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Background: Cuproptosis has been found as a novel cell death mode

significantly associated with mitochondrial metabolism, which may be

significantly associated with the occurrence and growth of tumors. LncRNAs

take on critical significance in regulating the development of kidney renal clear

cell carcinoma (KIRC), whereas the correlation between cuproptosis-related

LncRNAs (CRLs) and KIRC is not clear at present. Therefore, this study built a

prognosis signature based on CRLs, which can achieve accurate prediction of

the outcome of KIRC patients.

Methods: The TCGA database provided the expression profile information and

relevant clinical information of KIRC patients. Univariate Cox, Lasso, and

multivariate Cox were employed for building a risk signature based on CRLs.

Kaplan-Meier (K-M) survival analysis and time-dependent receiver operating

characteristic (ROC) curve were employed for the verification and evaluation of

the reliability and accuracy of risk signature. Then, qRT-PCR analysis of risk

LncRNAs was conducted. Finally, the possible effect of the developed risk

signature on the microenvironment for tumor immunization was speculated

in accordance with ssGSEA and ESTIMATE algorithms.

Results: A prognosis signature composed of APCDD1L-DT,MINCR, AL161782.1,

and AC026401.3was built based on CRLs. As revealed by the results of the K-M

survival study, the OS rate and progression-free survival rate of highrisk KIRC
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patients were lower than those of lowrisk KIRC patients, and the areas under

ROC curves of 1, 3, and 5 years were 0.828, 0.780, and 0.794, separately. The

results of the immune analysis showed that there were significant differences in

the status of immunization and the microenvironment of tumor between

groups at low-risk and at high-risk. The qRT-PCR results showed that the

relative expression level ofMINCR and APCDD1L-DTwere higher in 786-O and

769-P tumor cells than in HK-2 cells, which were normal renal tubular epithelial

cells.

Conclusion: The developed risk signature takes on critical significance in the

prediction of the prognosis of patients with KIRC, and it can bring a novel

direction for immunotherapy and clinical drug treatment of KIRC. In addition,

4 identified risk LncRNAs (especially APCDD1L-DT and MINCR) can be novel

targets for immunotherapy of KIRC patients.

KEYWORDS

kidney renal clear cell carcinoma, cuproptosis-related lncRNAs, prognostic signature,
immunological characteristics, the cancer genome atlas, qRT-PCR

Introduction

Renal cell carcinoma (RCC), one of the highly common

malignant tumor in urology, takes up approximately 3% of all

cancers (Umberto et al., 2019; Zachary et al., 2019). Kidney renal

clear cell carcinoma (KIRC) is the most common histological

type, taking up nearly 80% of RCC (Umberto and Francesco,

2016). In accordance with the U.S. Cancer Statistics 2022, there

will be about 79,000 newly diagnosed renal cancer patients and

about 13,920 dead renal cancer patients in 2022 years (Siegel

et al., 2022). Surgical resection of diseased kidney tissue is still the

main treatment for early KIRC, whereas nearly 30% of patients

still have recurrence and metastasis after surgical treatment, thus

resulting in poor prognosis for a considerable number of KIRC

patients (Steven et al., 2017; Giuseppe et al., 2021; Isabel and

Grünwald, 2021). Some new treatment methods have been

progressively applied to the clinical treatment of KIRC,

including vascular endothelial growth factor tyrosine kinase

inhibitors (antiangiogenic agents) and immune-checkpoint

inhibitors, thus increasing the rate of survival of patients with

advanced KIRC to some extent. However, there are still many

reports of KIRC recurrence and progression (Sheng and Rini,

2019; Wenzhong et al., 2021). Most patients with advanced KIRC

exhibit high mortality, recurrence rate, as well as metastasis rate.

Accordingly, novel biomarkers need to be urgently found to

identify high-risk KIRC patients with poor prognosis and to

build a risk model to evaluate their prognosis for contributing to

the clinical diagnosis and prognosis evaluation of KIRC.

Cell death is a critical step in the development of body

(Andreas and Vaux, 2020; Hotchkiss et al., 2009). The body is

capable of ensuring a healthy and stable microenvironment by

inducing damage, aging, and excess cell death (Andreas and

Vaux, 2020). A wide variety of cell death methods have been

developed over the past few years, such as apoptosis, autophagy,

pyroptosis, ferroptosis, and necroptosis (Daniel and Vince, 2019;

Mark, 2019; Stockwell, 2022). Recently, a new process of cell

death has been discovered—Cuproptosis, which occurs through

the direct combination of copper ions with fatty acyl components

in the tricarboxylic acid cycle in mitochondrial respiration, which

leads to the aggregation of fatty acyl protein and the following

reduction of iron-sulfur cluster proteins, thus resulting in protein

toxic stress and eventually cell death (Cobine and Brady, 2022;

Daolin et al., 2022; Peter et al., 2022). The mechanism of

cuproptosis is not consistent with other known cell death

mechanisms. Cell death induced by copper ionophore mainly

depends on the accumulation of copper in cells. Cell death

induced by copper ionophore is a novel cell death process,

obviously inconsistent with the conventional way of cell death.

After reviewing the relevant literature, we found that the

occurrence of KIRC is usually accompanied by the

reprogramming of the tricarboxylic acid cycle. By reducing

the energy generated by the tricarboxylic acid cycle, KIRC

enables tumor cells to survive under harsh conditions and

escape from the surveillance and attack of the immune system

(Cancer Genome Atlas Research Network, 2013; Marston et al.,

2019). In addition, there have been some reports on the progress

of cuproptosis in cancer research, such as cuproptosis-related

genes can predict the prognosis and immunotherapy sensitivity

of pancreatic cancer patients (Yingkun et al., 2022). We need to

study the roles and specific mechanisms of cuproptosis in

tumorigenesis and development in depth and find specific

biomarkers, which can show novel directions for KIRC

diagnosis and treatment.

