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Emerging evidence implies a non-negligible role of DNA methylation in tumor

immunity, however, its comprehensive impact on tumor microenvironment

(TME) formation and immune activation remains unclear. In this study, we

integrated 24 DNA methylation regulators among 754 colon cancer patients to

distinguish different modification patterns via an unsupervised clustering

method, and explore their TME immune characteristics. Three DNA

methylation modification patterns with distinct prognosis and biological

behaviors were identified, consistent with three known phenotypes of

immune-inflamed, immune-excluded, and immune-desert. We then

determined a DNA methylation gene signature and constructed a DNA

methylation score (DMS) to quantify modification patterns individually

through principal component analysis algorithms. DMS-low group had

characteristics of specific molecular subtypes, including microsatellite

instability, CpG island methylator phenotype positive, and mutant BRAF,

presented by increased mutation burden, activation of DNA damage repair

and immune-related pathways, highly TME immune cells infiltration, and hence,

a preferable prognosis. Further, low DMS was also demonstrated to be

correlated to better response and prolonged survival of anti-PD-L1 antibody,

indicating that DMS could be considered as an effective predictive tool for

immunotherapy. In conclusion, our work presented a landscape of different

DNA methylation modification patterns, and their vital role in the formation of

TME diversity and complexity, which could help to enhance understanding of

TME immune infiltration characteristics and more importantly, guide

immunotherapy strategies more effectively and personalized.
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Introduction

Colon cancer is common worldwide and remains one of the

leading causes of cancer-related mortality (Sung et al., 2021). As a

biologically heterogeneous disease, colon cancer derives from the

accumulation of a series of genetic and epigenetic changes that

transform normal glandular epithelium into malignant invasive

adenocarcinoma. Now, it is appreciated that there are multiple

molecular pathways involved in these genetic mutations and

epigenetic alterations during colon cancer development, including

microsatellite instability (MSI), the CpG island methylator

phenotype (CIMP), chromosome instability (CIN), and somatic

mutations of critical oncogenes like BRAF and KRAS (Nguyen

et al., 2020).

Epigenetics, referring to heritable alterations in gene

expression that are not dependent on changes in the DNA

sequence, plays an important role in the pathogenesis of colon

cancer (Lao and Grady. 2011). Therein, aberrant DNA

methylation, one of the most widely studied epigenetic

modifications, could lead to the dysregulation of gene

expression in colon cancer. DNA methylation is a reversible

modification process mediated by DNA methyltransferases

(DNMTs) that facilitate the catalytic addition of methyl

groups to the fifth position of the cytosine of CpG

dinucleotides to generate 5-methylcytosine (5mC). On the

contrary, 5mC could be reversed to unmodified cytosine

through TET dioxygenase-mediated oxidation (Bestor 2000).

Over the past two decades, emerging studies have elucidated

the epigenetically regulatory mechanism of DNA methylation in

colon cancer-specific gene expression patterns.

Hypermethylation in the promoter region could silence the

expression of tumor-suppressor genes, and contribute to loss

of function. For instance, MSI, one of the hallmarks of molecular

subtypes of colon cancer (Dienstmann et al., 2017), is the

consequence of a deficiency in the DNA mismatch repair

(MMR) system, which is not only due to the genetic mutation

of MMR-related genes, but also the results of hypermethylation

of MLH1 gene (Herman et al., 1998). On the contrary, global

hypomethylation of the genome has been demonstrated to

influence colon cancer development through inducing CIN

and global loss of imprinting (Suter et al., 2004). These

insights have improved our understanding of colon cancer

pathophysiology and provide clues to discover novel

biomarkers and therapeutic targets.

Recently, immunotherapy, especially the inhibitor targeting

immune checkpoints like CTLA-4, PD-1, or PD-L1, has achieved

durable anti-tumor activity in a range of cancer types. However,

there are many patients, particularly in colon cancer with

microsatellite stable (MSS), do not benefit from this advanced

treatment (Le et al., 2015). The major reason is thought to lack

lymphocytes infiltration in the MSS tumor microenvironment

(TME), forming a “immune-desert” phenotype and resulting a

weak immunoreactivity to the immunotherapy (Chen and

Mellman, 2017). Increasing evidence demonstrated DNA

methylation regulators mediated regulation is critical in anti-

tumor immune response through involving in many processes of

the cancer-immunity cycle (Cao and Yan, 2020). To be specific,

DNA methylation-associated mutagenesis could generate tumor

neoantigens (Alexandrov et al., 2013). In tumor cells, DNMTs

could suppress the expression of MHC-I to dysregulate the

antigen-presenting machinery, and suppress the expression of

pro-inflammatory chemokines, such as CXCL9 and CXCL10,

which are required by effector T-cells to permeate the TME and

execute an immune attack (Chen et al., 2017; Luo et al., 2018).

Hypermethylation of the PD-L1 promotor region inhibits its

expression and leads to an inferior prognosis in various cancer

types (Goltz et al., 2017; Heiland et al., 2017).Meanwhile, in immune

cells, MBD2, the “reader” of methylated DNA, is necessary to induce

dendritic cells phenotypic activation and then initiate the T cell

response (Cook et al., 2015). By contrast, TET2 and HDAC2, the

“eraser” of DNA methylation and histone acetylation respectively,

coordinate to suppress IL-6 expression of dendritic cells, inhibiting

the inflammatory response (Zhang et al., 2015).

However, to date, the majority of studies focus on the function of

one or two DNA methylation regulators, which cannot reflect the

whole landscape of DNA methylation in the formation of tumor-

permissive immune environment. Therefore, comprehensive

recognition of the TME immune characteristics mediated by

multiple DNA methylation regulators, including TME infiltrating

immune cells and activity of immune/inflammatory-related

pathways, could enhance our understanding of TME immune

regulation, and further provide novel perspectives for cancer

immunotherapy. In this study, we integrated the transcriptomic

and clinical information of 754 colon cancer samples to identify

DNA methylation modification patterns with distinct TME immune

characteristics, which were highly consistent with three known

immune phenotypes, including immune-inflamed, immune-

excluded, and immune-desert phenotype, respectively. In addition,

we determined the DNAmethylation gene signature and constructed

a scoring system to quantify modification patterns for individual

patients, which could be served as an effective biomarker for

predicting the efficacy and prognosis of immunotherapy.

