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Combining SNP p-values from GWAS summary data is a promising strategy for

detecting novel genetic factors. Existing statistical methods for the p-value-

based SNP-set testing confront two challenges. First, the statistical power of

different methods depends on unknown patterns of genetic effects that could

drastically vary over different SNP sets. Second, they do not identify which SNPs

primarily contribute to the global association of the whole set. We propose a

new signal-adaptive analysis pipeline to address these challenges using the

omnibus thresholding Fisher’s method (oTFisher). The oTFisher remains

robustly powerful over various patterns of genetic effects. Its adaptive

thresholding can be applied to estimate important SNPs contributing to the

overall significance of the given SNP set. We develop efficient calculation

algorithms to control the type I error rate, which accounts for the linkage

disequilibrium among SNPs. Extensive simulations show that the oTFisher has

robustly high power and provides a higher balanced accuracy in screening SNPs

than the traditional Bonferroni and FDR procedures. We applied the oTFisher to

study the genetic association of genes and haplotype blocks of the bone

density-related traits using the summary data of the Genetic Factors for

Osteoporosis Consortium. The oTFisher identified more novel and literature-

reported genetic factors than existing p-value combination methods. Relevant

computation has been implemented into the R package TFisher to support

similar data analysis.
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1 Introduction

GWAS summary data is an important resource for dissecting the genetics of complex

traits. In contrast to the individual-level genotype and phenotype data, summary data

allows much broader access because of less privacy risk (NIH, 2018). The summary

statistics are often sufficient for typical genetic association studies with the same efficiency
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as individual-level data (Lin and Zeng, 2010a,b). Furthermore, it

is convenient to integrate summary data from different studies,

e.g., through meta-analysis, to cumulate information to increase

the power of detecting genetic factors. Many summary data

analyses have been carried out and resulted in new genetic

findings (Evangelou and Ioannidis, 2013; Pasaniuc and Price,

2017; Guo and Wu, 2019).

GWAS summary data is often used to test the association

between a trait and sets of SNPs in genes or other genomic

segments. Such SNP-set test can reveal weak genetic effects that

are unidentifiable by individual SNPs (Hoh et al., 2001; Xiong et al.,

2002;Wu et al., 2010;Wu et al., 2014; Sun et al., 2019; Sun and Lin,

2019). Many methods have been developed based on the

combination of SNP statistics (e.g., z-scores) or their p-values.

Combining the p-values has multiple advantages. The p-values are

the direct measure of statistical significance. Combining them does

not concern the problem of signal cancellation in adding SNP

z-scores of opposite directions (Pan, 2009). Furthermore, p-values

are homogeneously Uniform (0, 1) distributed under the null as

long as the statistics are continuous. Therefore, p-values from

statistics of different types or scales can be directly combined.

The SNP-set test is essentially a global hypothesis testing

procedure for detecting the existence of “signals” of genetic

effects. Optimal signal-detection tests depend on the signal

patterns (Donoho and Jin, 2004; Zhang et al., 2020a; Zhang

et al., 2020b; Zhang and Wu, 2022a). For example, Fisher’s

method (Fisher, 1925) is optimal for detecting dense signals (e.g.,

in the sense of Bahadur efficiency (Littell and Folks, 1971, 1973)).

Meanwhile, theminimal p-value test is preferred for detecting sparse

and strong signals (Donoho and Jin, 2004). In GWAS, signal

patterns depend on the fraction of causal SNPs, the strength of

their effects, the linkage disequilibrium (LD) among SNPs, and other

potential factors (e.g., covariates) (Zhang and Wu, 2022a). The

collective signal patterns are often unknown and drastically vary

over different SNP sets. One strategy to address this issue is the

omnibus testing procedure. An excellent approach is the ACAT-O,

which includes three different tests, the ACAT, the SKAT, and the

burden test (Liu et al., 2019). The ACAT is more powerful than

SKAT and burden tests for sparse signals when the fraction of causal

SNPs is small and the LDs are weak. On the contrary, SKAT and

burden tests are more powerful for dense signals. The ACAT-O

becomes robust by adapting to the power of these three tests.

However, SKAT and burden tests are not p-value combination

methods. The SKAT requires the marginal score statistics, which

may not be provided in summary data (Wu et al., 2011).

We propose an adaptive p-value combination procedure based

on the thresholding Fisher’s method (TFisher) (Zhang et al., 2020b).

The TFisher provides a flexible mechanism for truncating and

weighting SNP p-values in the testing procedure. When signals

are sparse, the TFisher statistic is powerful by including a few

smallest p-values that are most likely associated with signals; when

signals are dense, more p-values can be included to improve power.

Therefore, the corresponding omnibus testing procedure (the

oTFisher) remains robustly high power for various signal

patterns by automatically adapting to a subset of important

SNPs. Unlike the ACAT-O, which involves different types of test

statistics, the oTFisher restricts to the same family of statistics. The

adaptation is through truncating andweighting SNP p-values, which

provides a vehicle for screening important SNPs. If the SNP-set is

significantly associated, the important SNPs selected by oTFisher are

likely trait relevant. This feature is useful for two reasons. First,

important SNP screening based on the SNP-set test could help to

identify SNPs with weak genetic effects because the SNP-set test has

the potential to detect the totality of genetic effects that single-SNP

analysis cannot. Second, the important SNPs that drive the

association of a SNP set, e.g., a gene, could help reveal genetic

architecture, disease mechanism, and other downstream analyses of

the gene.

The exact distribution of oTFisher is challenging to obtain

when SNP p-values are dependent because of the LD among

SNPs. For controlling the type I error rate, we could rely on a

re-sampling-based strategy to get the empirical p-value of the

oTFisher. However, this strategy is computationally

expensive, especially for moderate to large SNP sets. We

design an efficient algorithm to calculate the p-value of the

TFisher and the oTFisher. It is a hybrid of the generalization of

Brown’s method (GB) (Brown, 1975) and a more advanced

skewness-kurtosis-ratio matching method (SKRM) (Zhang

and Wu, 2022b; Zhang et al., 2022). The GB is fast and

reasonably accurate for larger p-values (≥0.01). The SKRM

can significantly improve calculation accuracy for smaller p-

value.

The oTFisher is shown robustly powerful through extensive

simulations. The type I error rate is adequately controlled even at

a stringent significance level. We applied the oTFisher to analyze

the summary data from the Genetic Factors for Osteoporosis

Consortium (GEFOS). The oTFisher systematically identified

more literature disease genes than the current p-value

combination methods. The results contributed more insights

into the genetics of osteoporosis.

