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Background: Pyroptosis is a form of programmed cell death accompanied by

specific inflammatory and immune responses, and it is closely related to the

occurrence and progression of various cancers. However, the roles of

pyroptosis-related genes (PRGs) in the prognosis, treatment response, and

tumor microenvironment (TME) of prostate cancer (PCa) remain to be

investigated.

Methods: The mRNA expression data and clinical information of PCa patients

were obtained from the Cancer Genome Atlas database (TCGA) and the

cBioPortal for Cancer Genomics website, and the 52 PRGs were obtained

from the published papers. The univariate, multivariate, and LASSO Cox

regression algorithms were used to obtain prognostic hub PRGs. Meanwhile,

qRT-PCR was used to validate the expression of hub genes between PCa lines

and normal prostate epithelial cell lines. We then constructed and validated a

risk model associated with the patient’s disease-free survival (DFS). Finally, the

relationships between risk score and clinicopathological characteristics, tumor

immune microenvironment, and drug treatment response of PCa were

systematically analyzed.

Results: A prognostic risk model was constructed with 6 hub PRGs (CHMP4C,

GSDMB, NOD2, PLCG1, CYCS, GPX4), and patients were divided into high

and low-risk groups by median risk score. The risk score was confirmed

to be an independent prognostic factor for PCa in both the training and

external validation sets. Patients in the high-risk group had a worse

prognosis than those in the low-risk group, and they had more increased

somatic mutations, higher immune cell infiltration and higher expression of

immune checkpoint-related genes. Moreover, they were more sensitive to cell

cycle-related chemotherapeutic drugs and might be more responsive to

immunotherapy.

Conclusion: In our study, pyroptosis played a significant role in the

management of the prognosis and tumor microenvironment of PCa.
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Meanwhile, the established model might help to develop more effective

individual treatment strategies.
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Introduction

Prostate cancer (PCa) is the world’s second most

frequent male malignancy, and it causes significant health

problems for men (Sung et al., 2021). In the United States,

the number of new cases in 2021 is expected to be around

248,530, with around 34,130 fatalities (Siegel et al., 2021).

Although PCa has a higher overall survival rate than some

other cancers, it has a very high recurrence rate. Many

patients will experience disease progression and eventually

develop castration-resistant prostate cancer (CRPC), which

is incurable and may become drug resistant (De Angelis

et al., 2014; Fujita and Nonomura, 2019; Howard et al.,

2019). Certainly, Individualized chemotherapy and

immunotherapy have a good prospect of promise for

improving the prognosis of PCa patients (Dudzinski et al.,

2019). However, immunotherapy has a low response rate in

unselected PCa patients (Sandhu et al., 2021). Fortunately,

genetic testing is becoming increasingly beneficial for

treating patients with PCa (Merseburger et al., 2021).

That is, because identification of target genes can guide

patients to assess cancer risk, conduct, precision medicine

treatment (such as individualized chemotherapy and

immunotherapy), and manage disease prognosis (Giri

et al., 2018). Therefore, further studies into the molecular

mechanisms of PCa, and the development of effective

biomarkers, are required to improve patient prognosis and

quality of life.

Pyroptosis is a novel mechanism of programmed cell death

triggered by some inflammasomes. Pyroptosis causes cell

swelling, plasma membrane lysis, chromatin breakage, and

cell content release via particular pathways, resulting in a

potent inflammatory response. Pyroptotic cells are unique in

maintaining nuclear integrity (Shi et al., 2015; Ding et al., 2016;

Kovacs and Miao, 2017; Fang et al., 2020). Generally, there are

three pathways to activate pyroptosis: the canonical pathway,

the noncanonical pathway, and a new-found pathway. In the

canonical pathway, some inflammasomes recruit and bind to

apoptosis-associated speck-like protein containing a caspase

recruitment domain (ASC), resulting in the formation of the

ASC complex which recruits procaspase-1 and activates caspase-

1. Caspase-1 is involved in the cleavage and maturation of

proIL-18/1β, as well as the cleavage of gasderminD

(GSDMD). The released N-terminal fragment of GSDMD

(GSDMD-NT) causes pore formation in the plasma

membrane, leading to secretion of IL-18/1β and water influx,

which results in cell swelling and osmotic lysis (Liu et al., 2016;