Long non-coding RNAs (LncRNAs) refer to non-coding

RNAs containing the length of over 200 nucleotides. RNA

polymerase II transcribe the LncRNAs. In recent years, many

studies have reported that LncRNAs take on vital significance in

the occurrence and growth of KIRC. For instance, LncRNA
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SNHG1 is capable of activating STAT3 and PD-L1 as

competitive endogenous RNA of miR-129-3p (Pei et al.,

2021), which can lead to the regulation of the immune

escape of renal cell carcinoma. The result of another study

suggests that knocking down LncRNA LINC00944 leads to

significantly inhibits the proliferation and migration of renal

cell carcinoma and facilitates AKT phosphorylation (Chen and

Zheng, 2021). LncRNA GAPLINC can promote the

tumorigenesis of renal cell carcinoma by targeting miR-135b-

5p/CSF1 axis (Wang et al., 2021). In addition, many LncRNAs-

related prognostic models have been reported in KIRC. For

instance, the m7G-related LncRNAs prognostic model can

accurately achieve the prediction of the prognosis of KIRC

patients (Jie and Chunyang, 2022), immune-associated

LncRNAs prognosis signature has prognostic significance in

KIRC (Seema et al., 2019), and ferroptosis-related LncRNAs

can provide accurate prognosis prediction for KIRC patients

(Xiao-Liang et al., 2021). However, cuproptosis is a novel cell

death mode, and there has been little research about the

Cuproptosis-related LncRNAs (CRLs) prognosis model

in KIRC.

In this study, based on CRLs, our team built and verified a

risk signature for evaluating and improving the prognosis of

KIRC patients, and verified its clinical value. In addition, it shows

the feasibility that the risk signature can make personalized

immunotherapy and targeted therapy for KIRC patients.

FIGURE 1
The research steps of this article.
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Materials and methods

Data sources

Figure 1 presents the flow of this study. The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov) is a

database jointly developed by the National Cancer Institute

and the National Human Genome Research Institute, which

contains clinical data, genomic variation, mRNA expression,

miRNA expression, methylation, and other data of various

human cancers. TCGA database provided 72 healthy renal

tissular specimens as well as RNA sequencing data of

539 tissular specimens of KIRC in the format of “HTSEQ-

FPKM, TCGA-KIRC” (Marston and J, 2019). Furthermore,

the TCGA database provided relevant clinical information.

We employed 530 KIRC samples containing complete RNA

sequencing information and clinical information for the

following analysis by excluding several samples containing not

complete data. The 530 KIRC samples were randomized 1:1 as

the group of testing (n = 265, to verify the CRLs risk signature) as

well as the group of training (n = 265, to develop the CRLs risk

signature) (Table 1).

UCSC Xena (https://xenabrowser.net/) offered copy

number variation (CNV) data and tumor mutation data for

KIRC patients. Choose the “KIRC.Varscan. Somatic. maf.” file

for subsequent tumor mutation burden (TMB) analysis.

TABLE 1 Clinical information of KIRC patients in Train cohort, Test cohort, and Entire TCGA cohort.

Covariates Type Entire TCGA
cohort

Test cohort Train cohort pvalue

Age ≤65 348 (65.66%) 174 (65.66%) 174 (65.66%) 1

>65 182 (34.34%) 91 (34.34%) 91 (34.34%)

Gender FEMALE 186 (35.09%) 87 (32.83%) 99 (37.36%) 0.3168

MALE 344 (64.91%) 178 (67.17%) 166 (62.64%)

Grade G1 14 (2.64%) 5 (1.89%) 9 (3.4%) 0.7295

G2 227 (42.83%) 112 (42.26%) 115 (43.4%)

G3 206 (38.87%) 103 (38.87%) 103 (38.87%)

G4 75 (14.15%) 41 (15.47%) 34 (12.83%)

GX 5 (0.94%) 3 (1.13%) 2 (0.75%)

unknow 3 (0.57%) 1 (0.38%) 2 (0.75%)

Stage Stage I 265 (50%) 137 (51.7%) 128 (48.3%) 0.3438

Stage II 57 (10.75%) 24 (9.06%) 33 (12.45%)

Stage III 123 (23.21%) 65 (24.53%) 58 (21.89%)

Stage IV 82 (15.47%) 36 (13.58%) 46 (17.36%)

unknow 3 (0.57%) 3 (1.13%) 0 (0%)

T T1 21 (3.96%) 14 (5.28%) 7 (2.64%) 0.7918

T1a 140 (26.42%) 67 (25.28%) 73 (27.55%)

T1b 110 (20.75%) 59 (22.26%) 51 (19.25%)

T2 55 (10.38%) 22 (8.3%) 33 (12.45%)

T2a 10 (1.89%) 4 (1.51%) 6 (2.26%)

T2b 4 (0.75%) 2 (0.75%) 2 (0.75%)

T3 5 (0.94%) 2 (0.75%) 3 (1.13%)

T3a 120 (22.64%) 62 (23.4%) 58 (21.89%)

T3b 52 (9.81%) 27 (10.19%) 25 (9.43%)

T3c 2 (0.38%) 1 (0.38%) 1 (0.38%)

T4 11 (2.08%) 5 (1.89%) 6 (2.26%)

M M0 420 (79.25%) 216 (81.51%) 204 (76.98%) 0.5249

M1 78 (14.72%) 35 (13.21%) 43 (16.23%)

MX 30 (5.66%) 14 (5.28%) 16 (6.04%)

unknow 2 (0.38%) 0 (0%) 2 (0.75%)

N N0 239 (45.09%) 125 (47.17%) 114 (43.02%) 0.5913

N1 16 (3.02%) 7 (2.64%) 9 (3.4%)

NX 275 (51.89%) 133 (50.19%) 142 (53.58%)
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Moreover, tumor immune dysfunction and exclusion (TIDE)

score data for each KIRC patient were obtained from the TIDE

website (http://tide.dfci.harvard.edu). In accordance with

previous studies and literature reports, we obtained a total

of 19 cuproptosis-related genes (DLSTGCSH, DBT, CDKN2A,

GLS, MTF1, PDHB, PDHA1, DLAT, DLD, LIPT2, LIPT1,

LIAS, FDX1, SLC31A1, ATP7A, ATP7B, NLRP3, NFE2L2)

(Ok et al., 2014; Francesco and Serena, 2017; Anna et al.,

2018; Ze et al., 2019; Jianjian et al., 2021; Peter et al., 2022).

The above data were all from public databases, which ensured

the reproducibility of the study.

Expression and mutation analysis of
cuproptosis-related genes

The expression differences of cuproptosis-related genes in

healthy renal tissular specimens and KIRC tissular specimens

were analyzed by R package “limma” in R program, and

corresponding boxplots were plotted by R package

“ggpubr”. Mutations in cuproptosis-related genes were

represented by a waterfall plot by R Package “maltools”.

The CNV frequency of cuproptosis-related genes was

shown in the bar chart.

Identification of cuproptosis-related
LncRNAs

TCGA-KIRC transcriptome data were divided into mRNA

and LncRNA using Perl script based on GTF files (human

transcriptome annotates information). The correlation

between cuproptosis-related genes and LncRNAs expression

was analyzed using R package “limma” through Pearson

correlation analysis, with |correlation coefficient| >0.4, p <
0.001 as the filter criterion to obtain CRLs.