2 Materials and methods

2.1 SNP-set testing statistics

Let a set of n SNPs have p-values Pi, i = 1, . . . , n. The TFisher

statistic tests the genetic association between a trait and the SNP

set by combining these p-values while allowing for a general

scheme of truncation and weighting (Zhang et al., 2020b):

Tn τ1, τ2( ) � −2∑n
i�1

log
Pi

τ2
( )I Pi ≤ τ1( ), (1)

where I () is the indicator function, τ1 > 0 is a truncation

parameter that includes p-values equal or smaller than τ1 into

the statistic, and τ2 > 0 is a weighting parameter for selected p-
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values. When τ1 = τ2 = 1, the TFisher statistic combines all p-

values, which is the classic Fisher’s combination statistic:

Tn(1, 1) � −2∑n
i�1 log(Pi). The TFisher family include the

statistic of truncation-product method (TPM) (Zaykin et al.,

2002, 2007): Tn(τ1, 1) � −2∑n
i�1 log(Pi)I(Pi ≤ τ1), i.e., a special

case of the TFisher with τ2 = 1. Our previous study has shown

that statistical power and computation efficiency can be

improved by weighting the truncated p-values through τ2. An

optimality can be reached at τ1 = τ2 = τ ∈ (0, 1], which gives the

soft-thresholding statistic:

Ts
n τ( ) � 2∑n

i�1
max −log Pi

τ
( ), 0{ }.

An analogous version of the TPM is the rank-truncation product

(RTP) method (Dudbridge and Koeleman, 2003). Let P(1) ≤/ ≤
P(n) be the ordered input p-values. The RTP statistic is RTP �
−2∑k

i�1 log(P(i)) for some predetermined k. The RTP statistic can

also be written in consistency with the TPM with τ1 = P(k).

Calculating the p-value of the RTP is more challenging, especially

for SNP p-values are dependent due to the LD.

The TFisher is a flexible framework tomaximize the detection of

SNP-set associations over a broad spectrum of signal patterns.

Different signal patterns are in favor of different truncating and

weighting parameters. For example, when association signals are

dense, more SNP p-values should be included in the test statistic by

large τ1 and τ2 so that the test is closer to Fisher’s method. Dense

signals happen under the polygenic model with a substantial number

of causal SNPs, or when the LD is strong so that many SNPs in LD

with the causal SNPs also show association signals. On the other

hand, if association signals are sparse (i.e., only a small number of

SNP p-values are linked to the causal genetic factor), the smallest SNP

p-values should be included in the statistic by small τ1 and τ2.

In reality, the signal patterns are often unknown and

substantially differ over traits and loci. Therefore, we rely on the

data-adaptive omnibus testing procedure to automatically select

appropriate parameters. Specifically, we consider a discrete search

domain over {(τ1k, τ2k), k = 1, . . . ,K}, whereK is the total number of

τ values to search on. Denote P(k) the test p-value of Tn (τ1k, τ2k).

The omnibus statistic is defined as the smallest P(k), which indicates

the maximal association evidence for the whole SNP-set:

oTFisher_minp � min
k�1,...,K

P k( ). (2)

Moreover, we define a second omnibus test by Cauchy

combination test (CCT) of P(k)’s (Liu and Xie, 2020):

oTFisher_cct � 1
K

∑K
k�1

tan 0.5 − P k( )( )π( ). (3)

The summands of oTFisher_cct are the transformation of P(k)’s

by the inverse cumulative distribution function (CDF) of the

standard Cauchy distribution. Because of the heavy tail of

Cauchy distribution, oTFisher_cct is dominated by p-values

closer to 0 or 1. In practice, we truncate P(k) = 1 to be 0.9 so

that oTFisher_cct is dominated by small p-values and performs

similarly to oTFisher_minp. Note that since P(k) depends on the

LD (see its calculation below), the oTFisher implicitly accounts

for the LD information.

2.2 SNP-screening procedures

We can utilize the oTFisher as a procedure to screen for

important SNPs. The oTFisher procedure has three steps:

1) SNP-set testing: Identify the significantly associated SNP-sets

by their oTFisher p-values ≤ α/g, where α is the adjusted

significance level, g is the number of SNP sets (e.g., genes)

studied simultaneously.

2) Screening: From the t SNPs contained in the significant SNP

sets, get s candidate SNPs with their p-value less than a

threshold p+.

3) Validation: Use an independent data to get new p-values of

the s candidate SNPs. Get s1 validated SNPs with their p-

values less than α/s.

A natural choice of the threshold is p+ = τ*, where τ* ≡ τ1k*
corresponding to the oTFisher_minp in (2) (i.e., P (k*) is the

minimal P(k)). Meanwhile, P(k) could have similar values over

different k. To be conservative and reduce the false discoveries,

we recommend p+ = min{τ*, 0.1} (denoted by oTFisher_r as a

restricted version).

In practice, SNP screening is commonly based on the

Bonferroni procedure or the Benjamini–Hochberg (BH)

procedure:

• Bonferroni procedure: The screened SNPs are those with

their p-values less than p+ = α/L, where L is the total

number of SNPs.

• BH procedure: The screened SNPs are those with p-value

less than p+ � P(k+), where k+ is the largest k such that the

ordered SNP p-values P(k) ≤ αk/L.

The SNPs screened by Bonferroni and BH are validated in the

same way as the validation stage for the oTFisher.

There are two potential benefits of utilizing the oTFisher

procedure over Bonferroni and FDR procedures. First, as a set-

testing method, the oTFisher can potentially increase the

discovery of weakly associated SNPs. It is because the SNP-set

test can detect the collective existence of weak genetic effects that

are indistinguishable from individual SNPs (Donoho and Jin,

2004; Wu et al., 2014; Jin and Ke, 2016). Therefore, the oTFisher

could better reveal SNPs with weak genetic effects than the

Bonferroni and FDR procedures, which only rely on

individual SNP tests. Second, τ* is influenced by the

proportion of genetic signals (Zhang et al., 2020b). This

information could also contribute to identifying important SNPs.
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2.3 Algorithms for p-value calculation

Following the literature (Brown, 1975; Zhang and Wu,

2022b), we account for the dependence of SNP p-values by

assuming that the vector of their z-score statistics Z �
(Z1, . . . , Zn)′ is approximately normal:

Z ~ N μ,Σ( ), (4)

where the mean vector μ corresponds to the association

hypotheses: H0: μ = 0, i.e., no SNPs are associated, and H1: μ

≠ 0, i.e., at least one SNP is associated. The correlation matrix Σ is

assumed to be estimable but otherwise arbitrary. These

assumptions are reasonably satisfied in practice when the

sample size is reasonably large (e.g., by the linear model-based

association tests (Shao, 2010)). As one example, the estimation of

Σ among the marginal score statistics is given in Section 3.1. For

analyzing GWAS summary data where the individual-level

genotype data are unavailable, Σ can often be estimated by the

LD matrix based on reference genome panel data, such as the

1,000 Genome and the UK10K projects (Hu et al., 2013).