Fang et al., 2020). In the noncanonical pathway, bacterial-

derived lipopolysaccharide (LPS) recognizes and activates

caspase-4/5/11 to induce pyroptosis by cleaving GSDMD

(Khanova et al., 2018; Rathinam et al., 2019). The new-found

pathway is achieved by the cleavage of gasderminE (GSDME),

which depends on the activation and participation of caspase-3

(Rogers et al., 2017; Wang et al., 2017). Pyroptosis appears to

play a significant role in tumor progression and is linked to

proliferation, migration, cell cycle, and treatment resistance in

various of cancers, according to accumulated evidence (Heo

et al., 2019; Yu et al., 2019; Tan et al., 2021). Recent studies have

found that pyroptosis-related genes (PRGs) have satisfactory

predictive abilities in the prognosis of PCa and could be used as

novel tumor biomarkers (Fu et al., 2022; Hu et al., 2022; Wang

et al., 2022). Meanwhile, its relationship with PCa immunity

may provide assistance in the treatment of PCa (Li et al., 2022;

Zhang et al., 2022). However, systematic evaluation of the

relationship between differentially expressed PRGs and the

prognosis, immune microenvironment, and treatment

response of PCa is still worth further exploration.

Therefore, our study aims to develop a novel prognostic

signature based on PRGs to systematically explore the

relationships between the signature and clinicopathological

characteristics and disease progression in PCa patients. In

addition, we further investigated its correlation with the

tumor microenvironment (TME), mutation profiles, and the

patient’s response to immunotherapy and chemotherapy in

PCa. This study provides new insights into the role of

pyroptosis in PCa.

Materials and methods

Data collection and preprocessing

Gene expression data (FPKM value) for 495 prostate cancer

samples and 52 normal samples were obtained from the TCGA

official website (https://portal.gdc.cancer.gov/). The

log2 transformation is used to normalize the TCGA-PRAD

cohort. The clinical information for TCGA-PRAD was

obtained from the cBioPortal for Cancer Genomics website

(http://www.cbioportal.org/), as were the gene expression data

and clinical information for the MSKCC/GSE21032 dataset.

Patients who did not have survival information were excluded

from our analysis. The clinical information of patients was shown
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in Supplementary Table S1. PRGs were gathered from the

Molecular Signatures Database (MSigDB) (http://www.gsea-

msigdb.org/gsea/msigdb/search.jsp) and previous reports

(Liberzon et al., 2015; Wu et al., 2021a). We got a total gene

set of 52 PRGs after deleting duplicate genes, found in

Supplementary Table S2.

The identification of prognostic hub genes

First, we used the R package “limma” to investigate the

differential expression of PRGs between PCa tissues and adjacent

nontumorous samples (Ritchie et al., 2015), and then we created a

heatmapwith the R package “pheatmap” and a bar graphwith the R

packages “ggplot2” and “ggpubr” (Kolde, 2019). The “spearman”

method was used to calculate the correlation coefficients of the

differentially expressed pyroptosis-related genes (DE-PRGs) in PCa,

and correlation plots were created using the R package “corrplot”

(Wei and Simko, 2017). The STRING website (https://cn.string-db.

org/) was used to calculate and generate the interaction network of

DE-PRGs. Additionally, based on the DE-PRGs, we utilized the R

package “ConsensusClusterPlus” for unsupervised clustering

analysis of PCa samples (Wilkerson and Hayes, 2010), as well as

the R package “survival” for survival analysis, to see whether the DE-

PRGs were associated with patient differences (Therneau, 2020). For

DE-PRGs, we utilized univariate Cox regression analysis to screen

for genes associated with disease-free survival (DFS), and p < 0.

05 was considered the cut-off value. LASSO regression was applied

to lessen the risk of overfitting by R package “glmnet” (Simon et al.,

2011). Finally, the multivariate stepwise Cox regression analysis was

used to identify the hub genes, which were most associated with the

prognosis of PCa.

Validation of hub genes from RNA and
protein expression levels

We obtained three PCa cell lines (LNCap, PC3, DU-145)

cultured in RP1640 medium (Gibco) and one normal prostate

epithelial cell line (RWPE-1) cultured in DMEM medium

(Gibco) from the Second Hospital of Lanzhou University.

Meanwhile all cells were cultured in a humidified incubator at

37°C and 5% CO2 with 10% fetal bovine serum added to every

medium. Then we extracted the total RNA from the cells using

TRIzol (AG21101; Hunan, China) reagent according to the

manufacturer’s instructions, followed by reverse transcription. In

addition, we measured the mRNA relative expression levels of the

hub genes by real-time quantitative PCR, which were quantified by

2–ΔΔCT. The primer sequences of the hub genes and the internal

reference gene could be found in Supplementary Table S3. Finally,

we obtained immunohistochemistry (IHC) correlation data of hub

genes from the Human Protein Atlas (HPA) (https://www.

proteinatlas.org/) and further validated them by the protein

expression levels of the genes (Uhlen et al., 2017).