Establishment and validation of prediction
signature based on cuproptosis-related
LncRNAs

The Train cohort was used for the development of the risk

signature, and the Test cohort as well as the Entire TCGA

cohort were employed to verify the built risk signature. Based

on the overall survival (OS) time in clinical information of

patients of KIRC, univariate Cox analysis was employed to

evaluate the prognosis significance of CRLs (False Discovery

Rate (FDR) < 0.05). In order to prevent over-fitting in the

development of the risk signature, R package “glment” was

employed to further optimize the selection of prognostic CRLs

using Lasso regression analysis. We carried out multivariate

Cox regression analysis for the above most representative

prognostic CRLs to obtain the hazard ratio (HR) and

regression coefficients for the respective risk LncRNA.

Based on the mentioned investigation, detailed risk

LncRNAs and the regression coefficients were presented,

and risk signatures based on CRLs were built. The

risk score of the respective KIRC patient was obtained as

follows:

risk score � ∑n

i�1coef(LncRNA)*Exp(LncRNA)

All KIRC patients were classified into two groups,

including riskhigh and risklow according to the median risk

score of the Train cohort as the cutoff. R-package “survival”

and “survminer” were adopted to analyze whether OS and

progression-free survival (PFS) of KIRC patients are different

between the two risk groups through Kaplan-Meier (K-M)

survival study. R-package “survival”, “survminer” and

“timeROC” were employed to generate multiple receiver

operating characteristic (ROC) curves. We obtained the

area under the ROC curve (AUC) for verifying the

predictive value of the prognostic signature and evaluating

the accuracy of the risk signature in the prediction of KIRC

patient’s prognosis. In addition, we adopted the concordance

index for evaluating the prediction accuracy of the risk

signature. Lastly, univariate Cox and multivariate Cox

regression analyses were used for the investigation of

whether the risk signatures or other clinical characteristics

may be the independent prognostic indicators of KIRC

patients. The results of regression analysis were presented

in forest maps. The above analyses were validated in both the

Test cohort and the Entire TCGA cohort.

Establishment and calibration of
nomogram

A model for the identification of nomogram risk was

developed with the use of R-package “rms” based on some

independent factors for prognosis in the clinical field and risk

scores. Nomogram is capable of quantifying the factor for KIRC

patient’s prognosis and carry out the quantitative prediction of

KIRC patients’ prognosis. Next, we generated calibration curves

for illustrating the built nomogram’s prediction effect. The

calibration of the respective model was presented by the

above curves in accordance with the condition that the

actual time of survival of KIRC patients was consistent with

the estimated time of survival of KIRC patients. The y-axis

represents the actual time of survival of KIRC patients. The

estimated time of survival of KIRC patients was represented by

the x-axis. The perfectly predicted model for risk was

represented by the light grey line. Better prediction was

represented by the light grey line closer to the diagonal, and

the nomogram performance is represented by the pink

solid line.
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Functional enrichment study

R package “limma” (screening criteria: |log2Fold Change

(FC)| > 1, FDR <0.05) was adopted to screen genes with

differential expression in riskhigh and risklow groups.

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis were

performed for the above genes (R package “clusterProfiler”).

Gene Set Enrichment Analysis (GSEA) was conducted based on

the gene set files of “c2.cp.kegg.v7.4.symbols.gmt”, R package

“limma”, “clusterProfiler”, “org.Hs.eg.db” and “enrichplot” were

employed to identify significantly enriched pathways in riskhigh
and risklow KIRC patients (|log2FC| > 1, FDR <0.05),
respectively.

Analysis of tumor immune
microenvironment

The situation of a wide variety of immune cell infiltration in

different KIRC samples was obtained using seven 7 algorithms

(CIBERSORT-ABS, CIBERSORT, EPIC, MCPCOUNTER,

QUANTISEQ, TIMER, XCELL). Next, the Spearman

correlation study was used for investigating the correlation

between different immune cell infiltration degrees and risk

scores. The above algorithms were systematically

benchmarked, and each of them exhibited unique

performance and advantages. Then, the content of

immunocytes in the respective KIRC sample was quantified

using the algorithm of “Cell-type Identification based on the

Estimation of Relative Subsets of RNA Transcripts

(CIBERSORT)” (Newman et al., 2015; Binbin et al., 2018).

The single sample Gene Set Enrichment Analysis (ssGSEA)

was used for the analysis of differences in the score of

enrichment of 13 immunization-associated pathways and

16 immunocytes in different risk groups, the analysis results

were presented in multi-box diagram. The StromalScore,

ImmuneScore, and EstimateScore (StromalScore +

ImmuneScore) were obtained using the algorithm of

“Estimating Stromal and Immunocytes in MAlignant Tumor

tissues based on Expression data (ESTIMATE)” (Kosuke et al.,

2013) for the respective KIRC patient and then for the

comparison of the score differences of a wide variety of risk

groups. Moreover, the comparison of the expression differences

for some common immune-checkpoints genes in different risk

groups and then used the TIDE algorithm to predict potential

immunotherapy responses. Based on the immunosuppressive

factors (including short survival after ICB treatment, poor

efficacy of immune checkpoint blocking therapy (ICB), as well

as high TIDE score), TIDE evaluated two mechanisms of tumor

immune escape (rejection of cytotoxic T lymphocyte and tumor-

infiltrating CTL dysfunction) by employing several markers of

gene expression (Peng et al., 2018).

Prediction of potential drug sensitivity

Based on R package “pRRophetic”, the prediction was

conducted, the sample’s maximum 50% inhibition

concentration (IC50) was predicted using ridge regression,

and IC50 represented 50% of the suppressed cells, i.e., the cell

survival rate was half of the control sample. In other words, the

lower the IC50 value of the corresponding drug concentration,

the more sensitive KIRC patients will be to the drug (Paul et al.,

2014).

Cell culture

In the First Affiliated Hospital of JinzhouMedical University,

the human KIRC cell lines 786-O and 769-P used in this study

were preserved. Procell Company in Wuhan, China provided

normal renal tubular epithelial cell line HK-2. RPMI-1640

medium (Hyclone) achieved the culture of 768-O and 769-P

cell lines, while MEM medium (Hyclone) achieved the culture of

HK-2 cells, with the addition of 10% fetal bovine serum (FBS)

and 1% penicillin/streptomycin, respectively. All cells were

incubated at 37°C containing 95% air and 5% carbon dioxide.

