). We then

constructed a time-dependent receiver operation characteristics

(ROC) curve and found that both the ROC curve of the GEO

cohorts and the ROC curve of the TCGA cohorts show that the

performance of the prognostic signature we constructed is very

prominent (Figures 3C–F). At the same time, the survival curve

was constructed to analyze the prognosis differences between the

high-risk and low-risk groups, and it was found that the

prognosis of high-risk patients was worse than that of low-

risk patients in both test and training cohorts (p < 0.001).

3.3 PCA correlation analysis

In the TCGA and GEO cohorts, we divided the samples into

high and low-expression groups based on median risk scores,

respectively, and then performed PCA analysis based on model

genes versus neurotrophic factor-related genes to obtain PCA

plots of neurotrophic factor genes versusmodel genes in the GEO

cohorts (Figure 4A,B) and the TCGA cohorts for the sum group

(Figures 4C,D), test group (Figures 4E,F) and training group

(Figures Figure4G,H) of the neurotrophic factor genes with the

PCA plot of the model genes (Figures 4C,D). The results showed

FIGURE 3
Validating the accuracy of the NFRGs model to predict patient prognosis (A,B) Partial likelihood deviation map. Time-dependent ROC curve of
HNSCC patients (C) in the GEO cohort; (D) in the TCGA all cohort; (E) in the TCGA test cohort; (F) in the TCGA train cohort. K-M survival curve of
HNSCC patients (G) in the GEO cohort; (H) in the TCGA all cohort; (I) in the TCGA test cohort; (J) in the TCGA train cohort.
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FIGURE 4
PCA correlation analysis in TCGA andGEOCohorts. In GEOCohort: (A) PCA plots of neurotrophic factor genes; (B) PCA plots ofmodel genes. In
TCGA Cohort: (C) PCA plots of neurotrophic factor genes in the sum group; (D) PCA plots of model genes in the sum group; (E) PCA plots of
neurotrophic factor genes in the test group; (F) PCA plots of model genes in the test group; (G) PCA plots of neurotrophic factor genes in the training
group; (H) PCA plots of model genes in the training group.
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that the high-risk and low-risk groups were most clearly

differentiated among the model gene groups.

3.4 Combining clinical characteristics to
build nomograms

Considering that the constructed risk model of NFRGs was

significantly associated with the prognosis of HNSCC patients,

to further determine whether the prognostic characteristics

constructed based on the 18 NFRGs could be used as an

independent factor to predict prognosis, we combined the

OS of HNSCC patients with their clinical characteristics for

univariate and multivariate Cox analyses. According to the

results of univariate analysis, T (p = 0.005), N (p < 0.005),

Stage (p = 0.003), and risk score (p = 0.003) were significantly

associated with the prognosis of HNSCC patients (Figure 5A).

Subsequent multifactorial Cox analysis was performed, and

the risk score remained a reliable, independent risk predictor

(p < 0.001) (Figure 5B). To expand the clinical application and

usability of the constructed NFRGs risk model for HNSCC, we

constructed nomograms based on age, grade, stage, T, N, and

FIGURE 5
Independent prognostic analysis of risk scores and clinical parameters. Univariate (A) and multivariate (B) COX regression analysis of the
signature and different clinical features. (C)Nomogram for predicting 1-year, 3-year, and 5-year OS of patients with HNSCC. (D)The calibration curve
of the constructed nomogram of 1- year, 3- year, and 5-year survival. (E) Multi-index ROC analysis in the test cohort. (F) Decision curve analysis.
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risk score as a means of predicting 1-, 3-, and 5-year

prognostic survival probabilities. In addition, the model

results showed that the risk score had the greatest influence

on predicting OS and also indicated that the risk model based

on 18 NFRGs genes could better predict the prognosis of head

and neck squamous cell carcinoma (Figure 5C). The

calibration curves also showed satisfactory agreement

between predicted and observed values in terms of the

probability of 1-year, 3-year, and 5-year OS (Figure 5D).

The NFRGs risk score model (AUC = 0.756) was more

predictive of HNSCC prognosis than the traditional age

and tumor grading and clinicopathological characteristics

(Figure 5E). Consistent with this result, our model had

the highest net benefit, indicating that our NFRGs risk

model is more influential in clinical decision-making

(Figure 5F).