Construction and validation of the risk
model

We utilized the training set (TCGA cohort) and the

validation set (MSKCC cohort) to construct and validate the

risk model, and both datasets calculated the risk score according

to the formula: (expgene1 × coefgene1) + (expgene2 × coefgene2)

+ (expgene3 × coefgene3) +(expgene4 × coefgene4)

+(expgene5 × coefgene5) +(expgene6 × coefgene6). The

median risk score was the cut-off value to separate patients

into high and low risk groups. Kaplan-Meier (KM) survival

analysis with log-rank test and time-dependent subject work

characteristics (ROC) analysis were used to assess the risk

model’s correctness. We then utilized univariate and

multivariate analyses to explore whether the risk score

compared to clinicopathological characteristics of PCa was an

independent prognostic factor. In addition, Wilcoxon and

Kruskal-Wallis tests were used to examine the relationship

between risk score and clinicopathological characteristics of

PCa (age, T-stage, N-stage, Gleason score, and PSA value).

Construction and validation of prognostic
nomogram

Based on the independent prognostic factor risk score and

Gleason score, we employed the R packages “rms” (Harrell, 2021)

and “survival” (Therneau, 2020) to generate a nomogram to

forecast the probability of DFS at 1, 3, and 5 years, and estimated

the nomogram prediction scores for each patient. To evaluate the

accuracy of the nomogram, we utilized the “calibration” function

of the R package “rms” for calibration curve analysis and the R

package “timeROC” for ROC analysis (Blanche et al., 2013;

Harrell, 2021).

Difference analysis in high and low risk
groups, functional analysis

To better elucidate the biological function of FRGs in PCa, we

obtained EDGs between high and low risk groups by the R

package “limma” using p-value < 0.05 and log2 foldchange

(log2FC) > 0.585 (Ritchie et al., 2015). The Gene Ontology

(GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were then carried out

using the R packages “clusterProfiler” and “org.Hs.eg.DB,”

with a critical value of p < 0.05 (Carlson et al., 2019; Wu

et al., 2021b).
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Tumor microenvironment cell infiltration,
tumor somatic mutation

The TME is comprised of tumor cells and non-tumor

components such as blood vessels, immune cells,

adipocytes, and tumor-associated fibroblasts (Binnewies

et al., 2018). Hence, we analyzed the infiltration of immune

cells in PCa samples by single sample gene set enrichment

analysis (ssGSEA) using the R package “GSVA” (Hänzelmann

et al., 2013) and the correlation of immune cells with risk score

by the “Spearman” method using the R package “reshape2”

(Wickham, 2007), and visualized by the R package “ggplot2”

(Wickham, 2016). Then, we used the R package " estimate " to

perform stromal score, immune score, and estimate score of

PCa samples and to elucidate their relationship with high and

low risk groups (Kosuke et al., 2016). The tumor mutation

burden (TMB) data of PCa samples was collected from the

TCGA database. The samples were separated into two groups

based on the risk model, and the TMB score was computed

using the R package “maftools” and displayed as a waterfall

chart via the R package “ggplot2” (Wickham, 2016;

Mayakonda et al., 2018). We also used the R package

“reshape2″ to examine the link between risk score and

TMB, followed by survival analysis using the R packages

“survival” and “survminer” (Kassambara et al., 2021).

Prediction of immunotherapy and drug
sensitivity

The different expression of common immune checkpoint-

related genes in high and low-risk score groups was achieved

by the Wilcoxon test, and the “spearman” method was used to

determine the correlation between immune checkpoint-

related genes and risk score using the R package “reshape2”

(Wickham, 2007), and visualized using the R package

“ggplot2” (Wickham, 2016). In previous studies, the

Immunophenoscore (IPS) was used to predict tumor

response to immunotherapy with CTLA-4 and PD-1

blockers (Charoentong et al., 2017). Furthermore, we used

the Wilcoxon test to compare IPS in high and low-risk groups

after downloading IPS data for PCa from the Cancer

Immunome Atlas (TCIA) (https://TCIA.at/home). In

addition, the sensitivity of prostate cancer patients in high

FIGURE 1
The landscape of expression and correlation of pyroptosis-related genes (PRGs) in prostate cancer. (A) The heatmap of 52 FRGs between
prostate cancer tissues and normal prostate tissues. (B) The bar graph of 35 differentially expressed PRGs in prostate cancer and normal tissue. (C)
The PPI network of 35 differentially expressed PRGs derived from the STRING database. (D) The correlation of 35 differentially expressed PRGs in
prostate cancer. (E) Consensus Clustering matrix for k = 2. (F) The Kaplan-Meier (KM) curves of two clusters and cluster 2 had a worse DFS. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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and low-risk groups to commonly used cell cycle

chemotherapy drugs was computed using the R package

“pRRophetic”, which was based on the Genomics of Drug

Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org)

database (Geeleher et al., 2014).