RNA extraction and quantitative real-time
polymerase chain reaction

In accordance with cultured 786-O, 769-P, and HK-2 cells,

total RNA was obtained by TRIzol (Beyotime, Shanghai, China),

and then reverse transcribed into cDNA by reverse transcription

kit (Beyotime, Shanghai, China) on PCR Cycler (Bio-Rad,

United States). We employed SYBR-Green mixture (Beyotime,

Shanghai, China) and Bio-Rad chemiluminescence imager (Bio-

Rad, United States) for qRT-PCR. All the above experimental

steps were conducted in accordance with the product

instructions, and the amplified primer sequences were as follows:

APCDD1L-DT, forward primer: GAGCCTTGGAAAGGA

GGACC, reverse primer: GATCCATGCAGGTGGGAACA.

MINCR, forward primer: TCCAAGGTCGATTTTCTTAGC

CA, reverse primer: CCCTTTTCAGTTCACAAGCGT.

GAPDH, forward primer: TCGTGGAAGGACTCATGACC,

reverse primer: TCCACCACCCTGTTGCTGTA.

GAPDH served as internal control, the relative expression

was examined by 2̂−ΔΔCt. The experiment was repeated three

times.

Statistical analysis

To conduct the K-M survival analysis for generating the

survival curve, we performed Log-rank test. For examining the
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diversities between a variety of classified data or different

datasets, we carried out the Chi-square test. For determining

the difference between the above two groups, we carried out

Wilcoxon-rank test. For the analysis of correlation, we

employed Spearman method. For the assessment of the

effect exerted by gene expression, clinical features, and risk

signature on patients’ prognosis, we carried out cox

proportional regressive analysis. The above statistical

methods achieved statistical significance if p < 0.05. The

analysis was performed based on R version 4.1.0 and the

feature package.

Results

Biological characterization of
19 cuproptosis-related genes in KIRC

First, We extracted the expression data of 19 genes associated

with cuproptosis from 539 KIRC tissue specimens and 72 normal

kidney tissue specimens and further analyzed the expression of

the above 19 genes associated with cuproptosis in KIRC tissue

specimens and normal kidney tissue specimens. It was found that

the expression of most genes associated with cuproptosis was

FIGURE 2
Biological characteristics of 19 cuproptosis-related genes. (A) Differential expression of cuproptosis-related genes in KIRC
and normal renal tissues. **p< 0.01, ***p< 0.001. (B) Copy number variation frequency plots showed that most cuproptosis-
related genes had copy number deletions. (C) The waterfall plot shows the frequency of cuproptosis-related genes mutations in
KIRC. The different colored squares at the bottom represent different types of mutations. (D–N) K–M survival curves of cuproptosis-
related genes in KIRC. Most of the cuproptosis-related genes in KIRC have prognostic significance and act as an adverse prognostic factor.
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lower expression in KIRC tumor tissue, compared with that in

normal kidney tissue specimens (Figure 2A). We analyzed the

19 genes associated with cuproptosis CNV and somatic

mutations in KIRC, at the level of CNV, we found that most

of the genes associated with cuproptosis were focused on the loss

of copy number (Figure 2B). In 336 KIRC specimens, there were

20 specimens carry genes associated with cuproptosis mutations,

and theNFE2L2mutation frequency was the highest (Figure 2C).

It is speculated that CNV differences and genetic mutations may

mediate the difference in expression of genes associated with

cuproptosis between normal kidney tissue and KIRC

tissue. Subsequently, the influence of the above genes

associated with cuproptosis on the OS rate of KIRC patients

was analyzed, and it was also surprising to find that most of the

genes associated with cuproptosis were significantly associated

with the survival of KIRC (Figure 2D–N). The above analyses

FIGURE 3
Construction and verification of risk signature based on cuproptosis-related lncRNAs. (A) Cross-validation for variable selection in the LASSO
model. (B) Lasso coefficient distribution of risk cuproptosis-related lncRNAs. (C) Sankey diagram illustrates the regulatory relationship between
Cuproptosis-related genes and lncRNAs. (D–F) The Principal Component Analysis in Train cohort, Test cohort, and Entire TCGA cohort based on
different risk groups. (G–I)Heatmap of the expression of four risk lncRNAs in different risk groups in Train cohort, Test cohort, and Entire TCGA
cohort. (J–L) Risk plot distribution of Train cohort, Test cohort, and Entire TCGA cohort. (M–O)Distribution of survival status of KIRC patients in Train
cohort, Test cohort, and Entire TCGA cohort.
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suggested that the imbalance of the expression of genes

associated with cuproptosis may affect the occurrence and

growth of KIRC patients.

Establishment and validation of prediction
signature based on LncRNAs associated
with cuproptosis

A total of 13349 LncRNAs expression data were obtained

from TCGA-KIRC transcriptome data. Subsequently, we

carried out Pearson correlation study in accordance with the

expression of 19 genes associated with cuproptosis and

LncRNAs expression data. A total of 525 LncRNAs were

consistent with the corresponding conditions, that was, |

correlation coefficient| > 0.4, p < 0.001, and were defined as

CRLs (Supplementary Files S1). In the Train cohort, 525 CRLs

were analyzed by univariate Cox regression analysis, and

192 CRLs with prognostic values were obtained. Next, we

performed LASSO regression analysis on 192 prognostic

CRLs for eliminating highly correlated prognostic LncRNAs

and avoiding overfitting (Figure 3A,B) for the optimization of

FIGURE 4
K-M survival analysis based on cuproptosis-related lncRNAs risk signature. (A–C) TheOverall survival K-M survival curves of different risk groups
in Train cohort, Test cohort, and Entire TCGA cohort. The overall survival of patients with high-risk KIRC is lower than that of patients with low-risk
KIRC. (D–F) The Progression-free survival K-M survival curves of different risk groups in Train cohort, Test cohort, and Entire TCGA cohort. The
Progression-free survival of patients with high-risk KIRC is lower than that of patients with low-risk KIRC. (G–T) TheOverall survival K-M survival
curves of different risk groups with different clinical features.
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the developed signatures. We found the 10 most representative

CRLs. Cross-validation results showed that LASSO regression

analysis was the best. Multivariate Cox regression analysis was

performed for the 10 most representative prognostic CRLs to

obtain the hazard ratio (HR) and regression coefficients for

4 risk LncRNAs. The risk score for each KIRC patient can be

obtained as:

Risk score � (−1.15122394874834*Exp AL161782.1)
+ (0.4711103719724987*Exp AC026401.3)
+ (0.678892201655986*ExpAPCDDIL−DT)
+ (0.468667562066302*ExpMINCR)

The Sankey diagram showed the regulatory relationship

between 4 risk LncRNAs and genes associated with

cuproptosis (Figure 3C). All KIRC patients were divided into

riskhigh and risklow groups in accordance with the median risk

score in the Train cohort as a critical point. Principal component

analysis (PCA) showed that risk scores could significantly divide

KIRC patients into riskhigh and risklow groups (Figures 3D–F).