FIGURE 6
Correlation analysis of risk scores and clinicopathological features and signatures based on 18 NFRGs (A) heat maps (B) gender, (C) age, (D) N
stages, (E) M stages, (F) T stages, (G) tumor grades, (H) pathological stages.
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3.5 Correlation analysis of NFRGs risk
scores with clinicopathological features

The heat map shows the association between the gender,

age, grade, stage, T, N, and risk score of 18 NFRG genes found

in the prognostic risk model and the samples of all head and

neck squamous cell carcinoma patients in the TCGAs

(Figure 6A). At the same time, to examine the correlation

between the risk model and the clinical pathological

characteristics of patients with HNSCC, the risk score of

each subgroup was compared by the Wilcoxon test in terms

of age, tumor grade, stage, T stage, M stage, N stage, and

gender. The results showed that the risk score was significantly

correlated with tumor grade (p < 0.05), T stage (p < 0.05), and

stage (p < 0.05) but not with age, M stage, N stage, and gender.

(Figures 6B–H).

3.6 Clinical subgroup analysis of the
NFRGs risk model

To further understand whether there are differences in the

prognosis of patients in different clinical subgroups, we collated

clinical data from the entire TCGA sample. Subsequently, the

samples were divided into different subgroups according to age

(>65 and≤65 years), gender (male and female), tumor grade

(grade I-II and III-IV), pathological N stage (N0 and N1-3,

pathological stage (I-III and III-IV) and pathological T stage

(T1-2 and T3-4) for further stratified survival analysis (Figure 7).

The results showed that in all subgroups, patients in the high-risk

group had significantly lower OS than the low-risk group

(Figures 7A–L). These results suggest that our NFRGs risk

model also has a reliable predictive value for the prognosis of

different clinical subgroups of HNSCC.

FIGURE 7
Prognostic power of the NFRGs riskmodel for overall survival for multiple HNSCC subtypes. (A) Age >65 years. (B) Age≤65 years. (C) Female. (D)
Male. (E) Grade I-II. (F) Grade III-IV. (G) N0. (H) N1-3. (I) Stage I-III. (J) Stage III-IV. (K) T1-2. (L) T3-4.
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3.7 NFRGs signature performs better than
other signatures in prognosis prediction

To further demonstrate whether our constructed NFRGs

signature has accurate predictive power for HNSCC patients,

we compared it with four published prognostic signatures,

namely the Fang signature, Liu signature, Song signature, and

Sun signature. To ensure the comparability of the signatures, we

calculated risk scores for each HNSCC sample in the entire

TCGA cohort using the same method and transformed the risk

scores across the four signatures according to the previous

method. Although these four signatures effectively divided

HSNCC patients into two subgroups with significantly

different prognoses, time-dependent ROC curve analysis

showed that these four signatures had lower AUC values at 1-

, 3-, and 5-year survival than our NFRGs signature (Figures

8A–E). In addition, Figure 8F shows that our NFRGs signature

had the highest C-index (AUC = 0.712). All these results suggest

that our constructed NFRGs signature has a more prominent

predictive performance.

FIGURE 8
Comparison of theNFRGs signaturewith othermodels (A) KM curves and ROCs for NFRGs signature. (B–E) KM curves and ROCs for riskmodels
constructed by others. (F) C-indexes for five risk models.
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FIGURE 9
NFRGs risk score predicts tumor microenvironment and immune cell infiltration. (A) Immune cell bubble plots. (B) Immune cell and immune
function ssGSEA scores between high and low-risk groups. (C) TME component analysis. (D) Immune checkpoint differences between high- and
low-risk groups. (E) ICB response signature differences between high and low-risk groups. (F) Differences in immune steps with tumor between
high- and low-risk groups. (G) Correlation between risk score and ICB response signature. (H) Correlation of risk scores with each step of the
tumor immunization cycle. *p < 0.05; **p < 0.01; ***p < 0.001.
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3.8 NFRGs risk score predicts tumor
microenvironment (TME) and immune cell
infiltration

Immune features of TME include the expression levels of

immune checkpoint inhibitors (ICIs), infiltration of tumor-

infiltrating immune cells (TIICs), and activity of the cancer

immune cycle (Fan et al., 2021). First, we investigated the risk

score based on XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, CIBERSORT, CIBERSORT- ABS, and EPIC

algorithms and explored the correlation between risk score and

infiltrating immune cell abundance (Figure 9A). Subsequently,

we performed a comparison of one-sample GSEA (ssGSEA)

scores for immune cells and immune function, with the vast

majority of immune cells and immune function scoring

significantly greater in the low-risk group than in the high-

risk group (Figure 9B).