Although most GWAS summary data contains two-sided p-

values, we allow they are one-sided for the completeness of

statistical development:

One − sided :Pi � �Φ Zi( ); Two − sided :Pi � 2�Φ |Zi|( ), (5)

where �Φ(x) � P(N(0, 1)> x) denotes the survival function of

N (0, 1).

2.3.1 p-value calculation for TFisher

At given τ1, τ2 and n, the TFisher statistic Tn (τ1, τ2) in Eq. 1

has a point probability mass at 0: p0 � P(Tn(τ1, τ2) � 0) �
P(miniPi > τ1) corresponding to all p-values are truncated.

Define s = −2 log (τ1/τ2) ≥ 0 when τ2 ≥ τ1, and s = −2n log

(τ1/τ2) < 0 when τ2 < τ1. In either case Tn (τ1, τ2) ≥ s and its

distribution is a mixture of point mass at 0 and a continuous

distribution defined in [s,∞). That is, Tn (τ1, τ2) ~ p0 · 0 + (1 − p0)

· T′, where T′ denotes an appropriate continuous random

variable.

The exact value of p0 is easy to calculate under normality in

Eq. 4. The exact distribution of T′ is challenging to obtain. We

propose to use the gamma distribution model to approximate it

for a few reasons. First, the model is consistent with the

distribution of the TFisher under independence, which is a

weighted gamma distribution (Zhang et al., 2020b). Second,

the literature has been using gamma distribution to

approximate Fisher’s method under dependence (Brown,

1975; Zhang and Wu, 2022b). Third, when the shape

parameter of the gamma distribution is large, it converges to

the normal distribution, which is appropriate for the TFisher

statistic when n is large (see details below). Overall, gamma

distribution provides a flexible and straightforward distribution

model, vital for computational speed and accuracy.

Specifically, we approximate the distribution of the TFisher

statistic by

Tn τ1, τ2( )≈DX ~ p0 · 0 + 1 − p0( ) ·X′, (6)

where X′ − b ~Γ(a, θ), the gamma distribution with shape

parameter a and scale parameter θ. We consider a shift

parameter b so that X′ ∈ [b, ∞). Let FΓ(a,θ) (x) denote the

CDF of Γ(a, θ). The CDF of X is

FX x( ) � P X≤ x( ) � p0I x≥ 0( ) + 1 − p0( )FΓ a,θ( ) x − b( ). (7)

Based on (7), the p-value of the TFisher at an observed statistic t is

P Tn τ1, τ2( )> t( ) ≈ 1 − FX t( ). (8)

We discuss the methods to calculate FX(t) in the following.

Method 1: The generalized Brown’s method (GB): This

method follows the essential idea of Brown’s method (Brown,

1975) to match the first two moments of T and X. Specifically, we

set the shift parameter b = s so that X′ and T′ have the same

domain. The parameters a and θ are determined by matching the

means and the variances of Tn (τ1, τ2) and X. Denote μT = E (Tn

(τ1, τ2)) and σ2T � Var(Tn(τ1, τ2)). We have

μT � μX � 1 − p0( ) aθ + b( )
σ2
T � σ2X � 1 − p0( ) aθ2 + p0 aθ + b( )2( ){ 0

a � μT − b 1 − p0( )( )2
1 − p0( )σ2T − p0μ

2
T

θ � 1 − p0( )σ2T − p0μ
2
T

1 − p0( ) μT − b 1 − p0( )( ).
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Note that the gamma approximation is consistent with the

asymptotic normal distribution of Tn (τ1, τ2) for large n by

the Central Limit Theorem (CLT). Specifically, when n →∞, p0
→ 0, so μT = μX ≈ aθ + b and σ2T � σ2X ≈ aθ2. Because Γ(a, θ) ≈ N

(aθ, aθ2) for large a, the distribution model in (6) leads to

Tn(τ1, τ2)≈DΓ(a, θ) + b ≈ N(aθ + b, aθ2) ≈ N(μT, σ2T). However,

for finite n, the distribution model in Eq. 6 is more accurate for p-

value calculation.

Straightforward calculation gives μT = 2nτ1 (1 − log τ1 + log

τ2). For the variance σ2T, we deduce its analytical formula given in

Lemma 1 in Supplementary Material. The formula involves a

summation of infinite terms. However, in practice, a summation

of two or three terms over k would give sufficient accuracy for σ2T
(Zhang andWu, 2022b). The proof is based onMehler’s theorem

(Patel and Read, 1996) and is given in Supplementary Material.

Method 2: Skewness-kurtosis-ratio matching method

(SKRM). Accurate calculation of small p-value highly depends

on the precise approximation of the right tail of the null

distribution. In this method, we do not require the shifting

parameter b = s but treat it as additional freedom to capture

the right-tail information of the TFisher statistic. That is, in

addition to the first two moments, we further match the

skewness-kurtosis ratios of Tn (τ1, τ2) and X. Engaging

higher-order moments could provide more flexibility in the
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distribution and thus improve the accuracy of p-value

calculation. In particular, matching the skewness-kurtosis

ratios is a cost-efficient method–it captures two higher

moments using only one extra parameter.

Specifically, let γT′ � E(T′ − μT′)3/σ3T′ and κT′ �
E(T′ − μT′)4/σ4T′ be the skewness and kurtosis of T′, and γX′
and κX′ be the skewness and kurtosis of X′, respectively. By
matching the ratio between skewness and excess kurtosis

γT′
κT′ − 3

� γX′
κX′ − 3

,

we can obtain a simple closed form a � 9γ2
T′

(κT′−3)2. Subsequently, by
matching the mean and variance μT′ = μX′ and σ2T′ � σ2X′, we have

θ � σT′�
a

√ and b � μT′ − σ2T′
��
a

√
. After a, θ and b are determined, the

p-value of the TFisher can be calculated by Eqs 7, 8.

Exact calculation of γT′ and κT′ would be intricate due to the

complexity of the high moments of the summational terms in the

TFisher statistic. We rely on simulation by Eq. 4 to obtain these

values. The number of simulations needed for estimating these

parameters is much smaller than that required for obtaining a

small empirical p-value directly. Therefore, the SKRM is still

computationally more efficient than getting p-values solely based

on the re-sampling strategy.