Materials and methods

Study design, colon cancer datasets
collection, and data processing

Supplementary Figure S1A depicted the workflow of our present

study. Generally, we searched publicly available transcriptomic data

and clinical annotation of colon cancer samples from the Gene-

ExpressionOmnibus (GEO) and the Cancer Genome Atlas (TCGA)

database. Seven eligible colon cancer datasets with comprehensive

survival information [GSE39582 (n = 562), GSE38832 (n = 122),

GSE39084 (n = 70), GSE72970 (n = 124), GSE103479 (n = 155),
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GSE87211 (n = 196), and TCGA-colon adenocarcinoma cohort

(COAD, n = 430)], including 1,659 patients, were collected for our

further analysis (Supplementary Table S1). For the RNA sequencing

data of the TCGA-COAD cohort, the fragments per kilobase of

transcript per million mapped reads (FPKM) value of each sample

was downloaded from the Genomic Data Commons (GDC, https://

portal.gdc.cancer.gov/) by the “TCGAbiolinks” R package directly

(Colaprico et al., 2016). And for the microarray data of the GSE

cohort, we used the normalized matrix files downloaded from GEO.

The somatic mutation data, copy number variation (CNV) data, and

TCGA pan-cancer RNA sequencing data were acquired from the

University of California Santa Cruz (UCSC) Xena browser (https://

xenabrowser.net).

Moreover, we also included an immunotherapeutic cohort

(IMvigor210, n = 348), urothelial carcinoma treated with anti-

PD-L1 antibody atezolizumab, to evaluate the effect of DNA

methylation modification in immunotherapy. The expression

data and clinical information were available from the

“IMvigor210” R package (Mariathasan et al., 2018).

Unsupervised clustering for 24 DNA
methylation regulators

After a systematic reviewof published articles, we identified a total

of 24 DNA methylation regulators, including 3 writers (DNMT1,

DNMT3A, DNMT3B), 3 erasers (TET1, TET2, TET3), and

18 readers (MBD1, MBD2, MBD3, MBD4, ZBTB33, ZBTB38,

ZBTB4, ZBTB24, UHRF1, UHRF2, MECP2, UNG, TDG, NTHL1,

SMUG1, NSUN2, MGMT, DMAP1). The protein-protein

interactions (PPI) network among 24 regulators were analyzed by

the STRING interaction database (https://string-db.org/) (Szklarczyk

et al., 2019) and visualized by the Cytoscape software (Shannon et al.,

2003).

Three GEO datasets (GSE39582, GSE38832, and GSE39084)

with the same microarray platform and no prognostic differences

were integrated as meta-cohort (n = 754) to identify different

DNA methylation modification patterns mediated by

24 regulators (Supplementary Figure S2A). The non-biological

technical biases caused batch effect among each cohort was

eliminated by the “ComBat” algorithm of the “sva” R package.

Based on the expression of 24 regulators, the Nonnegative Matrix

Factorization (NMF) method was used to determine different

DNA methylation modification patterns through the “NMF” R

package (Gaujoux and Seoighe. 2010).

Identification of differentially expressed
genes and generation of DNA methylation
gene signature

First, to identify DNA methylation phenotype-related genes,

we used the empirical Bayesian approach of the “limma” R

package to determine differentially expressed genes (DEGs)

among three DNA methylation modification patterns (Ritchie

et al., 2015). The adjusted p-value was set as < 0.01 to select

significant DEGs. Then, we performed a univariate Cox

regression analysis to confirm the DEGs that were

significantly related to the prognosis (p-value < 0.01).

Subsequently, based on the expression of these prognostic

DEGs, we conducted the second NMF clustering algorithm to

obtain DNA methylation gene clusters as well as validate their

stability. Furthermore, through the principal component analysis

(PCA) method, we used these prognostic DEGs to construct the

DNA methylation gene signature, termed DNA methylation

score (DMS), which could quantify the DNA methylation

modification pattern for each patient. The procedure of

establishing the DMS was similar to a previous study, and we

added the principal component 1 and 2 to acquire the signature

scores (Zhang et al., 2020; Gao et al., 2021). The formula of DMS

was expressed as follow:

DMS � Σ (PC1i + PC2i)
where i is the expression of DNA methylation signature genes.

Gene set variation analysis, gene set
enrichment analysis, and functional
annotation

To investigate the difference in the biological processes

among different DNA methylation modification patterns, gene

clusters, and DMS groups, we performed gene set variation

analysis (GSVA) and gene set enrichment analysis (GSEA)

analyses through the “GSVA” and “clusterProfiler” R packages,

respectively (Yu et al., 2012; Hanzelmann et al., 2013). The

hallmark gene sets (h.all.v7.5.1.symbols) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) gene sets

(c2.cp.kegg.v7.5.1.symbols) were downloaded from the

MSigDB database for running enrichment analysis (http://

www.gsea-msigdb.org/gsea/msigdb/). All enrichment p-values

were adjusted by the Benjamini-Hochberg methods and less

than 0.05 were considered statistically significant (Thissen

et al., 2002). Moreover, we performed Gene Ontology (GO)

functional annotation for DEGs via the “clusterProfiler” R

package, with the cutoff value of false discovery rate

(FDR) < 0.05.

We additionally collected 18 classical biological processes

constructed by Mariathasan et al. (2018), including: 1)

CD8 T effector; 2) DNA damage repair (DDR); 3) antigen-

processing machinery (APM); 4) immune checkpoint; 5) cell

cycle regulators; 6) Fanconi anemia; 7) pan-fibroblast TGFβ
response signature (Pan-F-TBRS); 8) epithelial-mesenchymal

transition (EMT) markers including EMT1, EMT2 and EMT3;

9) WNT targets; 10) fibroblast growth factor receptor 3 (FGFR3)

related signature; 11) cell cycle signature; 12) mismatch repair
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13) homologous recombination; 14) nucleotide excision repair;

15) DNA replication; 16) base excision repair. The detailed gene

set of the corresponding pathway was provided in Supplementary

Table S2.

Estimation of the tumor
microenvironment infiltrating cell
abundance and the immune infiltration
score

We used three different algorithms, including the single-

sample gene-set enrichment analysis (ssGSEA) algorithm of the

“GSVA” R package, the CIBERSORT method, and the Tumor

Immune Estimation Resource (TIMER) database, to evaluate the

infiltrating abundance of various TME immune cells, such as

B cell, CD8+ T cell, dendritic cell, and macrophage et al. The gene

sets of each type TME infiltrating cell were extracted from the

study of Charoentong and listed in Supplementary Table S3

(Charoentong et al., 2017).