The results suggest that this NFRGs risk score model may

significantly inhibit or enhance the expression of specific

immune cell types and immune function, thus affecting the

response to immunotherapy. In addition, as infiltrating

immune cells are an important component and one of the

characteristics of the tumor microenvironment (TME),

changes in the expression of immune cell types can lead to

changes in TME composition, so we analyzed the TME

composition of HNSCC samples using ESTIMATE. The

results showed that the immune score (p < 0.001) as well as

the ESTIMATE score (p < 0.01) were higher in the low-risk

group compared to the high-risk group, indicating that the

overall immune level and immunogenicity of the tumor

microenvironment were higher in the low-risk group

(Figure 9C). Given the importance of checkpoint-based

immunotherapy, further differences in immune checkpoint

expression were found between the two groups. Eight immune

checkpoint genes were found to be significantly upregulated in

the low-risk group, including IDO1, CTLA-4, PD-1, TIGIT,

CEACAM1, KIR3DL, and BTLA. ADORA2A (Figure 9D).

Based on these results, it can be suggested that risk scores

can guide clinicians in the use of immune checkpoint-targeted

drugs. Since the immune microenvironment mediates ICB

responses, we further analyzed the differences in ICB

response signatures between high and low-risk groups and

found that in the low-risk group, Systemic lupus

erythematosus, Viral carcinogenesis, Base excision repair,

p53 signaling pathway, Proteasome, and microRNAs in

cancer risk scores were higher in the low-risk group than in

the high-risk group, and there were no significant differences

in other ICB response signatures (Figure 9E). Meanwhile, the

correlation between NFRGs risk scores and ICB-related

positive signatures was analyzed, and no significant

correlation was found between them (Figure 9G).

Subsequently, to further refine the immune profile of the

HNSCC tumor microenvironment, we also performed a

differential analysis of tumor immune step risk scores

between high and low-risk groups. In the low-risk group,

upregulation of activity was observed for most steps in the

cycle, including priming and activation (step 3), transport of

immune cells to the tumor (step 4) (T-cell recruiting,

CD4 T-cell recruiting, CD8 T-cell recruiting, Th1 cell

recruiting, DC cell recruiting, Th22 cell recruiting,

macrophage recruiting, NK cell recruiting, Th17 cell

recruiting, B-cell recruiting, Th2 cell recruiting, Treg cell

recruiting), Infiltration of immune cells into tumors (Step

5), Recognition of cancer cells by T cells (Step 6), Killing of

cancer cells (Step 7) (Figure 9F). Simultaneous correlation

analysis between risk score and tumor immune cycle steps

revealed that only priming and activation (step 3), DC cell

recruiting, and Th22 cell recruiting were significantly

negatively correlated with risk score (Figure 9H).