Method 3: Hybrid method. To balance computational speed

and accuracy, we recommend a simple two-stage calculation of

TFisher’s p-value. Because the GB is fast and accurate for

controlling the type I error rate at α ≥ 0.01 (see the numerical

results below), the GB is applied in the first stage. If the obtained

p-value is less than 0.01 (the chance is about 1% under the null),

the SKRM method will obtain the final p-value in the second

stage. With a single core of 2.80 GHz AMD EPYC 7543 CPU and

20G memory, the computation times for calculating TFisher’s p-

values for SNP sets of 30/50/100/200 SNPs are about 0.07/0.13/

0.30/0.74 s by the GB method (implemented in R version 4.2.0).

Correspondingly, the expected times by the hybrid method

(assuming 1% chance of engaging the SKRM method that

takes 105 simulations to obtain γT′ and κT′ values) are 0.09/

0.15/0.33/0.78 s.

TABLE 1 Type I error control for SNP-set testing by the oTFisher under quantitative and binary traits. SNP-set size n = 100, sample size N = 1,000.

α rare variants common variants

oTFisher_cct oTFisher_minp oTFisher_cct oTFisher_minp

GB Hybrid GB Hybrid GB Hybrid GB hybrid

Continuous trait

0.1 0.93 0.94 0.84 0.85 0.89 0.90 0.83 0.83

0.05 0.98 0.99 0.80 0.81 0.95 0.96 0.77 0.77

0.01 1.15 0.9 0.88 0.64 1.13 0.94 0.84 0.64

0.005 1.27 0.86 1.00 0.57 1.28 0.90 0.97 0.56

0.001 1.80 0.87 1.48 0.56 1.82 0.89 1.50 0.52

0.0005 2.17 0.89 1.84 0.58 2.21 0.91 1.89 0.53

0.0001 3.69 0.95 3.61 0.70 3.66 1.00 3.65 0.73

0.00005 4.82 1.05 4.99 0.87 4.66 1.08 4.96 0.79

0.00001 9.54 1.11 11.00 1.06 8.89 1.25 11.33 1.29

Binary trait

0.1 0.93 0.93 0.85 0.85 0.88 0.88 0.82 0.82

0.05 0.97 0.98 0.81 0.81 0.94 0.94 0.76 0.76

0.01 1.10 0.86 0.85 0.60 1.10 0.9 0.82 0.61

0.005 1.22 0.81 0.94 0.53 1.23 0.84 0.93 0.52

0.001 1.71 0.75 1.39 0.48 1.75 0.8 1.44 0.46

0.0005 2.07 0.77 1.75 0.50 2.11 0.81 1.82 0.47

0.0001 3.50 0.87 3.38 0.61 3.52 0.85 3.54 0.63

0.00005 4.59 0.86 4.68 0.67 4.53 0.93 4.82 0.71

0.00001 8.94 1.09 10.32 0.98 8.70 1.16 11.09 1.02
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2.3.2 p-value calculation for oTFisher

For the oTFisher_minp in Eq. 2, we can apply asymptotic

distribution to approximate its p-value by

1 −ΦR
�Φ−1

p0( ), . . . , �Φ−1
p0( )( ), (9)

where p0 is the observed statistic of oTFisher_minp, ΦR denotes

the CDF of a multivariate normal distribution with mean zero

and correlation matrix R. We obtain R by scaling Ω, the

covariance matrix of Tn (τ1k, τ2k), k = 1, . . . , K, given by

Lemma 2 in Supplementary Material. That is, R = ΛΩΛ with

the diagonal matrix Λ � diag{1/ ����
Ωkk

√
, k � 1, . . . , N}.

As for oTFisher_cct in Eq. 3, following the property of the

CCT, its distribution is robust to the correlations as long as Tn

(τ1k, τ2k)’s are roughly normal distributed. This requirement is

justifiable because Tn (τ1k, τ2k) is in the format of summation so

that it is roughly normal distributed by the CLT when n is

moderately large and τ1 is not too small. Denote the observed

statistic by ccto. We directly apply the result by (Liu and Xie,

2020) to approximate its test p-value by

P(oTFisher_cct> ccto|H0) ≈ 1
2 − tan−1(ccto)/π. For the

computation time of obtaining the oTFisher’s p-value, the

dominant part is to get the p-values of the TFisher statistics

Tn (τ1k, τ2k), k = 1, . . . , K.

3 Simulation studies

3.1 Simulation design

Simulations were applied to verify the accuracy of the p-value

calculation, statistical power, and SNP-screening performance of

the oTFisher procedures. The genotype data were generated by

the Cosi2 package (Shlyakhter et al., 2014). Specifically,

1,290 haplotypes were generated according to a coalescent

model based on chromosome 1 of the European population.

Two haplotypes were randomly picked with replacement to form

the genotypes of one diploid individual. In each simulation, we

obtained SNPs of N individuals. Both rare variants (0.05%<
MAF< 5%) and common variants (MAF ≥5%) were considered.

FIGURE 1
Statistical power for binary traits from common SNPs. Row 1: Fixing the number of causal SNPsm = 1, 5, and 10, and varying effect size β on x-
axis. Row 2: Fixing β = 0.06, 0.08, and 0.1, and varyingm on x-axis. Testing methods: fisher: Fisher’s method; soft: soft-thresholding TFisher with τ1 =
τ2 = 0.05; cct: Cauchy combination test; otfisher_minp: oTFisher in Eq. 2; otfisher_cct: oTFisher in Eq. 3; gates: extended Simes procedure.
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We simulated continuous and binary traits by the regression

and the logit model, respectively:

Yk � Gk·′ β + Xk·′ γ + ϵk, where ϵk ~i.i.d.N 0, 1( ),
logit P Yk � 1( )( ) � Gk·′ β + Xk·′ γ,

(10)

where Yk quantifies the phenotypic trait of the kth subject, k = 1,

. . . , N, with the sample size N. Gk· � (Gk1, . . . , Gkn)′ is the

genotype vector of n SNPs,Xk· � (Xk1, . . . , Xkl)′ is the vector of l
controlling covariates. The nonzero elements of β � (β1, . . . , βn)′
are the causal genetic effects of the corresponding SNPs. The

SNP-set analysis concerns testing the global hypotheses

H0: β � 0 versusH1: β ≠ 0.

We mimic a balanced case-control study for the binary traits.

That is, a large number of outcomes were generated based on the

probability of the logit model, then we randomly selected subjects

so that the numbers of cases and controls are N/2 each.