Statistical analysis

R software (version 4.1.2) and GraphPad Prism (version

9.0) were used for data analysis, statistics, and graphs in this

study. The hub genes were discovered by univariate

Cox regression, LASSO regression, and multivariate

stepwise Cox regression analysis on DE-PRGs. The

Wilcoxon test, Kruskal-Wallis test, and Dunnett’s test

were used to compare differences between two or more

groups as appropriate. The “Spearman” or “Pearson”

approach was used to explore the relationship between

distinct variables. The log-rank test of Kaplan-Meier

analysis was used to perform the survival analysis.

The above statistical methods produced significant results

at p < 0.05.

Results

Expression and correlation of FRGs in
TCGA-PRAD

First, we analyzed the expression of 52 FRGs in 495 tumor

samples and 52 normal samples from the TCGA cohort, finding

that 35 PRGs were expressed differently in normal and tumor

tissues. From the heat map and boxplot, it can be seen that

12 genes, BAK1, CASP6, CYCS, PLCG1, TP53, CHMP2A,

CASP8, GPX4, BAX, CHMP4C, GSDMB, and GSDMA, are

highly expressed in tumor tissues, and the remaining 23 genes

are highly expressed in normal tissues (Figures 1A,B). The PPI

analysis revealed that these 35 PRGs had abundant interactions

(Figure 1C). Meanwhile, the correlation analysis of these 35 genes

in the TCGA cohort showed that they had a high correlation,

such as GPX4 and CHMP2A (Figure 1D). Furthermore, we used

these 35 genes to divide the TCGA cohort into two clusters

(Figure 1E) and performed survival analysis, finding that patients

in cluster 2 had a worse DFS (Figure 1F), implying a solid link

between PRGs and patient differences. As a result, it was

necessary for us to investigate the prognostic PRGs further.

FIGURE 2
Identification and prognostic analysis of 6 hub genes. (A) 13 prognostic PRGs obtained by univariate Cox regression analysis. (B) LASSO analysis
of 13 prognostic PRGs. (C) The risk coefficients for 6 hub PRGs obtained bymultivariate Cox regression analysis. (D) The KM survival analysis of 6 hub
genes.
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Construction and validation of PRGs
prognostic model

The univariate Cox regression analysis was used to analyze the

above 35 DE-PRGs, and 13 genes were found to be associated with

the DFS of PCa (Figure 2A). We then performed LASSO

regression analysis with tenfold cross-validation on these

13 genes to mitigate the overfitting effect (Figure 2B).

Subsequently, we performed multivariate stepwise Cox

regression analysis to find 6 hub genes with the best prognostic

value (Figure 2C). Before establishing the prognostic model, we

conducted individual survival analyses on these 6 genes and

discovered that genes with low expression had superior DFS

(Figure 2D). In addition, we used qRT-PCR to compare the

expression of hub genes (CHMP4C, GSDMB, NOD2, PLCG1,

CYCS, GPX4) between prostate cancer cell lines (LNCap, PC3,

DU-145) and the normal prostate epithelial cell line (RWPE-1).

The results showed that, in comparison to RWPE-1, the 6 hub

genes were generally more highly expressed in LNCaP, PC-3, and

DU-145 cells (Figures 3A–F). Meanwhile, the IHC data obtained

from HPA showed that the protein expression levels of the six

genes were also higher in the prostate tumor tissues (Figures

4A–F). Therefore, we established a prognostic model using

these six genes. Risk score = (0.2985 * expCHMP4C) + (0.5625

* expCYCS) + (0.6243 * expGPX4) + (0.3102 * expGSDMB) +

(1.0209 * expNOD2) + (0.9242 * expPLCG1). Then, we divided

PCa patients from the TCGA cohorts into high and low risk

groups, with the median risk score as the cut-off value (Figure 5A).

As shown in Figure 5B, PCa patients in the high-risk group had a

higher likelihood of disease progression, which occurred earlier.

According to the KM survival analysis, patients in the low-risk

group had a better DFS than those in the high-risk group

(Figure 5C). Furthermore, the area under the receiver operating

characteristic curve (AUC) of the 1, 3, and 5-year DFS for the

TCGA cohort was 0.685, 0.735, and 0.729 (Figure 5D),

respectively, demonstrating that our risk models have a

relatively high degree of accuracy. The heat map and box plot

showed that all six hub genes had higher expression in the high-

risk group of patients than in the low-risk group (Figures 5E,F). In

the validation set (MSKCC cohort), the risk score was generated

using the same formula, and PCa patients were classified into two

groups: high and low risk, with the median risk score (Figure 6A).