3.9 Mutation analysis and biological
functional enrichment analysis

We analyzed and visualized somatic mutation data from

HNSCC patients by distinguishing between high-risk and low-

risk groups. The top three mutated genes in high-risk patients

were TP53 (72%), TTN (40%), and MUC16 (19%); the top three

mutated genes in low-risk patients were TP53 (60%), TTN

(34%), and SYNE1 (19%) (Figures 10A,B). It has been shown

that different mutational statuses and expression patterns of

wild type may lead to different clinical outcomes of the immune

response, with wild-type TP53 patients having a higher

sensitivity to radiotherapy for HNSCC (Cao et al., 2019). In

addition, TP53 mutations are more likely to occur in HPV-

negative HNSCC and less common in HPV-positive HNSCC

(Helman et al., 2014), possibly suggesting that TP53 acts as an

indicator of radiotherapy sensitization target and HPV typing

in patients with HNSCC, which has great value for clinical

studies. To elucidate the potential biological pathways

associated with our risk genes, we performed Gene set

enrichment analysis (GSEA) (Figures 10C,D) and Gene Set

Variation Analysis (GSVA) using the Kyoto Gene and

Genome Encyclopedia (KEGG) pathway database on risk

group samples (Figure 10E) for Kyoto genes; the results

showed that highly activated gene sets in the high-risk group

were associated with RNA polymerization and degradation as

well as cell cycle, cancer-related pathways. We subsequently

obtained pathways that were significantly enriched in the

high and low-risk groups. Among them, the expression of

gene sets associated with primary immunodeficiency

pathways was significantly downregulated in the low-risk

group. These functional enrichment results also confirm

the correlation between the immune microenvironment

and gene expression differences analyzed in the previous

sections.
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FIGURE 10
Mutation analysis and biological function enrichment analysis (A)Mutation analysis of high-risk group (B)Mutation analysis of low-risk group (C)
Enrichment pathway of high-risk significantly up-regulated gene set (D) Enrichment pathway of low-risk significantly down-regulated gene set (E)
Heat map of difference in enrichment scores between high- and low-risk groups.
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3.10 Multi-omics mutation characteristics
and drug susceptibility analysis of NFRGs

To further explore the biological mechanism of abnormal

expression of these 18 target genes, we analyzed them from

different omics levels such as genome level and copy number

level. Single nucleotide site variation (SNV) results showed that

the Nonsense_Mutation of NFRGs was the most common

variant classification in the TCGA-HNSC cohort, while the

most prevalent variant type was single nucleotide

FIGURE 11
Multi-omics mutation characteristics and drug sensitivity analysis of NFRGs. (A,B)Classification of mutations in HNSCC andmutation incidence
of NFRGs. (C) The proportion of different types of copy number variation in NFRGs. (D and E) The distribution of copy number variant amplification
and deletion in homozygous mutations versus heterozygous mutations. (F) Correlation analysis of copy number variation and expression of NFRGs.
(G,H) Correlation analysis of expression of NFRGs with the sensitivity of chemotherapeutic drugs in CTRP and GDSC cohorts. (I) Analysis of the
role of expression activity of NFRGs in the regulation of cancer-related pathways.
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polymorphism (SNP). Compared to other SNV categories, C>T
has the highest frequency (Figure 11A). And the mutation

occurred in 131 patients with HNSCC, with CDKN2A having

the highest mutation frequency (Figure 11B). Subsequently, the

analysis of copy number variation (CNV) was carried out to

summarize the ratio of homozygous mutations to heterozygous

mutations in NFRGs copy number variations in the sample

(Figure 11C), In addition, we counted the two mutations

separately, and the results showed that the amplification of

homozygous mutations in the sample was mainly ADIPOQ,

while CDKN2A was mainly characterized by copy number

deletion, and the amplification of heterozygous mutations was

mainly ADIPOQ, while the LPL was mainly copy number

deletion (Figures 11D,E). In addition, the Speedman

correlation coefficient analysis between copy number variation

and gene expression was carried out, and it was found that the

copy number variation of IL10 was down-regulated in HNSCC,

while CDKN2A, EFNB2, TRIB3, PGK1, EPO were upregulated

(Figure 11F), Therefore, abnormal gene expression may be the

result of a combination of single nucleotide variation and copy

number variation. In addition, we obtained significant

correlations between the expression differences of NFRGs and

the drug sensitivity of the Cancer Therapeutics Response Portal

(CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC)

databases (Figures 11G,H). This means that the expression of our

risk profile genes can be used as a predictor of drug sensitivity to

chemotherapy in patients or as a target for future drug

sensitization. Finally, we explore the relationship between the

expression of NFRGs and the activity of cancer-related pathways.

It can be seen that under the regulation of 18 genes, the cell cycle,

RTK, and TSCmTOR pathways of patients with HNSCC are

inhibited, while the DNA-Damage, EMT, apoptosis, Hormone

AR, and Hormone ER pathways are activated or inhibited

(Figure 11I).

3.11 TIDE and drug susceptibility analysis
based on NFRGs

Among the 10 immunotherapeutic agents applied in the

treatment of HNSCC, the low-risk group included AZ628

(p = 1.4e-05), BMS-509744 (0.00015), Dasatinib (p = 7.1e-05),

Mitomycin C (p = 8.2e-05), Pyrimethamine (p = 7.7e- 06),

Roscovitine (p = 0.00022), Sorafenib (p = 0.00045), WH-4-023

(p = 1.1e-07), IC50 were higher compared to the high-risk group

(Figures 12A–C,E–I). In addition, we found that two other

chemical or targeted drugs, KIN001-135 (P = 2e-05), and

Z-LLNIe-CHO (p = 2.5e-06), had lower IC50 in the low-risk

group (Figures 12D,J). Based on the risk score, we can further

study the immunotherapy response of patients with HNSCC and

enhance precise drug therapy. In addition, we use the Tumor

Immunocompromise and Exclusion (TIDE) algorithm to predict

the likelihood of immunotherapy risk models. The TIDE in the

low-risk group was significantly higher than those in the high-

risk group (p < 0.05) (Figure 12K), indicating that the higher the

likelihood of immune evasion in the low-risk group, suggesting

that patients were less likely to benefit from ICI (immune

checkpoint inhibitor) therapy.