Besides, through applying “xCell” and “ESTIMATE”

methods, we calculated the TME stromal score, immune

score, estimate score, and microenvironment score based on

signature gene expression to infer the fraction of stromal and

immune cells in colon cancer samples. The calculation was

performed by the “xCell” and “estimate” R packages,

respectively (Yoshihara et al., 2013; Aran et al., 2017).

Cell culture

The colorectal cancer cell line HCT116 and normal colonic

epithelial cell line NCM460 were purchased from Type Culture

Collection of the Chinese Academy of Science (Shanghai, China).

HCT116 cells were cultured in McCoy’s 5AMedium (16600-082,

Gibco) with 10% fetal bovine serum (10099141C, Gibco) in 5%

CO2 at 37°C. NCM460 cells were cultured in RPMI 1640Medium

(118575-093, Invitrogen) with same condition.

RNA extraction and real-time quantitative
reverse transcription-polymerase chain
reaction)

Total RNA was isolated using TRIzol™ Reagent (15596026,

Invitrogen) and quantified with a NanoDrop 2000™ (Thermo

Fisher Scientific, United States). 1 μg RNA was used for the

reverse transcription reaction to generate cDNA through the

PrimeScript™ RT Reagent Kit with gDNA Eraser (RR047A,

TaKaRa) according to the manufacturer’s protocols. The

mRNA expression was determined by rt-qPCR, which was

performed using Ultra SYBR Mixture (CW0957M, CWBIO)

and a LightCycler® 480 II system (Roche, Shanghai, China).

The mRNA expression of ACTB was used as a reference. The

primers used in this study were listed in Supplementary Table S4.

Statistical analysis

The normality of data was tested by the Shapiro-Wilk test.

For the comparison of two groups, we used the t-test to detect the

significant difference between normally distributed data, and the

Wilcoxon test for skewed distributed data. For the comparison of

three or more groups, one-way ANOVA and Kruskal-Wallis tests

were conducted to detect the significant difference between

normal distributed and skewed distributed data, respectively.

A chi-squared test was used to compare the frequency differences

between the two groups. Correlation coefficients were calculated

by the Spearman and distance correlation analyses.

For the survival analysis, we focused on the overall survival

(OS) and recurrence-free survival (RFS), and we obtained the

best cut-off value through the “survcutpoint” function of the

“survminer” R package. Kaplan-Meier method was used to depict

the survival curves, and the log-rank test was utilized to identify

significant survival differences between groups. Univariate Cox

proportional hazards regression model was applied to calculate

the hazard ratio (HR) and 95% confidence interval (95% CI) for

each DNA methylation regulator and DNA methylation related

gene. And the multivariate Cox model was performed to

determine the independent prognostic factors when adjusted

by clinical characteristics. The results of Cox regression

analyses were visualized by the “forestplot” R package. The

prediction performance of DMS to evaluate the OS probability

at distinct times was assessed by the receiver operating

characteristic (ROC) curves and quantified by the area under

the curve (AUC), which were conducted via the “timeROC” R

package.

All statistical analyses were accomplished in R 3.6.1 software,

and all reported p-values were two-sided, with p-value < 0.05 as

statistically significant.

Results

Multi-omics landscape analysis of DNA
methylation regulators in colon cancer

In this study, we identified 24 DNA methylation regulators,

including 3 writers, 3 erasers, and 18 readers. Figure 1A

summarized the dynamic reversible DNA methylation

modification process of these regulators. Firstly, we analyzed

the incidence of somatic mutation and CNV of 24 regulators in

colon cancer from the genomic perspective. We visualized the

mutation landscape of 24 regulators through the “waterfall”

function of the “maftools” R package. Among 399 available

samples in the TCGA-COAD cohort, a total of 113 (28.3%)
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FIGURE 1
The landscape of genetic and transcriptomic variations of 24 DNA methylation regulators in colon cancer. (A) The dynamic reversible DNA
methylationmodification process of 24 regulators. (B) Themutation frequency of 24 DNAmethylation regulators in the TCGA-COAD cohort. (C) The
location of CNV alteration of DNAmethylation regulators on 23 chromosomes from TCGA-COAD cohort. (D) The expression of 24 DNAmethylation
regulators between colon cancer tissue and normal tissue (Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001). (E) The PPI network among 24 DNA methylation regulators.
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mutations occurred in 24 regulators (Figure 1B). Therein,

2 erasers, TET3 and TET1, had the highest mutation

frequency (6%) with missense mutation as a major mutation

type, while MBD3 did not present any mutations. Besides, we

found significant co-occurrence mutation relationships between

several regulators, such as TET3 and ZBTB38, DNMT1 and

MBD1, along with UHRF2 and MECP2 (Supplementary Figure

S1B). In addition, the CNV analysis revealed an amplification of

copy number in 6 regulators and deletion in other 6 regulators.

The location of CNV alterations of 12 regulators on the

chromosomes was shown in Figure 1C, which was

accomplished by the “RCircos” R package.

Secondly, to ascertain whether the above genomic variations

affected the transcription of 24 regulators, we further compared the

mRNA expression level of these regulators between colon cancer and

normal samples from the transcriptomic perspective. We observed

most of the regulators were significantly differentially expressed

between tumor and normal tissues. Interestingly, compared to

normal tissues, we found that many regulators with amplified

CNV had a markedly higher expression level in colon cancer

tissues (e.g., DNMT1 and DNMT3B), and vice versa (e.g.,

MBD2 and ZBTB4), suggesting that the alteration of CNV might

be the prominent factor resulting in the abnormal expression of

DNAmethylation regulators (Figures 1C,D). To further confirm the

expression level of these regulators in colorectal cancer cell line and

normal colonic epithelial cell line, we selected three most

significantly differentially expressed regulators between tumor and

normal tissues, DNMT3B (writer), TET2 (eraser), and UHRF1

(reader), to compare their mRNA expression in HCT116 and

NCM460 cells. The results of quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) showed that the mRNA level

of DNMT3B and UHRF1 were significantly higher in HCT116 cells

while the mRNA level of TET2 was significantly higher in

NCM460 cells (Supplementary Figures S1C–E).