We also compared the expression of the above 4 risk LncRNAs in

the riskhigh and risklow groups (Figure 3G–I). Subsequently, we

rank the survival state and risk score distribution of patients with

KIRC, and we could see that the number of deaths of patients

with KIRC was increasing with the increase of risk score

FIGURE 5
Association between risk signature scores composed of cuproptosis-related lncRNAs and clinical features. (A) The heatmap shows the clinical
characteristics and expression of 4 risk cuproptosis-related lncRNAs in 530 KIRC patients. (B–H) Differential distribution of risk scores among KIRC
patients with different clinical characteristics. (I) The consistency index showed that the risk score was better than other clinicopathological features
in predicting the prognosis of KIRC patients. (J–O) ROC curves for risk signature composed of cuproptosis-related lncRNAs in Train cohort,
Test cohort, and Entire TCGA cohort.
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(Figure 3J–O). In accordance with the K-M survival analysis, we

also found that the OS rate of the riskhigh group was lower than

that of the risklow group (Figure 4A–C). In addition, a significant

difference was identified in PFS rate between the riskhigh and

risklow groups, that is, the PFS rate of the riskhigh group was lower

than that of the risklow group (Figure 4D–F). The same survival

analysis results were obtained for KIRC patients with different

clinical characteristics (except stage N1 KIRC patients)

(Figure 4G–T). The explanation for no significant difference

in OS rate between riskhigh and risklow groups of KIRC patients in

N1 may be that there were fewer KIRC patients in N1, revealing

that the developed risk signature is applicable to KIRC patients

exhibiting nearly all clinical characteristics. The heatmap showed

each KIRC patient’s clinical characteristics and risk scores

(Figure 5A). As depicted in the figure, there were significant

differences in the risk scores of KIRC patients with different

clinical characteristics. To be specific, the risk scores of KIRC

patients in M1, N1, G3-G4, and T3-T4 were higher than those of

KIRC patients in MO, N0, G1-G2, and T1-T2, respectively

(Figure 5B–H). In general, the risk scores of patients of KIRC

with advanced was often higher.

Assessment of risk signature

We adopted the area under ROC curve for evaluating the

accuracy of risk signature in the prediction of the outcome of

patients with KIRC. The results showed that the areas under ROC

curve of the Train cohort 1, 3, and 5 years were 0.828, 0.780, and

0.794 respectively (Figure 5J); the areas under ROC curve of the

Test cohort 1, 3, and 5 years were 0.670, 0.690 and

0.698 respectively (Figure 5K); the areas under ROC curve of

the Entire TCGA cohort 1, 3 and 5 years were: 0.749, 0.734 and

0.744 respectively (Figure 5L). In addition, we also found that the

risk score was better than other clinical variables in the prediction

of the prognosis of patients with KIRC (Figure 5M–O). The

concordance index also confirmed that the risk score was more

accurate in predicting KIRC patients’ outcomes than other

clinicopathological features (Figure 5I). The above results

demonstrated the ability of our risk signature to accurately

achieve the prediction of the prognosis of patients with KIRC.

Risk signature have excellent independent
prognostic value

Univariate-multivariate Cox regression analysis was

performed to determine whether the risk score was an

independent predictor of patients’ outcome, regardless of

other clinical characteristics. In the Train cohort, univariate

Cox results showed that risk score was significantly associated

with patient prognosis (Figure 6A). Multivariate Cox regression

results further demonstrated that risk score can be used as a

biomarker of independent prognosis for KIRC patients

regardless of clinical characteristics (Figure 6D). The same

uni-multi Cox regression analysis results were obtained for

FIGURE 6
Independent prognostic validation of risk signatures. Univariate and multivariate Cox regression analysis results were presented in the form of
forest plots, indicating that risk signature was an independent prognostic factor for KIRC patients in Train cohort (A and D), Test cohort (B and E), and
Entire TCGA cohort (C and F).
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the Test cohort and the Entire TCGA cohort (Figure 6B,C,E,F).

The above results suggest that the risk signature built based on

CRLs has certain significance for the prognostic assessment of

KIRC patients.

Nomogram

In order to make our risk signature fully utilized in the

clinical diagnosis and treatment of KIRC. We built a nomogram

survival prediction map based on four independent clinical

prognostic factors (age, grade, N, and stage) and risk score to

quantitatively predict the 1, 3, and 5-year survival of KIRC

patients (Figure 7A). By comparing the area under the ROC

curve, we could see that our nomogram had good performance in

the prediction of the prognosis of KIRC patients compared to

other predictive indexes (Figure 7B). Subsequently, the

calibration curves were employed to verify the prediction

ability and accuracy of the nomogram, and the results showed

that the nomogram could accurately achieve the prediction of the

prognosis of patients with KIRC (Figure 7C–E), which also

illustrated the value and potential of the nomogram in clinical

application to achieve the prediction of the prognosis of patients

with KIRC.

Functional enrichment analysis based on
risk signature

Because the prognosis of KIRC patients in different risk

groups was significantly different, we performed KEGG, GO,

and GSEA enrichment analysis to preliminarily exploring the

potential biological function differences between the two risk

groups. We screened a total of 588 genes with differential

expression from the riskhigh and risklow groups, and KEGG,

GO enrichment analysis provided us with a biological

FIGURE 7
Establishment and validation of a Nomogram to quantitatively predict the prognosis of KIRC patients. (A)Nomogram to quantitatively predict 1,
3, and 5-year overall survival in KIRC patients. (B) ROC curves for Nomogram, risk scores, and Other clinical features. (C–E) The calibration chart
shows that the Nomogram has a pretty predictive ability.
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understanding of the above genes (Supplementary Files S2).

KEGG enrichment analysis suggested that the above genes

were significantly associated with functional pathways such as

IL 17 signaling pathway, Cytokine-cytokine receptor interaction,

PPAR signaling pathway, etc (Figure 8A), and GO enrichment

analysis suggested that the above genes were significantly related

to biological behavior such as humoral immune response,

immunoglobulin complex, immunoglobulin, etc (Figure 8B).