4 Discussion

HNSCC is a common malignancy caused by abnormal

squamous cells. With more research on HNSCC, the role of

nerves in the development of tumorigenesis has been reflected, in

which neurotrophic factors are involved in the mutual

communication between cancer cells and the nervous system

to promote tumor progression and gradually be concerned

(Cervantes-Villagrana et al., 2020). Perineural invasion (PNI)

and perineural spread (PNS) are considered to be the critical

links of tumor growth andmetastasis (Albo et al., 2011; Roh et al.,

2015; Rademakers et al., 2017). Some studies have shown that

cancer cells stimulate the growth of nerve fibers by secreting

neurotrophic factors, thus completing PNI and PNS. What is

exciting is that the growing nerve fibers can also promote tumor

growth and cancer cell proliferation, thus forming positive

feedback (Lu et al., 2017; Zhang et al., 2022c). Neurotrophic

factors are also widely studied in HNSCC. Many clinical studies

have shown that the local recurrence rate of patients with PNI is

23–36%, while that of patients without PNI is 9–5% (Fagan et al.,

1998; Tai et al., 2013; Pinto et al., 2014). Another study showed

that TrkB, as a high-affinity receptor for BDNF and NT-4, is

highly expressed in HNSCC and that TrkB receptor blockers can

inhibit the proliferation of cancer cells in vitro (Kupferman et al.,

2010; Dudás et al., 2011). At the same time, the interaction

between BDNF and TrkB is also believed to regulate tumor cell

invasion and drug resistance, leading to poor prognosis. It may be

the action mechanism of TrkB receptor blockers (Dudás et al.,

2019). However, there is a lack of systematic study of the value of

the neurotrophic factor family in predicting tumor prognosis.

This study constructed a polygenic model based on

neurotrophic factor-related genes. Subsequently, we conducted

a validation analysis of the constructed NFRGs risk scoring

model and found that it can effectively assess the prognosis of

patients with HNSCC. The risk score of each patient was

calculated based on the expression levels of the 18 NFRGs

screened out, and the risk group was divided into high and

low-risk groups according to the median risk score. The

nomogram was then constructed in combination with clinical

pathological factors, and the calibration curve showed a

satisfactory agreement between the predicted and observed

values in terms of 1-year, 3-year, and 5-year OS. At the same

time, with traditional clinical indicators such as age, sex, tumor

grade, histological staging, etc., the prognosis of HNSCC can be

predicted. Taken together, our model has the highest net return,

suggesting that our NFRGs risk model is more influential in
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clinical decision-making, and clinicians can tailor anti-tumor

personalized treatment based on nomogram results.

In our modeling genes, it has been shown that transforming

growth factor β-inducible protein (TGFB1) can inhibit tumor

progression by promoting apoptosis (Skonier et al., 1992; Zhao

et al., 2002). It has also been proposed that TGFB1 may influence

the behavior of oral squamous cell carcinoma through

mechanisms such as involvement in tumor fibrosis, epithelial-

mesenchymal transition (EMT), and extracellular matrix

remodeling (Donohoe et al., 2017; Hu et al., 2019), but few

studies have reported on the role of TGFB1 in HNSCC. We note

that HNSCC can promote Th2-skewed response by regulating

IL-10 expression and secretion in the tumor microenvironment

(Jewett et al., 2006; Young, 2006; Johnson et al., 2014) and that

IL-10 has been shown to inhibit IFN-α production in HNSCC

(Caruntu et al., 2022), which may lead to antitumor poor

therapeutic efficacy. In addition, based on mouse models,

CDKN2A could inhibit p53R172H-induced metastasis in

HNSCC, and patients with HNSCC with both high-risk

p53 mutations and pure CDKN2A deletions had the worst

clinical outcomes (Li et al., 2016). Erythropoietin (EPO) is

commonly thought to alleviate anemia in patients after

radiotherapy. However, clinical trials have demonstrated

worse tumor control in HNSCC patients treated with EPO

and found that EPO can promote lymphatic tract metastasis

in HNSCC through mediated activation of JAK-STAT signaling,

thereby enhancing tumor aggressiveness, which is detrimental to

patient prognosis (Lai et al., 2005). The mechanism of action of

other NRFGs in HNSCC remains to be elucidated.