Although the expression of hub genes in the high and low-risk

groups was slightly different from the TCGA cohort, the overall

tendency was for the high-risk group to have higher gene

expression (Figures 6E,F). Consistent with the results of the

FIGURE 3
The mRNA expression levels of 6 hub genes in PCa cells (DU-145, LNCap, PC3) and the normal prostate epithelial cell line (RWPE-1). (A–F) The
mRNA relative expression levels of CHMP4C, GSDMB, PLCG1, CYCS, GPX4, and NOD2 in DU145, LNCap, PC3, and RWPE -1.
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TCGA cohort, PCa patients in the high-risk group in the MSKCC

cohort also had faster disease progression (Figure 6B). The results

of KM survival analysis showed that patients in the low-risk group

had a more favorable DFS (Figure 6C). And the AUC for 1, 3, and

5-year DFS were 0.734, 0.645, and 0.619, respectively (Figure 6D).

These results indicated that the risk model in the MSKCC cohort

could also play an important role in the prognosis of PCa.

Independent prognostic value of risk
models

To evaluate the prognostic significance of different clinical

features of PCa patients and to evaluate whether the risk model

can be used as an independent prognostic factor for PCa, we used

univariate and multivariate Cox regression analyses on risk scores

FIGURE 4
The expression levels of 6 hub genes in normal and tumour tissues. (A–F) The IHC - based protein expressions of CHMP4C, GSDMB, CYCS,
GPX4, NOD2, and PLCG1 in PCa tissues and normal prostate tissues. These images were obtained from the HPA database.
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and different clinical features of PCa patients in the TCGA and

MSKCC cohorts, respectively. In the TCGA cohort, the risk score

and theGleason score had p< 0.05 (Figures 7A,B) in both univariate

and multivariate analyses, indicating that they were both

independent prognostic factors for PCa. Meanwhile, they got the

same results in the validation set (MSKCC cohort) (Figures 7C,D).

Furthermore, we evaluated the relationship between risk score and

clinical features of PCa, finding that patients older than 55 years old

had a higher risk score than patients younger than 55 years old, and

that the risk score of patients increased as Gleason score, T-stage,

and N-stage increased (Figures 8A–E). These results were also

verified in the MSKCC cohort (Figures 8F–I).

FIGURE 5
Riskmodel based on the 6 hub genes in TCGA cohort. (A)Distribution of patients’ risk scores. (B)Distribution of survival status of patients in high
and low risk groups. (C) The KM curves in high and low risk groups of patients. (D) 1, 3, 5-year ROC curve. (E,F) The heatmap and bar graph of
expression of 6 key genes in high and low risk groups.
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FIGURE 6
Risk model based on the 6 hub genes in MSKCC cohort. (A) Distribution of patients’ risk scores. (B) Distribution of survival status of patients in
high and low risk groups. (C) The KM curves in high and low risk groups of patients. (D) 1, 3, 5-year ROC curves. (E,F) The heatmap and bar graph of
expression of 6 key genes in high and low risk groups.
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Construction and validation of the
prognostic nomogram

We utilized the risk score and Gleason score to construct a

prognosis nomogram based on the TCGA cohort because they

are independent prognostic factors for PCa. The sample

“TCGA-KK-A6E6” was chosen as an example simultaneously.

The result showed that this patient’s probability of disease

recurrence was 8.57%, 24.6%, and 36.4% at 1, 3, and 5 years,

respectively (Figure 9A). Furthermore, the 1, 3, and 5-year

calibration curves in the TCGA and MSKCC cohorts were all

near the standard curve (Figures 9B,C). The AUC of the time-

dependent ROC of the nomogram at 1, 3, and 5-year were all

greater than 0.75 (Figures 9D,E), indicating that the prognostic

nomogram we developed has high accuracy and validates its

utility in predicting patient prognosis.

Functional enrichment analysis

The volcano diagram shows that there are 856 DEGs between

high and low risk groups (FDR <0.05, |log2FC| ≥ 0.585), 684 of

which are up-regulated genes and 172 of which are down-regulated

genes (Figure 10A). The functional enrichment of these 856 genes

was then performed using GO and KEGG enrichment analysis.

Nuclear division, mitotic nuclear division, chromosomal

segregation, mitotic sister chromatid segregation, and other cell

cycle-related functions were mostly represented in the GO

enrichment analysis (Figure 10B). In addition, KEGG enrichment

analysis suggested that the genes weremainly associated with the cell

cycle, cytokine-cytokine receptor interaction, ECM-receptor

interaction, primary immunodeficiency. (Figure 10C).