In addition, we used GSEA software for the investigation of

biological pathways that are enriched in riskhigh and risklow
groups. With p < 0.05 as the standard, 41 biological pathways

were defined enriched. The top 5 pathways enriched in riskhigh
groups were P53 signaling pathway, ECM receptor interaction,

Complement, and coagulation cascades, Cytokine-cytokine

receptor interaction, and Ribosome (Figure 8C). The top

5 pathways enriched in risklow groups were: Ascorbate and

aldarate metabolism, Citrate cycle tca cycle, Lysine

degradation, Propanoate metabolism, Valine leucine and

isoleucine degradation (Figure 8D). The above mechanisms

might partly explain that why riskhigh KIRC patients tend to

have worse clinical outcomes than risklow KIRC patients.

The tumor immune microenvironment of
KIRC patients was analyzed based on risk
score

Since the results of the previous functional analysis showed a

close association with function and pathway of immunity, we

further studied the status of immunization of KIRC patients

between the riskhigh and risklow groups. First, a variety of

algorithms were adopted to study the correlation between risk

score and tumor immune cell infiltration, and there was a

significant correlation between a variety of immunocytes and

risk score (Figure 9A). Based on the ESTIMATE algorithm, we

could conclude that the immune score of KIRC patients in the

FIGURE 8
Functional enrichment analysis based on risk signature. (A) KEGG enrichment analysis of differential genes from risk signature. (B) GO
enrichment analysis of differential genes from risk signature. (C,D) GSEA enrichment analysis of different risk groups.
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FIGURE 9
Potential effects of risk signatures on tumor immune microenvironment in KIRC patients. (A) The correlation between different immune cells
and risk scores was analyzed based onmultiple algorithms. (B)Differences in StromalScore, ImmuneScore, and ESTIMATEScore in KIRC patients with
different risk groups (ESTIMATE algorithms). (C) Differences in immunotherapy sensitivity among different risk groups (TIDE algorithms). Differences
in enrichment scores of 16 immune cells (D) and 13 immune-related pathways (E) in different risk groups. (F)Differential expression of common
immune-checkpoints in different risk groups. (G) Correlation between risk scores and PD1 expression in KIRC patients. *p < 0.05, **p < 0.01,***p <
0.001.
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riskhigh group is higher than that in the risklow group (Figure 9B).

Compared with risklow KIRC patients, the riskhigh KIRC patients

had more active status of immunization and lower tumor purity.

Then, we compared the differences of 16 types of immune cell

enrichment scores and 13 types of immunization-associated

function enrichment scores between the riskhigh and risklow
groups (ssGSEA algorithm). Most immune cell and

immunization-associated pathway enrichment scores were

higher in the riskhigh group, such as T cell co-stimulation,

parainflammation, APC co-stimulation, Check-point, CD8+

T cell, Th1 cells, Th2 cells (Figure 9D,E). Thus it could be

shown that immune activity was stimulated in patients with

riskhigh KIRC. The expression of some common immune

checkpoint genes in both risk groups were also analyzed. Most

of the immune checkpoints were expressed higher in the riskhigh
group (Figure 9F). For instance, PD-1 (PDCD1) expression was

higher in riskhigh patients with KIRC compared with risklow
patients, and the expression of PD1 increased as the risk score

FIGURE 10
Analysis of tumor mutation burden and prediction of potential drug susceptibility in different risk groups. (A,B) The waterfall plot illustrates the
type and frequency of tumor mutational burden in high-risk and low-risk KIRC patients. (C) Differences in tumor mutation burden scores among
different risk groups. (D,E) K-M survival curves of KIRC patients with different risk scores and tumor mutation burden scores. (F–L) Differences in
IC50 values of common drugs in different risk groups.

Frontiers in Genetics frontiersin.org15

Hong et al. 10.3389/fgene.2022.1009555

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1009555


increased (Figure 9E), suggesting that PD1 inhibitors may be

more effective in high-risk score KIRC patients. In contrast,

another common immunosuppressant PDL1 (CD274) was

higher in risklow KIRC, meaning that risklow KIRC patients

might be more sensitive to treatment with PDL1 inhibitors.

Subsequently, we also compared the TIDE scores of the two

risk groups (Figure 9C). The risklow KIRC patients had higher

TIDE scores and higher immune escape potential, suggesting that

risklow groups that received most immune checkpoint blockers

had poor treatment effects. In general, riskhigh KIRC patients had

a more active immune state and were more likely to benefit from

immunotherapy.

Tumor mutation burden and prediction of
potential drug sensitivity

In accordance with the analysis result of somatic mutation

data of KIRC patients in TCGA database, as shown in the

waterfall diagram, 39.64% of riskhigh KIRC patients had

genetic mutation, while 38.68% of risklow patients had such

mutation (Figure 10A,B). TMB refers to the number of

somatic non-synonymous mutations in the genomic region,

which can indirectly reflect the ability and degree of

neoantigen production of tumors and predict the efficacy of

immunotherapy for a variety of tumors. TMB can be affected by

many factors. KIRC patients with different clinical and biological

characteristics have different TMB. Although the degree of TMB

was higher in the low-risk group, this was not statistically

significant. This may be due to the insufficient number of

samples of KIRC patients who participated in the analysis of

tumor mutational burden. Overall, these analyses provided a

basis for risk signatures to predict the prognosis of KIRC patients

and the effect of immunotherapy. (Figure 10C). In KIRC patients

of all risk groups, the gene with the highest mutation frequency is

TNN, and themost commonmutation type is missense mutation.

In accordance with the results of the K-M analysis, the OS rate of

KIRC patients with high TMB is lower than that of KIRC patients

with low TMB (Figure 10D). Next, the TMB and risk score of

KIRC patients for survival analysis were integrated, and a

conclusion was drawn that patients with high TMB and the

high-risk score achieved the worst prognosis (Figure 10E), thus

confirming the ability of our risk signature to predict the OS of

KIRC patients. Although the difference in TMB score among

different risk groups was not significant, it also revealed some

potential mechanisms that might affect the clinical outcome of

patients with KIRC. By comparing the IC50 values of some

common drugs in different risk groups, we found that the risk

score of KIRC patients could influence their sensitivity to drugs

to a certain extent. As revealed by the results, the IC50 value of

Rapamycin, Sunitinib, Bleomycin, AKT inhibitor VII,

Ruxolitinib, 5-Fluorouracil, Saracatinibin riskhigh groups was

higher than that in risklow groups, thus suggesting that risklow

groups may be more sensitive to the above drug treatment.