Extensive characterization of TME is crucial for establishing

reliable prognostic markers and new advanced modern HNSCC

treatment regimens (Elmusrati et al., 2021); we are very

interested in immune function and expression of immune

cells in the tumor microenvironment, so we conducted

immune cell infiltration, TME components, ssGSCA, and

other analysis, and found that the low-risk group was higher

FIGURE 12
Differences in IC50 of immunotherapy drugs by risk score (A) AZ628, (B) BMS-509744, (C) Dasatinib, (D) KIN001-135, (E) Mitomycin C, (F)
Pyrimethamine, (G) Roscovitine, (H) Sorafenib (I)WH-4-023 (J) Z-LLNle-CHO . (K) TIDE score differences between high- and low-risk groups. *p <
0.05; **p < 0.01; ***p < 0.001.
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than the high-risk group in terms of immune cells and immune

function. This suggests that our risk model can distinguish the

cold-heat tumor subtype from patients with HNSCC and

suggests that the hot tumor subtype has a better prognosis.

Immune checkpoints have attracted much attention as one of

the important features of TME. Some clinical studies have shown

that immune checkpoint inhibitors (ICI), such as Nivolumab and

Pembrolizumab, have good antitumor effects in HNSCC (Qiang

et al., 2021). By using monoclonal antibodies against immune

checkpoints (ipilimumab against CTLA-4, or nivolumab and

pembrolizumab against PD1), cancer immunotherapy effectively

releases tumor-induced immune system brakes to restart cancer

immune circulation (Tan et al., 2017). However, the

heterogeneous phenotypes present in HNSCC exhibit different

genetic aberrations in complex mutational environments, which

makes their response to targeted therapies limited (Elmusrati

et al., 2021). According to previous clinical trials, the response

rate of recurrent or metastatic HNSCC to PD-1/PD-L1 inhibitors

was only 13.3–22%. Therefore, it is crucial to select patients who

can respond effectively to ICIs (Guo et al., 2021). The analysis of

differences in immune checkpoint activity between high and low-

risk groups showed that NFRGs models were able to distinguish

patients with differences in important immune checkpoint

activity, and using these immune checkpoints as targets for

immunotherapy may lead to better immunotherapy outcomes,

providing guidance for decision-making before clinical

immunotherapy. Among them, programmed death ligand 1

(PD-L1) as an immune checkpoint protein in the cancer

immune cycle is highly expressed in the low-risk group, which

may indicate that tumor cells in low-risk patients rely on the PD-

1/PD-L1 signaling pathway to evade immune monitoring, and

PD-1 monoclonal antibodies may have a good effect on patients

in the low-risk group. Upregulation of inhibitory immune

checkpoints such as PD-1 is a key feature of inflamed TME

(Spranger et al., 2013), which may imply that low-risk patients

are in an inflammatory microenvironment. In addition, we found

that CD276 was highly expressed in the high-risk group,

upregulated in HNSCC and helped tumor cells evade immune

surveillance (Li et al., 2022), consistent with our predicted results.

In 4-nitroquinoline-induced mouse HNSCC, cancer stem cells

(CSCs) use the immune checkpoint molecule CD276 (B7-H3) to

evade immune surveillance (Elmusrati et al., 2021). Since mRNA

expression profile data from HNSCC patients receiving

immunotherapy was not available, the potential of this

signature to predict immunotherapy responses was indirectly

assessed, which could lead to deviations from the actual situation.

Therefore, in the future, it should be validated in conjunction

with data from HNSCC patients receiving immunotherapy.

Our NFRGs risk scoring model is a good predictor of

prognosis for patients with HNSCC, and nomograms based

on this model can help clinicians personalize treatment for

HNSCC. Experimental studies of neurotrophic factor-related

molecular mechanisms and related clinical cohort studies can

be carried out in the future, which have great clinical value and

may provide a reliable direction for precision medicine.
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