Based on the simulated data, we calculate the marginal score

test statistic following literature (McCullagh and Nelder, 1989;

Schaid et al., 2002; Barnett et al., 2017). Specifically, the score of

the ith SNP is Mi � ∑N
k�1Gki(Yk − ~Yk), i � 1, . . . , n, where Ỹk

are the fitted trait values by the maximum likelihood estimation

under H0. It can be shown that under H0, M �
(M1, . . . ,Mn)′→DN(0,Σ), as N → ∞. The covariance matrix

Σ can be estimated by Σ̂ � G′WG − G′WX(X′WX)−1X′WG,

where (G, X) is the design matrix corresponding to (10), and

W is a diagonal matrix:W � σ̂2I for continuous trait (where σ̂2 is

the estimate of the residual variance); W � diag{~Yk(1 −
~Yk), k � 1, . . . , N} for binary trait. Each Mi is standardized

to get the marginal score statistic Zi � Mi/
���
Σ̂ii

√
→DN(0, 1) as N→

∞ under H0. The correlation matrix of Z � (Z1, . . . , Zn)′ is

estimated by D̂Σ̂D̂, where D̂ � diag{
���
Σ̂ii

√
, i � 1, . . . , n}. Thus,

the marginal score statistics satisfy the assumption (4)

asymptotically. We used the two-sided SNP p-values in Eq. 5.

For the rare-variant analysis of binary traits, the saddle point

approximation (SPA) was applied to obtain SNP p-values, which

corrects the bias due to the unbalanced distribution of rare

variants’ genotype data (Dey et al., 2017).

3.2 Accuracy of p-value calculation

Under the null, quantitative and binary trait values were

generated by setting β = 0 and Z = 1 in Eq. 10. We simulated 107

oTFisher statistics with the adapting domain

τ1 � τ2 � τ ∈ T � {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1}.
The simulations included 100 randomly generated genotype data

to mimic various minor allele frequencies and LD structures of

SNPs in various genes. The empirical type I error rate was

obtained by proportionating all calculated p-values smaller

than a given nominal level α. Table 1 lists the ratios of

empirical type I error rates and the nominal α levels under

common and rare variants for quantitative and binary traits. A

ratio around 1 indicates accurate calculation. A more stringent α

is harder to control. The GB method well controls type I error

rate up to α ≥ 0.005, but becomes liberal at smaller α, where the

SKRM method (using 105 simulations to obtain the third and

fourth moments) controls the error much better. Therefore, the

FIGURE 2
Power comparison among the data-adaptive tests. Quantitative traits from rare variants. α= 0.01. Fixing the effect size to be 0.12 (left panel) and
0.14 (right). X-axis: The number of causal SNPs. Testing methods: fisher: Fisher’s method; soft: soft-thresholding TFisher with τ1 = τ2 = 0.05; cct:
Cauchy combination test; otfisher_minp: oTFisher in Eq. 2; otfisher_cct: oTFisher in Eq. 3; gates: extended Simes procedure; ATPM: adaptive TPM;
ARTP: adaptive RTP.
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hybrid method combining the GB and the SKRM balances

accuracy and computational speed. Consistent simulation

results with various n and T settings (with starting τ = 10–5,

10–3 or 10–2 in T ) are given in Supplementary Tables S1–S4 in

Supplementary Material.

3.3 Statistical power

Through simulations, we assessed the statistical power of

the oTFisher tests in comparison with other p-value

combination tests in GWAS summary data analysis: the

GATES (extended Simes procedure, using

GATES2 function in R library aSPU (Li et al., 2011)), the

CCT (i.e., the ACAT with equal weights), Fisher’s method, the

soft-thresholding TFisher at fixed τ1 = τ2 = 0.05, the adaptive

TPM (ATPM), and the adaptive RTP (ARTP). The ATPM

follows (1) and (2) with fixed τ2 = 1, and adapts over τ1 ∈ T .

The ARTP adapts over τ1 ∈ {P(k)}, where k ∈ nT (rounding to

the nearest integers) to be consistent with the oTFisher and

the ATPM.

We considered that the causal SNPs were randomly located,

and their effect sizes were given by the nonzero elements of β in

Eq. 10. For a fair comparison, we empirically controlled the type I

error rate α to avoid potentially unavailable or inaccurate p-value

calculation for some tests. For example, there are no p-value

calculation methods for the RTP and the ARTP under

dependence. We got the critical value of one statistic by the

upper 100α% percentile of its values generated from

10,000 simulations under the null. The statistical power was

obtained by the percentage surpassing the critical value among

the statistics generated from 1,000 simulations of the alternative.

For the RTP and ARTP, we applied a one-level simulation

algorithm consistent with literature (Yu et al., 2009) except

that we directly simulated the Z-scores for faster computation

instead of permuting the genotype data (details see

Supplementary Material).

Statistical power was systematically studied under various

settings regarding trait type (quantitative or binary), SNP type

(common or rare), the number of causal SNPsm, genetic effect

size β, SNP-set size n, sample size N, and type I error rate α.

Figure 1 shows the power comparison under binary traits from

common SNPs at α = 0.005 with n = 100 and N = 10,000. A few

interesting observations can be made. First, the GATES and

the CCT have similar performances. They are advantageous

when causal SNPs are sparse (e.g., m ≤ 3) and their effects are

strong. Fisher’s method shows an opposite pattern—it is

preferred if causal SNPs are dense, especially when effects

are weak. These patterns are consistent with literature results

(Zhang and Wu, 2022a). TFisher at fixed τ1 = τ2 = 0.05 is more

robust over sparse and dense causal SNPs. However, it could

still be less satisfactory (e.g., when m ≤ 3). The oTFisher_cct

and oTFisher_minp are similar; their power is the best in most

scenarios, showing an overall advantage over unknown

genetic architectures. In comparison with the ATPM and

the ARTP, Figure 2 shows that the oTFisher is uniformly

better than the ATPM. This observation is well-supported by a

theoretical optimality study (Zhang et al., 2020b). The ARTP

and the oTFisher have very similar power. Meanwhile, our p-

value calculation algorithm provides a practical advantage for

applying the oTFisher over the ARTP in computation. These

comparison patterns remain similar for quantitative traits,

rare variants, and different α levels. Comparisons under other

settings are given in Supplementary Figures S1–S13 in

Supplementary Material.

3.4 SNP screening

We studied the performance of SNP-screening procedures

measured by the accuracy of detecting causal SNPs. Because non-

causal SNPs in LD with causal SNPs also show statistical

associations, the study focused on rare-variant analysis with

weak LDs for simplicity. To mimic a gene-based SNP-set

analysis, we simulated L = 1,000 SNPs (with the LD r2 < 0.3)

in g = 10 genes of equal size. Two causal genes contained causal

SNPs with random locations. The continuous and binary traits

were obtained usingmodels in Eq. 10 that included all causal SNPs.