(Figure 10F–L). The prediction of the efficacy of the above

potential drugs for KIRC patients is beneficial to guiding the

clinical drug treatment of KIRC patients. The above results also

suggest that our risk signature in this study takes on certain

significance for guiding drug therapy in patients with KIRC.

Further studies on four LncRNAs
associated with cuproptosis that
constitute risk signature

Existing researches have suggested that the risk score of

predictive signature is significantly associated with KIRC

tumor immune microenvironment and TMB. Therefore, we

further explore the biological characteristics of the 4 risk

LncRNAs that make up the predictive signature from the

perspective of tumor immunity and tumor mutation. As

depicted in Figure 11A, the 4 risk LncRNAs were significantly

associated with most genes associated with cuproptosis. Next, we

also analyzed the correlation of common immune checkpoint

genes and 4 risk LncRNAs (Figure 11B). It could be seen that

common immune checkpoint PD1 and PDL1 are not only related

to risk scores, but also significantly related to 4 risk LncRNAs.

The correlation scatters plot showed the correlation between risk

LncRNAs and TMB (Figure 11C,D). Based on the results of the

ESTIMATE algorithm, it was found that the expression of 4 risk

LncRNAs was potentially related to the microenvironment of

tumor of KIRC (Figure 11E–P). Existing researches have

suggested that MINCR and APCDD1L-DT, are significantly

associated with the occurrence and growth of various tumors,

such that the focus of this study was placed on the biological

characteristics of two risk LncRNAs in KIRC. First, the K-M

survival analysis curve of 530 KIRC patients indicated that the

expression of the above two risk LncRNAs was significantly

related to the OS rate of KIRC patients (Figure 11Q,R).

Subsequently, the relative expression of LncRNA of MINCR

and APCDD1L-DT was detected through qRT-PCR in HK-2,

786-O, and 769-P cells. The results indicated that the relative

expression level ofMINCR andAPCDD1L-DTwas higher in 786-

O and 769-P tumor cells than that in HK-2 cells, which were

normal renal tubular epithelial cells (Figure 11S,T). In general,

the experimental results of this study indicated the accuracy of

our risk signature to a certain extent.

Discussion

KIRC is one of the most common malignant tumors of the

urinary system, which has the characteristics of high recurrence

rate, high risk of metastasis, and poor prognosis, especially for

advanced KIRC patients, whose prognosis is often very

unsatisfactory (Umberto et al., 2019). Considerable previous
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research over the past few years suggested that LncRNAs take

critical significance in regulating the occurrence and growth of

KIRC. At present, many prognosis prediction models based on

LncRNA have been applied to KIRC (Xinfang et al., 2021). Xing’s

research developed s risk assessment model by ferroptosis-related

LncRNAs could accurately achieve the prediction of the

FIGURE 11
Comprehensive analysis of 4 risk cuproptosis-related lncRNAs. (A) Correlation between 4 risk LncRNAs and 19 cuproptosis-related genes. (B)
Correlation between 4 risk LncRNAs and common immune-checkpoints. The scatter plot represents the correlation between the tumor mutation
burden and the expression of AC026401.3 (C) and APCDD1L-DT (D). (E–P) The scatter plots show the correlations between StromalScore,
ImmuneScore, ESTIMATEScore, and the expression of the 4 risk lncRNAs. K-M survival curves analysis of APCDD1L-DT (Q) and MINCR (R).
Relative expression of APCDD1L-DT (S) and MINCR (T) in normal renal tubular epithelial cell line HK-2 and renal clear cell carcinoma cell line 786-O
and 769-P.*p < 0.05, **p < 0.01,***p < 0.001.
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prognosis of KIRC patients (Xiao-Liang et al., 2021). Tang’s team

defined a signature of ferroptosis-related LncRNAs that could

improve the prognosis prediction in papillary renal cell

carcinoma (Xinfang et al., 2022). Yu et al. found that the

prognosis model based on m6A-related LncRNAs can provide

powerful help for the prognosis evaluation of KIRC patients

(JunJie et al., 2021). Professor Sun’s team pointed out that

immunization-associated LncRNAs can not only help achieve

the prediction of the prognosis of KIRC patients but also become

a potential immunotherapy target for KIRC patients (Zhuolun

et al., 2020). Cuproptosis—as a newly discovered regulation

mode of cell death, some studies on cuproptosis in KIRC have

also been reported (Ganghua et al., 2022). For example, FDX1, a

key gene of cuproptosis, which had been proved to have a certain

effect on the proliferation of KIRC cells, in addition, the presence

of cuproptosis was demonstrated in KIRC cells (Ganghua et al.,

2022). Cuproptosis could bring more options for

immunotherapy and targeted therapy for KIRC patients.

However, the current research on CRLs in KIRC is blank, and

there is no KIRC prognosis prediction model based on CRLs. In

this study, we first applied CRLs to KIRC. Cox and LASSO

regression analyses were carried out for constructing and

verifying the CRLs prognosis signature, which had good

predictive performance. The potential correlation between

prognosis signature and microenvironment of KIRC, immune

checkpoint, and TMB were also systematically studied. The

above results are expected to help the clinical diagnosis and

treatment of KIRC.

We downloaded 539 KIRC tissue specimens and 72 normal

kidney tissue specimens and their corresponding clinical

information from the TCGA database. Genes associated with

cuproptosis were obtained from previous literature studies. The

CRLs were determined by spearman correlation analysis. Then,

based on Cox and LASOO regression analysis, a prognostic risk

signature composed of 4 risk CRLs was built. The result suggests

that the OS、PFS rate of KIRC patients with high-risk scores is

less than that of KIRC patients with low-risk scores. The ROC

curve showed that the AUC values of 1, 3, and 5 years in the

training group were 0.828, 0.780, and 0.794, respectively,

suggesting that the prognosis signature built by CRLs had

high accuracy and reliability. At the same time, we also

consulted other published LncRNA prognostic models. By

comparing the AUC values of 1-year risk models, we found

that our prognostic model has better predictive performance

than other published models. Furthermore, the clinical factors

and risk score were integrated to build a nomogram, thus making

the developed prognosis signature more applicable to clinical

trials.

As the enrichment results of KEGG, GO and GSEA all

show that many enrichment pathways are showed

significantly associated with immune activities, we

discussed the correlation between risk score and KIRC

tumor immune microenvironment. The immune score and

ESTIMATE score of the riskhigh KIRC patients were higher

than those of the low-risk. The change of tumor immune

microenvironment could promote the proliferation,

migration, and invasion of KIRC, which explains to a

certain extent that there were significant survival

differences among KIRC patients in different risk groups.