The characteristics of tumor
microenvironment and tumor somatic
mutation

According to the results of functional enrichment, the risk

score was closely related to the cell cycle process, extracellular

matrix, and cytokines. These factors play essential roles in the

tumor microenvironment, tumor genetic alterations, and the

treatment of tumors (Quail and Joyce, 2013). The following

study discovered that the high-risk group had a larger

FIGURE 7
Independent prognostic value of risk score and clinical features. (A,B) Exploring independent prognostic factors using univariate (A) and
multivariate (B) Cox regression analysis in TCGA cohort. (C,D) Validation of independent prognostic factors using univariate (C) and multivariate (D)
COX regression analysis in MSKCC cohort.
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infiltration of immune cells in the TCGA cohort (Figure 11A).

The results of correlation analysis showed that the risk score was

significantly positively correlated with the activated CD8 T cell,

CD56dim natural killer cell, effector memory CD8 T cell,

activated CD4 T cell, myeloid derived suppressor cell,

regulatory T cell, plasmacytoid dendritic cell and macrophage.

And the risk score was significantly negatively correlated with

neutrophil, monocyte, mast cell and type 17 T helper cell

(Figure 11C). Furthermore, the stromal score, immune score,

and estimate score all exhibited higher expression in the high-risk

group (Figure 11B), indicating that the tumor and non-tumor

components of PCa in the high-risk group had a more complex

relationship. We further analyzed the TMB of PCa, finding that

there was a significant difference in TMB score between high and

low-risk groups, with the high-risk group having the higher score

(Figure 12A), and correlation analysis also revealed that risk

score increased with increasing TMB score (Figure 12B).

Additionally, according to the optimal TMB threshold, PCa

patients were separated into two groups: H-TMB and L-TMB, and

the results of survival analysis revealed that patients in the low TMB

group had a better DFS (Figure 12C). Similarly, when we combined

the TMB and risk score groups, we found that the L-TMB+ low-risk

group had the best DFS (Figure 12D). Furthermore, no significant

relationship was found between the risk score andmRNAsi (Figures

12E,F). Finally, there is a distinction between the high and low-risk

groups in terms of the tumor somatic mutation. The overall

mutation rate in the high-risk group is higher (63.25%) than in

the low-risk group (52.36%). The mutation rate of “TP53” is highest

in the high-risk group, while “SPOP” is highest in the low-risk group

(Figures 12G,H).

FIGURE 8
The relationship between risk score and clinical features of PCa. The relationship between Age (A), PSA (B), N (C), T (D), Gleason (E) and risk core
in TCGA cohort. The relationship between Age (F), PSA (G), T (H), Gleason (I) and risk score in MSKCC cohort.
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The sensitivity to immunotherapy and
chemotherapy in the high and low risk
groups

Immunotherapy for tumors has entered a new era with the

continuous development of immune checkpoint and chimeric

antigen receptor (CAR) T cell therapies (Yang, 2015). The

immune checkpoint blocking therapy was crucial in the

immunotherapy of some malignancies (Grapin et al., 2019).

We analyzed the association of PCa immune checkpoint-

related genes PD-1 (PDCD1), PD-L1 (CD274), CTLA4,

PD-L2 (PDCD1LG2), IDO1, and VTCN1 with the risk

score and hub genes (Figure 13A) and discovered that PD-

1, CTLA4, and IDO1 were highly expressed in the high-risk

group (Figure 13B), and the risk score was significantly

positively correlated with PD-1, CTLA4, and IDO1

(Figure 13C). Furthermore, Figure 13A showed that

NOD2 was the hub gene with the strongest association to

immune checkpoint-related genes, and NOD2 was

significantly positively connected to these 6 genes

(Figure 13D). Subsequently, we further downloaded IPS for

PCa from the TCIA database. We analyzed the relationship

between IPS and high and low-risk groups, finding that the

four components of negative or positive responses for

PD1 and CTLA4 were not significantly different in high

and low-risk groups (Figure 14A). Fortunately, patients

with high NOD2 expression had the higher IPS than those

with low expression (Figure 14B).

The risk score was closely related to the cell cycle progression

of PCa according to the above functional enrichment analysis,

and we further analyzed the response of PCa patients in the

TCGA cohort to eight common cell cycle-related chemotherapy

drugs (Docetaxel, Gemcitabine, Paclitaxel, Doxorubicin,

Cisplatin, Etoposide, Mitomycin, and Methotrexate). The

results revealed that these drugs had lower half maximal

(50%) inhibitory concentration (IC50) in patients of the high-

risk group (Figure 14C), implying that these patients may be

more sensitive to these drugs.

Discussion

PCa is a common male urological malignancy. In Asia, the

5-year survival rate for PCa is above 60% (Hassanipour et al.,

2020). Between 2001 and 2016 in the United States, the 10-

year survival rate for localized stage PCa approached 100%

(Siegel et al., 2020). However, a large proportion of PCa

patients might experience disease progression, even to the

CRPC stage, which increases the risk of PCa-specific death.