Thirdly, we explored the interaction relationship between

24 regulators from the proteomics perspective. The PPI network

depicted the extensive protein interactions among these

regulators (Figure 1E). Comprehensively, the above analyses

presented a highly genetic heterogeneity and expressional

anomalism of DNA methylation regulators in colon cancer

from a multi-omics landscape perspective, hinting at a critical

role of these regulators in tumorigenesis of colon cancer.

Prognosis and immune characteristics of
24 DNA methylation regulators in colon
cancer

To clarify the role of 24 DNA methylation regulators in colon

cancer clinical prognosis and TME cell infiltration characterization,

we gathered three GEO datasets (GSE39582, GSE38832, and

GSE39084) without prognostic differences as meta-cohort for

further analyses (Supplementary Figure S2A). The Cox regression

analysis identified high expression of nearly half of the regulators

were associated with a favorable prognosis (Supplementary Figure

S2B). Moreover, the interaction network of regulators visualized the

correlation of regulators’ expression and their prognostic significance

(Figure 2A; Supplementary Table S5). We found that the expression

of most regulators was positively related to each other, not only in

regulators with the same functional category, but also amongwriters,

erasers, and readers.

TME infiltrating immune cells had been widely reported to

display an epigenomic reprogramming, especially in aberrant

DNA methylation (Loo Yau et al., 2019). Therefore, we

investigated the correlation between 24 regulators and TME

infiltrating cells. The expression of MBD1, MBD2, and

ZBTB4 was positively correlated with infiltrating abundance of

majority immune cells, which could explain their favorable

prognostic value to some extent (Figure 2B). A previous study

demonstrated that colon cancer patients with a MSI status

presented an active intra-tumoral immune environment, and

hence, had a robust response to immunotherapy and superior

prognosis (Andre et al., 2020). Similarly, we found the expression

of MBD1 and MBD2 was upregulated in MSI colon cancer

patients, implying both regulators might involve in immune

activation (Supplementary Figure S2C). In consideration of

the MBD2 expression were highly correlated to immune cells

quantity, especially for activated CD4+ and CD8+ T-cells, as well

as its preferable prognostic value, we next thoroughly analyzed

the role of MBD2 in tumor immune environment formation.

First, the MBD2 high expression group exhibited a higher

infiltrating abundance of most immune cells and TME

immune score (Figures 2C,D). Second, GSEA analysis revealed

several activated immune and inflammation-related pathways,

such as the TNFα, interferon- and interleukin-mediated

signaling pathways were significantly enriched in the

MBD2 high expression group (Figure 2E). Third, owing to the

vital role of MBD2 in tumor immunity, we additionally

investigated whether its expression could predict the efficacy

and prognosis of immunotherapy. In the IMvigor210 cohort, we

observed a marked survival benefit in patients with MBD2 high

expression, although the therapeutic response was similar

between two groups (Figure 2F; Supplementary Figure S2D).

Collectively, above results exhibited crosstalk among

24 DNA methylation regulators and their significant impact

on tumor immunity. The MBD2 expression was positively

correlated to TME immune cells infiltration and might be a

potential prognostic biomarker in immunotherapy.

DNA methylation modification patterns
mediated by 24 regulators in colon cancer

As the markedly different clinical outcomes and TME

infiltrating cells characterizations among 24 DNA methylation

regulators in colon cancer, we speculated that these regulators

Frontiers in Genetics frontiersin.org06

Yuan et al. 10.3389/fgene.2022.1008644

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008644


FIGURE 2
Prognosis and immune characteristics of 24 DNA methylation regulators in colon cancer. (A) The prognosis and correlation among 24 DNA
methylation regulators in colon cancer (Log-rank test and Spearman correlation analysis). (B) The correlation between 28 TME infiltrating cell types
and 24 DNAmethylation regulators (Spearman correlation analysis). (C) The infiltrating abundance of 28 TME cell types between the MBD2 high and
low expression groups (Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (D)Comparison of immune score
between the MBD2 high and low expression groups. (Wilcoxon test; p < 0.0001). (E) GSEA analysis indicated six activated immune/inflammation-
related pathways that were enriched in the MBD2 high expression group (All p < 0.05). (F)Overall survival analysis of high and low MBD2 expression
groups in the IMvigor210 cohort (Log-rank test, p = 0.042).
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may contribute to forming different DNA methylation

modification patterns in individual colon cancer. Based on the

expression of 24 regulators, we applied the NMF unsupervised

clustering to obtain three distinct clusters, including DNA

methylation modification pattern-A (n = 306), pattern-B (n =

227), and pattern-C (n = 221), in meta-cohort (Supplementary

Figures S3A,B). Accordingly, we found different regulators were

differentially expressed in different patterns. Pattern-A was

characterized by high expression of TET1, TET2, ZBTB4,

ZBTB33, ZBTB38, MBD4, UHRF2, and MECP2; pattern-B

was characterized by high expression of DNMT1, DNMT3B,

ZBTB24, UHRF1, and UNG; and pattern-C was characterized by

high expression of DMAP1, SMUG1 and MGMT (Figure 3A;

Supplementary Figure S3C). In addition, the graph of principal

component analysis (PCA) showed that three patterns were

distinctly segregated, indicating a complete distinguishment of

FIGURE 3
Identification of DNA methylation modification patterns and prognostic and pathway analyses. (A) Unsupervised clustering of 24 DNA
methylation regulators in meta-cohort. (B) PCA graph for the transcriptomic profiles of three DNA methylation modification patterns. (C) Overall
survival analysis for the three DNA methylation modification patterns (Log-rank test, p = 0.007). (D) Recurrence-free survival analysis for the three
DNA methylation modification patterns (Log-rank test, p = 0.0021). (E–G) GSEA enrichment analyses presented the activation status of
biological pathways among distinct DNA methylation modification patterns. (E) Pattern-A; (F) Pattern-B; (G) Pattern-C.
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three patterns (Figure 3B). Moreover, the survival analysis

revealed a notably favorable OS and RFS in pattern-B

(Figures 3C,D).