In addition, based on various algorithms, we analyzed the

differences in immune activities of KIRC patients among

different risk groups. It could be seen that most

immunocytes and immunization-associated functions have

higher enrichment scores in riskhigh KIRC patients, and

riskhigh KIRC patients have more frequent immune

activities. In recent years, immunotherapy has been widely

used in patients with KIRC, especially in patients with

advanced KIRC. For instance, PD1 and PDL1 inhibitors

can improve the survival rate of some patients with

advanced KIRC to a cerntai extent, but unfortunately, not

all patients with KIRC can benefit from them. Accordingly, we

try to provide individualized immunotherapy for KIRC

patients based on our risk signature. We compared the

expression of common immune checkpoint genes in

different risk groups and suggested that most immune

checkpoints have higher expression in riskhigh groups, such

as PD1, CD27, and CD40, which indicates that riskhigh KIRC

patients may be more sensitive to the treatment of the above

immune checkpoint inhibitors, and can get better therapeutic

effects from them. In addition, compared with the low-risk

KIRC patients, the TIDE score of the riskhigh KIRC patients

was lower, indicating that the riskhigh KIRC patients have

lower immune escape potential. It also showed that riskhigh
KIRC patients can benefit from ICB treatment. The above

immune analysis results revealed that riskhigh KIRC patients

might gain more benefits from immunotherapy. Lastly, we

predicted the sensitivity of some potential therapeutic drugs

based on the risk signature, which could help the clinical drug

treatment of KIRC patients. For example, Rapamycin,

Sunitinib, Bleomycin, AKT inhibitor VII, Ruxolitinib, 5-

Fluorouracil, Saracatinibin. According to the latest clinical

guidelines, targeted therapies for renal cancer are mainly

divided into two categories: tyrosine kinase inhibitors

(TKI) and m-TOR inhibitors. TKI drugs are important

means to treat metastatic renal cancer, and currently,

commonly used drugs include sunitinib, ruxolitinib,

TABLE 2 Multivariate Cox regression analysis of 4 risk lncRNAs.

Risk LncRNAs Coeficient HR HR.95L HR.95H

AL161782.1 −1.1512239 0.31624946 0.13522153 0.73962866

AC026401.3 0.47111037 1.60177177 0.99208715 2.58613652

APCDD1L-DT 0.6788922 1.97169228 1.35943561 2.85969446

MINCR 0.46866756 1.59786372 1.05959843 2.40956233
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sorafenib, and axitinib. m-TOR inhibitors, which target

m-TOR and related signaling pathways, can control the

proliferation and angiogenesis of tumor cells, so as to

control the tumor. Commonly used drugs include

rapamycin and everolimus, which are mainly used as

second-line drugs for advanced renal cancer patients who

have failed TKI treatment. Our study compared the

IC50 values of these drugs in different risk populations to

predict the sensitivity of different risk populations to these

targeted therapies, so as to guide clinical application.

Most research has suggested that LncRNA takes on critical

significance in developing some common malignant tumors over

the past few years, so the role played by four risk LncRNAs

making up the prognosis signature was investigated in depth.

There has been little research about LncRNA AL161782.1. Several

research has highlighted that LncRNA AC026401.3 plays a role in

building the model for the prediction of the prognosis of

hepatocellular carcinoma and renal carcinoma. LncRNA

AC026401.3 takes on significance in the prognosis of patients

with hepatocellular carcinoma and renal carcinoma to a certain

extent, and LncRNA APCDD1L-DT can serve as a marker of the

prognosis of lung squamous cell carcinoma (Honghao et al.,

2021; Rongjiong et al., 2021; Min et al., 2022). A considerable

number of studies suggested that the expression of LncRNA

MINCR is capable of affecting a wide variety of malignant

tumors’ development and occurrence. For instance, Li’s

experimental research proves that LncRNA MINCR can

regulate the miR-876-5p/GSPT1 axis to aggravate the

progression of glioma (Zheng et al., 2020). Yu et al.’ s

research shows that LncRNA MINCR has high expression in

colon cancer tissues and cells, and promotes the proliferation and

migration of colon cancer by regulating miR-708-5p (Yang et al.,

2020). However, the research on the above four risk LncRNAs in

KIRC is still very blank, especially LncRNA MINCR, many

studies have shown that it can play a role as an oncogene in

the development of various tumors. The qRT-PCR experiment

also demonstrated that MINCR and APCDD1L-DT have high

expression in KIRC cells. Furthermore, this study also shows that

the expression of the above-risk LncRNAs is significantly

associated with immune activities. The four risk LncRNAs,

especially MINCR, have the potential to become a new target

of KIRC immunotherapy. We also expect that the further

research results of the above LncRNAs can guide the clinical

diagnosis and treatment of KIRC.

In general, this study has certain clinical values and

limitations. First of all, we studied the genes associated with

cuproptosis for the first time and built a prognosis model based

on CRLs, which can accurately achieve the prediction of the

prognosis of KIRC patients, and its predictive performance is

better than some published models for the prediction of the

prognosis of KIRC patients. Second, we also systematically

analyzed the correlation between the CRLs prognosis

signature and tumor immune microenvironment, which

provided a new idea for guiding the immunotherapy of KIRC.

Thirdly, we also showed a novel direction for the drug treatment

of KIRC. Lastly, we proposed that LncRNA MINCR has great

potential to become a new target of KIRC immunotherapy.

However, this study also has some limitations. First, our

signature was only verified internally, and the expression of

risk LncRNA was simply verified by qRT-PCR. No suitable

external dataset was identified in the published database to

further evaluate the reliability of our signature. Second, we

lack clinical follow-up data to prove the value of our

prognostic model. Lastly, in-depth in vivo and in vivo

experiments should be performed to verify the conclusion of

this study, especially to verify the role of MINRC in the

development of KIRC. Although there are several defects, the

CRLs prognosis signature can accurately achieve the prediction

of the prognosis of KIRC patients, which is initially found in this

study. Therefore, this study has a great application prospect in

clinical practice.

Conclusion

The team of this study built a risk signature based on

cuproptosis-related LncRNAs, which can precisely achieve the

prediction of KIRC patient’s prognosis. In accordance with the

risk signature, we evaluated the role played by cuproptosis-

related LncRNAs in the immune microenvironment of KIRC

tumors and the possible potential regulatory mechanism, which

is conducive to guiding the individualized treatment of KIRC. In

addition, four identified risk lncRNA (especiallyMINCR) can be

novel targets for immunotherapy of KIRC patients (Table 2).
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