From 2011 to 2016, the 5-year survival rate for distant stage

FIGURE 9
Construction and validation of a prognostic nomogram. (A) A nomogram established by the independent prognostic factors: risk score and
Gleason. (B) The calibration curve of 1, 3, and 5-year in TCGA cohort. (C) The calibration curve of 1, 3, and 5-year in MSKCC cohort. (D) The ROC
curve of 1, 3, 5-year in TCGA cohort. (E) The ROC curve of 1, 3, 5-year in MSKCC cohort.
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PCa in the United States was only 32.3% (Siegel et al., 2020).

Therefore, there is an urgent need to identify novel prognostic

signatures for PCa to improve precise treatment and health

management.

Pyroptosis, a new type of programmed cell death that

involves the release of inflammatory factors and some

immunological responses, is closely related to the occurrence

and development of tumors (Du et al., 2021). At present, much

research has explored the role of pyroptosis in various tumors,

establishing some effective models for predicting prognosis and

treatment response and analyzing the potential role of pyroptosis

in the tumor microenvironment (Wu et al., 2021a; Li et al., 2021;

Shao et al., 2021). A recent study explored the correlation

between pyroptosis and PCa patients, resulting in a new

signature for predicting PCa patients’ prognosis (Hu et al.,

2022). However, the relationship between the members of

PRGs and PCa still remains worthy of research.

In this study, we first obtained 35 PRGs that were

differentially expressed between tumor and normal tissues in

the TCGA-PRAD cohort. Following that, six hub genes

(CHMP4C, NOD2, GSDMB, PLCG1, GPX4, CYCS) were

found to be strongly associated with the DFS of PCa using

univariate cox regression, LASSO regression, and multivariate

stepwise Cox regression analysis. In the TCGA-PRAD cohort, we

established a risk model of PRGs using these six hub genes, and

patients were separated into high and low-risk groups based on

their median risk score, with the patients in the high-risk group

being found to be more likely to experience a worse DFS. These

findings were validated in the MSKCC external validation

dataset.

According to previous research, these hub genes are closely

related to the occurrence and development of various diseases.

CHMP4C, an ESCRT-III subunit, is involved in the abscission

checkpoint (NoCut) in response to mitotic problems.

Dysregulation of abscission by CHMP4C may act in concert

with oncogene-induced mitotic stress to promote genomic

instability and tumorigenesis (Sadler et al., 2018). It has been

reported that CHMP4Cmay play an important role in aggressive

FIGURE 10
Functional analysis based on the DEGs between high and low risk groups. (A) The differentially expressed genes between high and low risk
groups. (B) The bar graph of GO enrichment analysis, BP (biological process), CC (cellular component), MF (molecular function). (C) The bar graph of
KEGG enrichment analysis.
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prostate cancer and may be a potential therapeutic target (Fujita

et al., 2017). NOD2 is an intracellular pattern recognition

receptor that senses bacterial peptidoglycan conserved motifs

in the cytosol and stimulates the host immune response (Ferrand

et al., 2019). It has been reported that NOD2 has been linked to

the innate immune response of prostate epithelial cells and the

occurrence and progression of prostate cancer (Kang et al., 2012).

GSDMB, a member of the Gasdermin family, is a downstream

effector protein in the pyroptosis pathway (Li et al., 2020), and it

has been related to the development of bladder and stomach

malignancies in multiple studies (Zhou et al., 2020; He et al.,

2021). PLCG1 is a member of the phosphatidylinositol-specific

phospholipase C (PLC) family that hydrolyzes

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol

1,4,5-trisphosphate and diacylglycerol (DAG), which is associated

with the proliferation and invasion of tumor cells. Aberrant

expression and regulation of PLCG1 have been linked to the

development of various cancers, including breast, lung,

pancreatic, gastric, prostate, and ovarian cancers (Mandal et al.,

2021). GPX4 is an enzyme that explicitly reduces phospholipid

hydroperoxides to repair oxidative lipid damage (Gaschler and

Stockwell, 2017). GPX4 is not only a negative regulator of

ferroptosis and has been associated with numerous cancers

(Riegman et al., 2020), but it also helps to attenuate lipid

peroxidation, inflammasome activation, and pyroptosis in the

context of sepsis (Kang et al., 2018). CYCS, or cytochrome c, has

been implicated in numerous regulated cell death forms in addition

to being an electron carrier in the mitochondrial respiratory chain

(Bock and Tait, 2020), such as the release of cytochrome c into the

cytoplasmic matrix upon stimulation by Bax to activate caspase-3,

which leads to pyroptosis by triggering GSDME cleavage (Zhou

et al., 2018). Meanwhile, a previous study indicated that cytochrome

c may impact the sensitivity of the PCa cell line (PC3) to

chemotherapeutic agents (Grayson et al., 2021). Therefore, these

hub genes might be potential therapeutic targets for PCa.