Then, we performed a GSEA analysis to explore the different

hallmark signaling pathways among three patterns

(Supplementary Table S6). We found pattern-A presented the

activated enrichment pathways associated with stromal and

carcinogenic activation, such as the KRAS, TGFβ, EMT, and

angiogenesis pathways, as well as the highest stromal score

(Figure 3E; Supplementary Figure S3D). Immune regulation

and tumor suppressor-related pathways were significantly

enriched in pattern-B, including interferon-α, and -γ, TNFα,
P53 signaling, G2M checkpoint, and DNA damage repair related

pathways (Figure 3F). In contrast, these pathways were all

inhibited in pattern-C (Figure 3G). We subsequently

compared the abundance of TME infiltrating cells among

three patterns. Not surprisingly, high infiltration of activated

CD4+ and CD8+ T-cells were observed in pattern-B

(Supplementary Figure S3E; Supplementary Table S7), which

was consistent with the results of enrichment into activated

immune-related pathways, and may explain the preferable

prognosis (Figures 3C,D). Meanwhile, several innate immune

cells were remarkably enriched in pattern-A, including

eosinophil, mast cell, and plasmacytoid dendritic cell, while

the content of the majority of immune cells was relatively

lower in pattern-C (Supplementary Figure S3E).

From the above analyses, we were surprised to find three

DNA methylation modification patterns exhibited significantly

distinct biological behaviors and TME infiltrating cell

characterizations, in accordance with the conception of three

tumor immune phenotypes (Hegde and Chen, 2020). Pattern-A

was classified as immune-excluded phenotype, characterized by

innate immune cell infiltration and stromal activation; pattern-B

was classified as immune-inflamed phenotype, characterized by a

high population of adaptive immune cell infiltration and immune

activation; pattern-C was classified as immune-desert phenotype,

characterized by few infiltrations of immune cells and immune

suppression.

Generation of DNA methylation gene
signature

To further investigate the heterogeneity of three DNA

methylation modification patterns, we identified 249 DEGs

among three patterns (Supplementary Figures S4A,B). The

GO functional annotation showed that these DEGs were

significantly enriched in pathways related to DNA

modification and damage repair events (Figure 4A;

Supplementary Table S8), indicating the differences in clinical

outcomes and TME characterizations among three patterns

might result from these DEGs. Subsequently, we obtained

152 genes associated with prognosis through univariate Cox

regression analysis (Figure 4B; Supplementary Table S9).

Furthermore, based on the expression of 152 genes, we

conducted unsupervised clustering to classify patients into

different genomic subtypes. Surprisingly, consistent with three

modification patterns, the NMF algorithm still clustered three

distinct DNA methylation genomic phenotypes, named DNA

methylation gene cluster-A (n = 272), cluster-B (n = 183), and

cluster-C (n = 299), respectively (Figure 4C; Supplementary

Figures S4C,D). The plot of PCA also presented a distinct

separation of three gene clusters (Supplementary Figure S4E).

As well, the prominent differences in the expression of 24 DNA

methylation regulators were observed among three gene clusters,

in line with the results of three modification patterns

(Supplementary Figure S4F). In accordance with the feature of

modification pattern-B, gene cluster-C had a superior prognosis

and the highest CD8+ T-cells infiltrating abundance than other

two clusters, demonstrating gene cluster-C was immune-

inflamed phenotype (Figures 4D–F). Above all, these analyses

verified the perspective that there were indeed three disparate

immune phenotypes in colon cancer, representing different

clinical and TME immune characterizations.

Characterization of DNA methylation
score in different clinical and molecular
traits

The above results demonstrated DNA methylation

modification played a non-negligible role in TME formation

and prognosis of colon cancer patients. Nevertheless, the

remarkable heterogeneity between individual tumors limited

the accurate application of DNA methylation modification

patterns. Therefore, based on 152 prognostic DEGs, we

constructed a DNA methylation gene signature, termed as

DNA methylation score (DMS) to quantify the DNA

methylation modification pattern of each patient.

We first evaluated the prognostic value of DMS in colon

cancer, and determined −73.8 as the cut-off value to divide

patients into low and high DMS groups. Prognostic analysis

showed patients with low DMS had a prominently prolonged

survival and recurrence-free time (Figures 5A,B). Besides, the

multivariate Cox regression analysis demonstrated DMS was an

independent risk prognostic biomarker for colon cancer (HR was

1.70 for OS and 1.66 for RFS; Supplementary Figure S5A).

Additionally, to detect the stability of DMS, we enrolled other

independent colon cancer cohorts to validate the prognostic

value of DMS. Likewise, the DMS-low group had a preferable

survival in the TCGA-COAD cohort, GSE72970, GSE103479,

and GSE87211 cohorts (all p < 0.05, Supplementary Figures

S5B–G). Furthermore, we continued to expand the application of

DMS in other digestive system tumors, and we found rectum

adenocarcinoma and stomach adenocarcinoma patients with low

DMS presented a remarkably longer survival (both p < 0.05,
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FIGURE 4
Generation of DNA methylation gene signature. (A) Functional annotation of 249 DEGs among three DNA methylation modification patterns
using GO enrichment analysis. BP, biological process; CC, cellular component; MF, molecular function. (B) Volcano Plot presented the DEGs
significantly associated with prognosis. (C) The heatmap of 152 prognostic DEGs’ expressions among three DNA methylation gene clusters-A, -B,
and -C. (D) Overall survival analysis for the three DNA methylation gene clusters (Log-rank test, p = 0.0073). (E) Recurrence-free survival
analysis for the three DNAmethylation gene clusters (Log-rank test, p=0.0013). (F) The infiltrating abundance of 28 TME cell types among three DNA
methylation gene clusters (Kruskal-Wallis test; ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 5
Characterization of DNAmethylation score in different clinical and molecular traits. (A)Overall survival analysis for low and high DMS groups in
the meta-cohort (Log-rank test, p = 0.00058). (B) Recurrence-free survival analysis for low and high DMS groups in the meta-cohort (Log-rank test,
p = 0.0002). (C) Difference in DMS among distinct clinical subgroups in the GSE39582 cohort. MSI, microsatellite instability; CIMP, CpG island
methylator phenotype; CIN, chromosome instability. (Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (D)
Recurrence-free survival analysis for low and high DMS groups among patients received chemotherapy in the GSE39582 cohort (Log-rank test, p =
0.0068). (E) ROC curves to reflect the ability of DMS to predict the 1-, 3-, 5-, and 10-year survival probability for patients received chemotherapy in
the GSE39582 cohort. (F,G) The waterfall plot presented the distribution differences of tumor somatic mutation between DMS-low (F) and -high
groups (G). (H) The scatter plot depicted the negative correlation between DMS and TMB in the TCGA-COAD cohort (Spearman correlation analysis;
p < 0.001). (I) Comparison of DMS between the TMB high and low groups (Wilcoxon test; p < 0.0001).
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Supplementary Figures S5H,I). The data above proved that the

DMS we constructed could predict the survival of colon cancer

effectively and stably.