We systematically varied the genetic effect β and the proportion of

causal SNPs in the two causal genes. The sample sizeN = 1,000; the

cases and controls were balanced for binary traits.

We considered accuracy by the sensitivity, specificity,

and balanced accuracy (BA, the average of sensitivity and

specificity) based on the true positives (TP, the picked SNPs

that are causal), false positives (FP, the picked SNPs that are

non-causal), true negatives (TN, the unpicked SNPs that are

non-causal), and false negatives (FN, the unpicked SNPs that

are causal). These numbers are determined after defining the

“picked” and “unpicked” SNPs. At the screening stage of the

oTFisher procedure described in Section 2.2, we consider the

s candidate SNPs as being picked from in total t SNPs in the

significant genes; the rest t − s SNPs are unpicked. At the

validation stage, the s1 validated SNPs are picked, and the

rest t − s1 SNPs in the significant genes are unpicked. The

accuracy measures were averaged over 1,000 simulations.

The oTFisher procedure was compared with Bonferroni and

BH procedures for SNP screening. We further considered an

oracle procedure:

• Oracle procedure: Assume the number of causal SNPsm is

known, the oracle, i.e., the best possible, SNP screening

procedure is to pick SNPs by setting p+ = P(m), the mth

smallest SNP p-value.

Certainly, m is unknown in reality, so this procedure is a

hypothetically optimal procedure serving as an indicative
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accuracy for comparison purposes. The validation process is the

same for all procedures.

Figure 3 compares the BA of the screened SNPs and

validation of them. Overall, in both screening and

validation stages, the oTFisher_r gave a higher BA than

Bonferroni and the BH, sometimes even the Oracle. In the

screening stage, the oTFisher using p* = τ* had higher

sensitivity but lower specificity. Restricting the threshold to

p+ = min{τ*, 0.1} significantly increased the specificity. The

validation stage helped further control the type I error. For

comparisons of sensitivity and specificity and results under

more settings, see Supplementary Figures S14–S21 in

Supplementary Material.

4 Real-data analysis

We conducted a comprehensive study of nine GWAS

summary data sets from the GEFOS (Estrada et al., 2012;

Zheng et al., 2015; Kemp et al., 2017; Medina-Gomez et al.,

2017; Medina-Gomez et al., 2018; Trajanoska et al., 2018, 2020;

Morris et al., 2019). A description of these studies and data is

given in Supplementary Material. Using the SNP p-values, we

carried out gene and haplotype-block (haploblock) analyses

for hunting putative genetic factors associated with bone

mineral density (BMD) related traits and fall risk. The

Supplementary Material gives details on our data pre-

processing, including the pipeline to map SNPs to genes

and haploblocks (Gabriel et al., 2002; Chang et al., 2015;

Deng et al., 2016), correlation estimation by reference

genome panel of the 1,000 Genome project (Higham, 2002;

Lin and Zeng, 2010b), and SNP p-value adjustment based on

the LD score regression (Bulik-Sullivan et al., 2015; Lee et al.,

2018). For stable numerical computation without losing much

associative information, SNPs with high LDs are pruned—if a

SNP pair has the LD r2 > 0.9, the variants with a lower MAF

would be removed (following the default setting of PLINK’s

SNP pruning function (Chang et al., 2015)). Furthermore, for

GEFOS2017_TBBMD data, it contains a large number of

genome-wide significant SNPs (p-values < 5E-8). These

FIGURE 3
The balanced accuracy at the SNP screening (row 1) and validation (row 2) stages under the continuous trait model. Code formethods: otfisher:
the oTFisher procedure with threshold p+ = τ*; otfisher_r, the oTFisher procedure with p+ =min{τ*, 0.1}; ora, the oracle procedure; bon, Bonferroni
procedure; BH, Benjamini–Hochberg procedure; sig, screening stage; val, validation stage. Signal proportion is the proportion of causal SNPs in the
two causal genes.
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SNPs were removed from our SNP-set analyses for this data.

The purpose is to reduce the false positive rate and study how

many genes and haploblocks could still be detected by SNP-set

analysis. The Q-Q plots for raw SNP p-values are given in

Supplementary Figure S22. The summary statistics on the

features of SNP, genes, and haploblocks are given in

Supplementary Tables S5–S8.

We extensively searched the literature and obtained

comprehensive lists of 2,179 “literature” genes and 4,802 literature

SNPs reported to be associated with osteoporosis, bone fracture,

and various traits of bone mineral density (BMD). For the

falling risk, we took the 16 genes reported by (Trajanoska et al.,

2020) as literature genes since it is the only large-scale study we

found regarding this trait. The searching strategies and

FIGURE 4
Bar chart for top-hit genes by various SNP-set analysis methods. Note: Bonferroni procedure corresponds to zero genes for
GEFOS2017_TBBMD (because genome-wide significant SNPs were removed from the gene-based analysis of this data) and GEFOS2020_FALLS
(because no genome-wide significant SNPs were mapped to genes).
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resources are described in Supplementary Material (last update:

15 May 2022). The lists are in supplementary files

literature_genes.xls and literature_snps.xlsx, including the

gene and SNP information, associated phenotypes, resources,

references, etc. These literature genes and SNPs are enriched

with true disease genetic factors. Therefore, including literature

genes and SNPs among the top hits can evidence the credible

performance of a good data analysis method. At the same time,

top hits that are not among these literature findings but are

functionally relevant to the given trait can be reasonably

considered as putative novel genetic discoveries.

4.1 Gene-based analysis

We studied the genetic associations between genes and traits

using the SNP sets grouped by genes. Four methods were applied.

First, the Bonferroni procedure represents the single-SNP

method applied in the original GEFOS studies. The top-hit

genes contained significant SNPs with p-values less than

Bonferroni adjusted threshold: 0.05 divided by the total

number of SNPs in all genes. Second, we applied two broadly

applied SNP-set methods using SNP p-values: the ACAT (Liu

et al., 2019) and the GATES. Third, we applied our proposed

FIGURE 5
The cirFunMap plot of the pathway network is based on 173 top-hit genes fromBMD-related studies. Above: The barplot of the enrichment ratio
is defined as the number of top-hit genes in the pathway over the number of total genes in the pathway. Below: The circular network plot. The node
color represents different clusters. The node size represents the levels of p-value: from small to large: (0.01,0.05), [0.001,0.01), (0.0001,0.001), and
(1e-10,0.0001). The edge represents correlations larger than a default threshold of 0.35.
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oTFisher method with the adapting domain τ1 � τ2 � τ ∈ T �
{10−5, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1}.