The following study investigated the association between risk

score and clinicopathological characteristics, and discovered that the

high-risk group had a higher degree of malignancy. Meanwhile, in

our study, only the risk score and theGleason scorewere independent

prognostic factors for PCa, showing that the risk model had a strong

prognostic value. Furthermore, a nomogram with two independent

prognostic factors can assist clinicians in predicting patient prognosis

and provide a more trustworthy reference for health management

than a single routine clinical parameter.

FIGURE 11
Comparison of immunemicroenvironment in high and low risk groups. (A)Differences in 28 immune cell infiltration between high and low risk
groups by ssGSEA. (B) Differences in ImmuneScore, StromalScore and ESTIMATEScore between high and low risk groups. (C) Correlation between
risk score and immune cells.
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FIGURE 12
Comparison of tumor mutation burden (TMB) between high and low risk groups. (A) The TMB score was different between high and low risk
groups. (B) The risk score was significantly and positively correlated with TMB. (C) The KM curves for patients with high and low TMB. (D) The KM
curves showed that the L-TMB + low-risk group had the best prognosis. (E,F) No significant relationship was found between the risk score and
mRNAsi. (G) The tumor somatic mutation of patients in the low-risk group. (H) The tumor somatic mutation of patients in the high-risk group.

FIGURE 13
The relationship between immune checkpoint-related genes and risk score. (A) Heatmap of correlations between immune-check genes and
central genes and risk score. (B) PD-1, CTLA4 and IDO1 were highly expressed in the high-risk group. The correlation between immune checkpoint-
related genes and risk score(C) and NOD2(D).
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To explore the functional mechanisms of the risk model,

we first obtained 856 differentially expressed genes between

the high and low-risk groups, and functional enrichment

analysis revealed that these genes were mainly closely

related to cell cycle processes. And there were several

cell cycle related drugs in chemotherapy for PCa, such as

Docetaxel, Gemcitabine, Paclitaxel, Doxorubicin, Cisplatin,

Etoposide, Mitomycin, and Methotrexate. We then

calculated their estimated IC50s in different patients.

The estimated IC50s of these drugs were all lower in the

high-risk group than in the low-risk group, indicating that

patients in the high-risk group were more sensitive to these

drugs.

There is mounting evidence that cell cycle processes are not only

linked to tumor development (Liu et al., 2022), but also play a role in

immune escape and immunotherapy (Bednarski and Sleckman,

2019). In the subsequent study, we discovered that the high-risk

group had more immune cell expression than the low-risk group,

and a majority of the immune cell infiltration was positively

correlated with the risk score, suggesting that there may be more

abundant immune effects in the high-risk group. Later,

immunotherapy-related markers such as TMB, mRNAsi, and IPS

were incorporated into further studies. The results showed that the

risk score was positively correlated with the TMB score, and the total

somatic mutation rate in the high-risk group (63.25%) was higher

than that in the low-risk group (52.36%). However, there was no

FIGURE 14
The responses to immunotherapy and chemotherapy. (A) The Violin plots of immunotherapy response between high and low risk groups. (B)
The patients with high NOD2 expression were more sensitive to immunotherapy. (C) The estimated IC50 of common cell cycle-related
chemotherapeutic agents between high and low risk groups.
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obvious link between risk scores andmRNAsi. In addition, although

the immune checkpoint-related genes PD-1 and CTLA4 were

significantly higher expression in the high-risk group, the IPS

analysis revealed no significant difference in the response of

patients in the high and low-risk groups to PD1 and

CTLA4 immune checkpoint inhibitors. Fortunately, the hub gene

NOD2 was significantly and positively correlated with the

expression of immune checkpoint-related genes, and patients

with high NOD2 expression also had the higher IPS than those

with low expression. These results point to a complex relationship

between the PRGs and the immune microenvironment of PCa,

which could be helpful for future research into PCa immunotherapy,

particularly the function of the hub genes.

We constructed a risk model of PCa using PRGs and

analyzed the relationship between the risk model and PCa

from multiple perspectives, which may have good clinical

significance. However, our study also has certain limitations.

The sample size from the TCGA and MSKCC databases may not

be sufficient and more data needs to be collected. At the same

time, further in vitro experimental research and clinical trials are

required to confirm our findings.

Conclusion

In conclusion, our study demonstrates that pyroptosis plays a

vital role in PCa prognosis and that pyroptosis has some effects

on the regulation of the TME in PCa. Meanwhile, we provide new

insights into PCa prognostic research and assist in developing

more effective individual treatment strategies.
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