Next, we explored the characteristics of DMS in different

clinical and molecular subtype traits and fixed our attention on

the GSE39582 cohort, which had comprehensive clinical

information. We found DMS rose gradually by increasing the

tumor TNM stage (p < 0.001, Figure 5C). Besides, patients with

MSI, CIMP positive, CIN negative, and mutant BRAF showed a

lower DMS, implying these subtypes may have a better prognosis

(all p < 0.05, Figure 5C). Chemotherapy was a standard treatment

strategy for colon cancer, and hence, we specifically examined the

ability of DMS to predict the efficacy of chemotherapy. We

revealed significantly longer recurrence-free time in the DMS-

low group of colon cancer patients undergoing chemotherapy

(Figure 5D), and the ROC curves to reflect the ability of DMS to

predict the 1-, 3-, 5-, and 10-year survival probability were shown

in Figure 5E.

Then, we investigated the distribution differences of somatic

mutation between DMS-low and -high groups. As shown in

Figures 5F,G, the DMS-low group exhibited a higher mutation

frequency, and APC, TP53, and TTN were three common genes

with the highest mutation frequency in both groups. As well, we

quantified tumor mutation burden (TMB) value, and discovered

a markedly negative correlation between DMS and TMB

(Figure 5H). Same as the relation between MSI status and

DMS, the TMB-high group presented a lower DMS, hinting

low DMS may reflect genomic instability, massive tumor

neoantigen generation, and induce immune activation

(Figure 5I). Generally, these accumulated results manifested

DMS was an effective predictive tool, and distinguished

different molecular subtypes of colon cancer.

The role of DNA methylation score in the
tumor microenvironment and biological
processes

To better illustrate the underlying relevance between DMS

and different molecular traits of colon cancer, we first compared

DMS among different DNA methylation modification patterns

and gene clusters. Pattern-B and gene cluster-C, representing the

immune-inflamed phenotype, both had the lowest median DMS

(Figures 6A,B). A similar distribution trend of DMS among three

patterns and gene clusters was shown in Supplementary Figures

S6A,B when we split the meta-cohort into three separate GSE

cohorts. These results verified low DMS was related to better

survival again, and the Sankey diagram visualized the

distribution of individual colon cancer patients in different

DNA methylation modification patterns, gene clusters, DMS,

and clinical outcomes (Figure 6C).

Subsequently, we analyzed the correlation between DMS

and several known biological processes signatures constructed

by Mariathasan et al. (2018). The results revealed DMS was

mightily negatively correlated with DNA damage repair-

related signatures (Supplementary Figure S6C). Further

comparative analysis demonstrated a higher activity of

immune and DNA damage repair pathways in the DMS-

low group, including CD8+ T effector, immune checkpoint,

and mismatch repair (Figure 6D). Additional GSVA analysis

revealed activated DNA damage repair and tumor suppresser-

related pathways were significantly enriched in the DMS-low

group, while stromal and carcinogenic activation pathways

were markedly enriched in the DMS-high group (Figure 6E).

Above analyses confirmed DNA methylation patterns

participated in these biological processes and the DMS

could reflect the activity of immune and stromal-related

pathways.

We then examined the relationship between TME infiltrating

cells and DMS using different immunocytes associated

algorithms, including ssGSEA, CIBERSORT, and TIMER

database, and we found the majority of immune cells,

especially CD8+ T cells, presented a high infiltrating

abundance in the DMS-low group (Figure 6F; Supplementary

Figures S6G,H). Besides, the tumor microenvironment score,

estimate score, and stromal score showed a positive correlation

with DMS (Figure 6G; Supplementary Figures S6D,E).

Furthermore, we compared the expression level of 24 DNA

methylation regulators between DMS-low and -high groups

and revealed that some regulators positively associated with

immune cells were also highly expressed in the DMS-low

group, such as TET2, MBD1, and MBD2 (Supplementary

Figure S6F). At last, we investigated several molecules,

including chemokines and cytokines associated with immune

activation or suppression, which were referenced from published

literature (Zeng et al., 2019). Of these molecules, CD8A,

CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and

TNF were considered to be correlated to the transcripts of

immune activation; and CD80, CD86, CTLA-4, HAVCR2,

IDO1, LAG3, PD-1, PD-L1, PD-L2, TIGIT, and

TNFRSF9 were related to the transcripts of immune

checkpoints. We still found the expression of mRNAs relevant

to immune activation was significantly upregulated in the DMS-

low group (Supplementary Figure S6I). While two immune

checkpoints, PD-1 and PD-L2, were highly expressed in the

DMS-high group (Supplementary Figure S6J). Collectively, these

results demonstrated DNA methylation involved in TME

immunity response. Then combining the above conclusions

that low DMS was related to higher TMB, we speculated that

DNA methylation modification might influence the genetic

mutation and generate a great number of tumoral

neoantigens, inducing immune activation. These results

provided a novel perspective to explore the mechanism of

DNA methylation in tumor somatic mutation, and indirectly

hinting DMS may play an important role in tumor

immunotherapy.
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FIGURE 6
Characterization of DMS in TME and biological processes. (A) Differences in DMS among three DNA methylation modification patterns in the
meta-cohort (Kruskal-Wallis test; p < 0.001). (B) Differences in DMS among three DNAmethylation gene clusters in the meta-cohort (Kruskal-Wallis
test; p < 0.001). (C) Sankey diagram visualized the distribution of individual colon cancer patients in different DNAmethylationmodification patterns,
gene clusters, DMS, and clinical outcomes. (D) The differences in biological processes signatures between DMS-high and -low groups

(Continued )
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The predictive value of DNA methylation
score in anti-PD-1/PD-L1 immunotherapy

Immunotherapy represented by anti-PD-1/PD-L1 or CTLA-4

antibody had broadened the field of cancer treatment and brought

huge clinical benefits in recent years. Here, we explored whether

DMS could predict the therapeutic response and prognosis of

patients treated with immunotherapy. In the IMvigor210 cohort,

the DMS-low group presented a remarkably prolonged survival, and

the multivariate Cox regression analysis also determined that higher

DMS was an independent risk factor for prognosis (Figure 7A;

Supplementary Figure S7A). The ROC curves for DMS in predicting

12-, 18-, 24-months survival probability were presented in

Supplementary Figure S7B. The objective response rate

(percentage of complete response and partial response) of

patients with low DMS was significantly higher (Figure 7B). As

well, patients in the response group showed a lower DMS compared

to the non-response group, indicating a clinical benefit and

treatment advantage of immunotherapy in patients with low

DMS (Figure 7C; Supplementary Figure S7C).