The oTFisher_cct and the oTFisher_minp yielded similar

results, so the former is reported below for simplicity. The Q-Q

plots of the gene-based association p-values are given in

Supplementary Figure S24. The top-hit genes are given in

the supplementary file top_gene.xlsx. The overlaps of the

top-hit genes and the top-hit literature genes among these

four analysis methods are given in Supplementary Figures

S25–S26.

Figure 4 summarizes the numbers of top gene hits, from

which we can make a few interesting observations. First, the

FIGURE 6
Bar chart for top-hit blocks by various tests. Literature blocks are thosemapped to literature genes or containing literature SNPs. Genome-wide
significant SNPs were removed from testing the data of GEFOS2017_TBBMD. There are no detections for ACAT and GATES for the 2017_TBBMD and
2020_FALLS data because they had no haploblock p-values surpassing the significance level defined by 0.05 over the number of blocks.
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Bonferroni procedure systematically led to fewer top hits and

literature genes than the other methods. The result indicates that

SNP-set tests could have higher statistical power than single-SNP

analysis in detecting disease genes. Second, the oTFisher yielded

similar or more gene hits, and most of the hits are literature genes

indicating a reliable discovery and potentially higher statistical

power. In particular, the oTFisher could have the advantage of

detecting polygenic genes that contain relatively dense genetic

signals. For examples, the oTFisher detected significantly more

genes in the studies of GEFOS2017_TBBMD and

GEFOS2020_FALLS, where top-hit genes often contain

multiple SNPs with relatively small p-values (see

Supplementary Tables S9 and S10 for the distribution of SNP

p-values within these top-hit genes). The polygenic genetic

architecture is possible for complex human diseases, including

the BMD-related traits (Kemp et al., 2017; Morris et al., 2019).

We carried out gene-set enrichment analyses (GSEA) for

the top-hit genes identified by oTFisher. Based on gene

ontology (GO) and KEGG pathways, the analysis was

conducted by KEGG Orthology-Based Annotation System

intelligent version (KOBAS-i) (Bu et al., 2021). The

analysis identified significant GO terms and biological

pathways enriched in the top-hit genes at the corrected

significance level of 0.05. The GEFOS data-specific results

are summarized in supplementary files

top_GOs_pathways_study-specific.xlsx. These GO terms

and biological pathways are often related to the bone and

skeletal system and are consistent with the osteoporosis

FIGURE 7
Overlap the screened SNPs in haploblock-based analysis (row 1) and validated SNPs (row 2) based on the oTFisher_r, Bonferroni procedure,
original GEFOS study, and literature. SNP screening is done by GEFOS2012_FN (left column) and GEFOS2012_LS (right column); validation is done by
the UK Biobank data.
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pathways reported in literature (Guo et al., 2019).

Furthermore, we considered the BMD as a general trait and

carried out the GSEA by pooling 173 top-hit genes from eight

studies (except for falling risk). Twenty-one significantly

enriched pathways were obtained and clustered into three

networks based on their correlations by the cirFunMap plot

(Bu et al., 2021). Figure 5 visualizes the clusters (ranked by the

median p-value of the enriched pathways within each cluster).

The first cluster gives a major network containing

12 pathways: Wnt signaling pathway (hsa04310), breast

cancer (hsa05224), hepatocellular carcinoma (hsa05225),

pathways in cancer (hsa05200), gastric cancer (hsa05226),

basal cell carcinoma (hsa05217), signaling pathways

regulating pluripotency of stem cells (hsa04550),

proteoglycans in cancer (hsa05205), hippo signaling

pathway (hsa04390), human papillomavirus infection

(hsa05165), Cushing syndrome (hsa04934), and mTOR

signaling pathway (hsa04150). The top two significant

pathways, the Wnt signaling and breast cancer pathways,

have been reported in literature (Guo et al., 2019). The

large cluster here provides a networking context for them.

The second cluster, containing pancreatic cancer (hsa05212)

and colorectal cancer (hsa05210), is also connected with the

first cluster. The third cluster, containing the prolactin

signaling pathway (hsa04917) and rheumatoid arthritis

(hsa05323), is independent of the rest. Details of the

significant pathways and their clusters for the BMD traits

are given in supplementary files top_pathways_BMDs.xlsx.

The top-hit novel genes included in the enriched GO terms

and pathways are likely disease genes that influence the

corresponding functionalities. In particular, we obtained three

top-hit novel genes in the 21 significantly enriched pathways

obtained by pooling 173 top-hit genes of the BMD traits. Gene

HSPG2 (chr1: 22148724–22263790, oTFisher p-value 1.18E-07)

is included in a significantly enriched pathway of proteoglycans

in cancer (hsa05205, corrected enrichment p-value 0.0047). It

was shown to be associated with segregating developmental

dysplasia of the hip (Basit et al., 2017). Gene MAP3K12

(chr12: 53874275–53893444, oTFisher p-value 6.49E-09) is

included in the significantly enriched MAPK signaling

pathway (hsa04010, corrected enrichment p-value 0.0048). It

is related to lissencephaly type 3 - metacarpal bone dysplasia

and infantile osteopetrosis with neuroaxonal dysplasia in the

Open Targets Genetics (Ghoussaini et al., 2021). Gene PRKAG1

(chr12: 49396054–49412629, oTFisher p-value 2.22E-06) is

included in the significantly enriched Apelin signaling

pathway (hsa04371, corrected enrichment p-value 0.0049). It

is related to bone marrow failure syndrome in the Open

Targets Genetics. Novel top-hit genes contained in the

enriched GOs and pathways from GEFOS data-specific results

are summarized in the supplementary file

novel_genes_in_top_GOs_pathways_study-specific.xlsx. More

discussion of them is given in Supplementary Material,

including genes connected to relevant traits such as

osteoarthritis, osteosarcoma, and bone metastasis.

4.2 Haplotype block-based analysis

Gene-based analysis has the limitation of a small coverage

of the genome. For a whole-genome association study, we

grouped and analyzed SNPs by haplotype blocks (haploblock

estimation by PLINK (Chang et al., 2015) is detailed in

Supplementary Material). The Q-Q plots and the Manhattan

plots are given in Supplementary Figures S27 and S28 in

Supplementary Material. Overall, genomic inflation is

reasonably controlled. For various SNP-set methods,

Figure 6 shows the number of top-hit blocks. Compared

with other methods, the oTFisher generated more top-hit

blocks and novel blocks (i.e., top-hit blocks that do not

overlap literature genes or SNPs). More details on the top-

hit blocks and their corresponding SNPs and genes are

summarized in the supplementary file top_haploblocks.xlsx.