Although we did not find a significant difference in PD-L1

expression level, a potential biomarker for immunotherapy, between

DMS-low and -high groups in IMvigor210 cohort (Supplementary

Figure S7D), the pan-cancer analysis demonstrated DMS was

negatively related to PD-L1 and PD-L2 expression in the majority

of cancer types including colon cancer, indirectly proving the reliability

of DMS to predict the efficacy of immunotherapy (Figure 7D;

Supplementary Figure S7E). In this immunotherapeutic cohort, the

TMB value was also higher in the DMS-low group, which confirmed

our above conclusions again (Figure 7E). In addition, we evaluated the

prognostic value of TMB and DMS combination in immunotherapy,

and observed a marked prognosis benefit in patients with low DMS

and high TMB (Figure 7F).

More importantly, the biological processes signatures analyses

showed that DNA damage repair-related pathways were significantly

activated in the DMS-low group, while EMT and Pan-F-TBRS

pathways were highly activated in the DMS-high group, indicating

DMS was closely related to the DNA damage repair and stromal

signatures in the setting of patients receiving immunotherapy

(Figure 7G). Lastly, we investigated the difference of DMS among

different immune phenotypes identified by the IMvigor210 study, and

found the immune-excluded and -desert phenotypes had higher

DMS, implying the response to immunotherapy of these subtypes

was limited (Figure 7H). In summary, our work demonstrated a

significant correlation between DNA methylation modification

patterns and tumor immune phenotypes, and DMS could help to

predict the response of immunotherapy.

Discussion

In this study, based on 24 DNA methylation regulators, we first

identified three DNA methylation modification patterns with distinct

TME infiltrating characteristics and biological behaviors in colon

cancer. Moreover, we obtained prognostic DEGs among three

modification patterns and established the DNA methylation gene

signature, termed DMS, to quantify the DNA methylation

modification profile of individual colon cancer, and more

importantly, predict the efficacy and clinical outcome of

immunotherapy.

Increasing evidence revealed tumors commonly hijacked

various epigenetic mechanisms to escape the supervision of

the immune system. Particularly, certain regulator mediated

DNA methylation and demethylation played an indispensable

role in adaptive immune response, including generation of

tumoral neoantigen, dysregulation of antigen-presenting

machinery, and suppression of anti-tumor cytokine

production (Cao and Yan, 2020). However, the analysis of the

whole landscape of DNA methylation modification in colon

cancer was limited, and its impact on TME immune response

remained unclear. Here, we integrated the transcriptomic

information of 24 DNA methylation regulators and revealed

three distinct DNA methylation modification patterns, and their

features were consistent with three classical tumor

immunophenotypes: immune-inflamed, -excluded, and -desert

(Hegde and Chen, 2020). Modification pattern-B was immune-

inflamed phenotype and presented an activated immune status,

characterized by activation of immune, tumor suppressor and

DNA damage repair related pathways, as well as a high

infiltrating abundance of activated CD8+ T cell. Accordingly,

patients in pattern-B had a better prognosis than the other two

patterns. In detail, abundant immune cells were positioned in

proximity to the tumor cells, accompanied by many

proinflammatory and effector chemokines and cytokines,

suggesting the presence of pre-existing anti-tumor immunity

in the tumor parenchyma (Harlin et al., 2009; Gajewski et al.,

2013; Herbst et al., 2014). Mechanically, an inflammatory TME

was the basis of immune-inflamed phenotype, also known as a

hot tumor, containing pro-inflammatory cytokines which

provided a more favorable condition for T cell activation and

FIGURE 6 (Continued)
(Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (E)GSVA analysis of relatively activated KEGG pathways
between DMS-high and -low groups. Blue bars represented activated pathways in the DMS-high group, and green bars represented activated
pathways in the DMS-low group. (F) The ssGSEA method identified infiltrating abundance of 28 TME cell types between DMS-high and -low groups
(Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (G) The scatter plot depicted the positive correlation
between DMS and microenvironment score (Spearman correlation analysis; p < 0.0001).
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FIGURE 7
The predictive value of DMS in immunotherapy. (A) Overall survival analysis for low and high DMS groups in the IMvigor210 cohort (Log-rank
test, p = 0.0069). (B) The proportion of patients with response to immunotherapy between DMS-high and -low groups in the IMvigor210 cohort
(Chi-square test, p = 0.018). SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. (C) Comparison of DMS
between immunotherapy response and non-response groups in the IMvigor210 cohort (Wilcoxon test; p < 0.0001). (D) Correlations between
DMS and PD-L1 expression in pan-cancer cohorts through Spearman analysis (spearman correlation analysis). (E) Comparison of TMB between
DMS-high and -low groups in the IMvigor210 cohort (Wilcoxon test; p = 0.0013). (F) Survival analyses for subgroup patients stratified by both DMS
and TMB in the IMvigor210 cohort (Log-rank test; p = 0.00112). (G) The differences in biological processes signatures between DMS-high and -low
groups in the IMvigor210 cohort (Wilcoxon test; ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (H) Differences in DMS
among distinct tumor immune phenotypes in the IMvigor210 cohort. (Kruskal-Wallis test; p = 0.016).
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expansion, including type I and type II interferons, TNF-α, IL-2,
and IL-12. By contrast, pattern-C was immune-desert phenotype

and exhibited an immune suppression status, characterized by

inhibition of multiple immune and inflammatory-related

pathways and a low proportion of TME infiltrating immune

cells. This phenotype might be the result of immunological

ignorance, the induction of immune tolerance, and a lack of

appropriate environment for T cell activation, and hence,

reflected the absence of pre-existing anti-tumor immune

response (Gajewski et al., 2013; Herbst et al., 2014; Hegde

et al., 2016; Kim and Chen. 2016). Notably, we found several

innate immune cells, such as eosinophil, mast cell, natural killer

cell, and plasmacytoid dendritic cell, were enriched in the TME of

pattern-A, while the patients in this pattern did not present a

matching preferable prognosis as pattern B. Conceptually, the

immune-excluded phenotype was characterized by stromal

activation and the presence of vast immune cells, while they

were retained in the stroma surrounding the tumor cells nests

rather than penetrated the tumor parenchyma (Salmon et al.,

2012; Herbst et al., 2014; Joyce and Fearon, 2015; Hegde et al.,

2016). Previous study also provided evidence that T-cells

proliferation and activation were observed after anti-PD1/PD-

L1 agents but no infiltration (Herbst et al., 2014). Therefore,

pattern-A was classified as immune-excluded phenotype,

presenting a pre-existing anti-tumor immune response while

being rendered ineffective by the retention of immune cells in the

surrounding stroma. Generally, the immune-desert and

-excluded phenotypes were both considered as the cold

tumor, containing numerous immune-suppressive cytokines

that contributed to impairing the anti-tumor response. These

could explain the alike poorer prognosis of pattern-A and -C.

We next screened DEGs among three patterns, and GO

functional annotation revealed they were significantly

associated with DNA modification and damage repair related

pathways, suggesting the different clinical and biological

characteristics among three patterns might be the results of

differentially expressed of these genes. We further identified

prognostic DEGs, termed as DNA methylation signature

genes, to perform unsupervised clustering. Likewise, we found

three genomic subtypes, named DNA methylation gene clusters,

whose clinical outcomes and immune cell infiltrating traits were

similar to three modification patterns. Our comprehensive

analyses strongly revealed three immune phenotypes in colon

cancer with distinct clinical and TME immune characteristics,

which enhanced our understanding of the non-negligible impact

of DNA methylation in shaping different TME landscapes.

Whereas, above analyses were performed based on the patient

population, which could not accurately predict the specific

modification pattern in individual patients. As a consequence,

based on the above signature genes, we developed the DNA

methylation score, DMS, to quantify the certain modification

pattern for each colon cancer patient. We found DMS could

precisely discriminate three immune phenotypes, with the lowest

median DMS in immune-inflamed type and the highest median

DMS in immune-desert type. Additionally, we revealed a markedly

positive relation between DMS and tumor stage, with DMS

increasing gradually from the stage I to IV. Moreover, DMS was

an independent prognostic risk factor, and patients with high DMS

presented an inferior survival, which was validated in multiple colon

cancer cohorts. Integrally, above results indicatedDMSwas a reliable

tool to reflect the individual DNAmethylation modification pattern,

and predict clinical outcomes of colon cancer.

Colon cancer was a highly heterogeneous disease, resulting

from a series of distinct genetic and epigenetic changes, and a

subset of molecular alterations was considered to drive the

cellular and clinical behavior of cancer, including MSI, CIMP,

CIN, BRAF, and KRAS mutations (Marisa et al., 2013; Phipps

et al., 2015). The CIMP subtype was referred to a distinct

epigenome with a high frequency of methylated genes, and

approximately 20% of colon cancer were CIMP+ tumors

(Toyota et al., 1999). Previous study demonstrated that

CIMP+ colon tumors had a unique association with

BRAFV600E oncogene mutation, and CIMP-associated

methylation of MLH1 induced mismatch repair deficiency and

resulted in a genomic instability status, also known as MSI, to

generate more mutation burden and neoantigen (Weisenberger

et al., 2006). In addition, aberrant epigenetic alterations as well

contributed to the dysregulation of antigen-presenting

machinery in tumor cells, leading to acquiring the adaptive

immune response (Alexandrov et al., 2013). Here, we revealed

DMS-low subtype was characterized as CIMP positive, mutant

BRAF, MSI, and higher TMB, indicating this epigenotype of

colon cancer identified by DMS had specific molecular

alterations. Further analyses manifested the activation of

immune and DNA damage repair related pathways, as well as

abundant immune cells infiltration in the DMS-low

group. Integrally, our findings substantiated DNA methylation

modification was involved in the genomic instability, resulting in

the accumulation of tumoral mutation burden and generation of

neoantigen, which on the one hand activated the DNA damage

repair pathway, and on the other hand enhanced

immunogenicity to further activate the immune response.

Emerging evidence demonstrated that MSI and elevated TMB

could heighten the anti-tumor activity of immunotherapy (Rizvi et al.,

2015; Le et al., 2017; Mouw et al., 2017), and hence, we further

investigated the ability of DMS to predict efficacy and prognosis of

patients received anti-PD-1/PD-L1 antibody. In an immunotherapy

cohort of advanced urothelial carcinoma patients treated with

atezolizumab, we confirmed DMS-low group had a higher

objective response rate and prolonged survival time than the

DMS-high group. Higher PD-L1 expression and TMB value were

considered to imply a favorable efficacy of immunotherapy (Gibney

et al., 2016), and in this study, we discovered DMS was negatively

correlated to TMB and PD-L1 expression in colon cancer, which

validated the predictive value of DMS indirectly. Deeply, the pathway

and immune phenotype analyses revealed activation of DNA damage
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repair and immune-inflamed environment in DMS-low patients,

providing clues to illustrate the regulatory mechanism of DNA

methylation in shaping TME immune landscape, and also

confirmed patients with low DMS could benefit from

immunotherapy. Collectively, we considered DMS had the

potential to be an excellent predictive biomarker for immune

checkpoint inhibitor, and might promote personalized colon

cancer immunotherapy in the future.

A major limitation of this work was the public survival and

transcriptomic data of colon cancer immunotherapy was not

accessible yet. Therefore, the predictive performance of DMS

needed to be further certified in the colon cancer

immunotherapeutic cohort.

In conclusion, for the first time, we uncovered three distinct

DNA methylation modification patterns in colon cancer, and

illustrated their extensive regulatory mechanism in tumor

immune environment formation, which was a non-negligible

factor to cause individual TME heterogeneity and different

clinical outcomes. Our integrated analyses of DNA methylation

modification would contribute to enhancing the understanding of

tumor immune characteristics, and providing novel insights to guide

immunotherapy more effectively.
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