The haploblock-based analysis provided complementary

results to the single-SNP analysis and gene-based analysis. As

a SNP-set analysis method, haploblock analysis could detect

additional disease SNPs over single-SNP analysis. For

example, in the study GEFOS2012_FN, the top-hit blocks by

the oTFisher discovered 56 literature SNPs that the single-SNP

analysis failed to detect (since their p-values do not pass the

genome-wide significance level). The haploblock analysis could

also map additional disease genes over the gene-based analysis.

Supplementary Table S11 summarizes the numbers of top-hit

blocks that can map to literature or novel genes. According to the

results, the haploblock analysis found some literature genes that

were not among the top hits of the gene-based analysis. For

example, in the study GEFOS2012_FN, six literature genes were

mapped by top-hit haploblocks but were not discovered by the

gene-based analysis: ATXN7L3, AXIN1, CPED1, FUBP3,

LOC100272217, and SOX6. For all GEFOS studies, we had

27 literature genes and 119 literature SNPs (63 of them are

outside gene regions) detected by haploblock analysis but not by

gene-based analysis. Supplementary Figure S29 lists the numbers

of literature genes and SNPs found by haploblock analysis versus

gene-based analysis. Furthermore, the top-hit blocks (including

single-SNP blocks) contained all GEFOS-reported significant

SNPs, indicating no information lost compared to the original

GEFOS studies.

The top-hit blocks from eight BMD studies contain 286 novel

blocks; 255 of them are outside of genes (detailed information is

given in the supplementary file novel_haploblocks.xlsx). By

epigenetic annotation (Haploreg v3 (Ward and Kellis, 2016)),

58 of the novel blocks (representing 43 non-overlapping loci) co-

locate with strong enhancers of literature genes. Therefore, these

novel blocks are of interest due to their functional connections.

For example, a top-hit block chr2:54643778-54645650 (oTFisher
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p-value 1.67E-16 by GEFOS2012_LS data) contains three SNPs

rs13393949 (p-value 2.12E-06), rs4671215 (p-value 9.36E-08),

and rs7560205 (p-value 1.72E-05) that locate at a strong

enhancers of gene SPTBN1 in cells Huvec (umbilical vein

endothelial cells) and NHEK (epidermal keratinocytes). Gene

SPTBN1 is shown associated with heel bone mineral density

(Kemp et al., 2017). The enhancer-located novel blocks are given

in the supplementary file

novel_haploblocks_enhancers_literaturegene.xlsx, and an

extensive discussion of the related SNPs is given in

Supplementary Material.

4.3 Screening SNPs

Real-data analysis results show that the SNPs-screening

procedure by the oTFisher_r could likely yield more disease

SNPs than the Bonferroni procedure. Specifically, we used

GEFOS2012 data sets to collect screened SNPs and validate

them by a large data of osteoporosis from the UK Biobank

(15,133 cases and 426,942 controls at ages of 38–73 years)

(Sudlow et al., 2015). Figure 7 shows the Venn diagrams of the

screened SNPs by the oTFisher_r and the Bonferroni

procedures in the haploblock-based analyses, which are also

compared with the SNPs reported in the original GEFOS

studies and the literature SNPs. For consistent comparison,

the validated SNPs were defined by the significance level of

0.05 over the total number of unique SNPs from the screening

step and the literature. As expected, all GEFOS-reported SNPs

were contained by the sets of literature SNPs as well as the

screened SNPs. The oTFisher_r replicated more literature

SNPs than the Bonferroni both before and after the

validation stage. For example, with GEFOS2012_FN data,

all screened SNPs by the Bonferroni were included in the

set of SNPs by the oTFisher_r, while the oTFisher_r screened

30 additional literature SNPs (among which five were

validated). Therefore, the oTFisher_r likely has a higher

chance of finding disease SNPs. Furthermore, over 30% of

the screened SNPs by oTFisher_r were verified. The high

validation percentage (compared to the expected percentage

of no more than 5% under the null) indicates that the set of

screened SNPs by oTFisher_r likely contains enriched disease

SNPs. Consistent results for gene-based analysis are given in

Supplementary Figures S30 and S31 in Supplementary

Material.

5 Discussion

GWAS summary data is a rich resource for hunting genetic

factors associated with the susceptibility of human complex

diseases. To facilitate analyzing such data, in this paper, we

propose a SNP p-value combination test, the oTFisher, which

has robustly high statistical power through adapting to unknown

patterns of genetic effects. We develop computationally efficient

algorithms to calculate the p-value of the oTFisher, which

account for the LD of the SNPs. One advantage of such p-

value combination test is that they do not assume a special type of

SNP statistics. In principle, the same calculation can be carried

out as long as the correlations among the SNP statistics can be

estimated.

As given in Eq. 2, the oTFisher’s truncating and weighting

scheme for SNP p-values maximizes the significance of the

potential underlying genetic effects (through minimizing the

corresponding TFisher’s p-value). With well-controlled type I

error rate of the oTFisher, this automatic truncating scheme

could serve as a vehicle for screening important SNPs that

contribute to the overall association of the given SNP set.

Results show that this screening procedure could better identify

disease SNPs than the traditional Bonferroni and FDR procedures.

Meanwhile, because the screening procedure is relatively liberal,

validating these screened SNPs using an independent high-quality

data set is critical for controlling false positives. Furthermore, one

should always be cautious about interpreting the screened SNPs in

the sense that statistical association does not necessarily mean

causality. The associated SNPs could be due to LD with causal

SNPs or even confounding effects. Nevertheless, the oTFisher

provides a new way of exploring important SNPs not from

their individual perspective but from the combined effects of

the group as a whole.

We applied the oTFisher to a comprehensive study of

osteoporosis-related traits using GEFOS data. Besides

demonstrating the merit of the new method, we also

generated novel genes and haploblocks that could benefit the

downstream study of osteoporosis genetics. Further biological

validations of these results are desired.

Our GEFOS data analysis focused on gene and haplotype

block-based SNP-grouping strategies for simple biological

interpretability. Based on the data-adaptive omnibus

testing principle, the oTFisher can also be extended to

other SNP-grouping as well as annotation-weighting

strategies in whole genome sequencing studies, especially

for studying the noncoding regions, following the ideas

proposed in recent literature (Morrison et al., 2017; Li

et al., 2020, 2019, 2022).

In general, the quality of GWAS summary data analysis

highly depends on the quality of the input data. For example,

if the SNP p-values were inflated, the subsequent SNP-set testing

results will be inflated. Current inflation correction procedures

could partially address the problem but are still limited. Further

research in this direction is needed. Indeed, high-quality data is

essential; we highly appreciate data-generating studies providing
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high-quality summary data for the sake of both primary and

secondary data analyses.
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