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Leaf angle (LA) is a key component of maize plant architecture that can

simultaneously govern planting density and improve final yield. However, the

genetic mechanisms underlying LA have not been fully addressed. To broaden

our understanding of its genetic basis, we scored three LA-related traits on

upper, middle, and low leaves of 492 maize inbred lines in five environments.

Phenotypic data revealed that the three LA-related traits were normally

distributed, and significant variation was observed among environments and

genotypes. A genome-wide association study (GWAS) was then performed to

dissect the genetic factors that control natural variation in maize LA. In total,

85 significant SNPs (involving 32 non-redundant QTLs) were detected (p ≤
2.04 × 10–6), and individual QTL explained 4.80%–24.09% of the phenotypic

variation. Five co-located QTL were detected in at least two environments, and

two QTLs were co-located with multiple LA-related traits. Forty-seven meta-

QTLs were identified based on meta-analysis combing 294 LA-related QTLs

extracted from 18 previously published studies, 816 genes were identifiedwithin

these meta-QTLs, and seven co-located QTLs were jointly identified by both

GWAS and meta-analysis. ZmULA1 was located in one of the co-located QTLs,

qLA7, and its haplotypes, hap1 and hap2, differed significantly in LA-related

traits. Interestingly, the temperate materials with hap2 had smallest LA. Finally,

we also performed haplotype analysis using the reported genes that regulate LA,

and identified a lot of maize germplasms that aggregated favorable haplotypes.

These results will be helpful for elucidating the genetic basis of LA and breeding

new maize varieties with ideal plant architecture.
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Introduction

Leaf angle (LA) is one of the key traits of maize plant

architecture. Upright leaves can make maize plants more

compact, enable them to adapt to high planting density, and

reduce effects of shading between plants, thereby increasing

photosynthetic efficiency and final grain yield (Stewart et al.,

2003). Maize yield in the United States has increased eight-fold

in the past 90 years. During this period, changes in maize LA have

altered plant architecture, resulting in new varieties that are tolerant

of high planting densities, allowing formore efficient light capture as

planting density has increased (Tian et al., 2011). Compact plant

architecture with upright leaves can increase the ability of crops to

capture light energy and increase final yield (Saitoh et al., 2002).

LA is one of the important indicators used to describe maize

canopy structure (Arkebauer et al., 2009) and is a quantitative trait.

Thirty QTLs related to upper leaf angle were identified in a Nested

Association Mapping Population (NAM) composed of

25 recombinant inbred line (RIL) families, including 4,892 lines

(Tian et al., 2011). A maize BC2S3 population was constructed from

teosinte and the maize inbred line W22, 12 QTLs underlying LA

were identified. UPA1-NILW22 (Near Isogenic Line) has smaller LA

(Upper, Middle and Low LA) than UPA1-NIL8759. On the contrary,

UPA2-NILW22 has larger LA (Upper, Middle and Low LA) than

UPA2-NIL8759. These results indicated that UPA1 and UPA2 have

opposite regulatory patterns, and with the increase of planting

density, UPA2-NIL8759 has higher grain yield (kg/ha) than UPA2-

NILW22 (Tian et al., 2019). Several genes within the quantitative trait

loci (QTL) that govern LA have been cloned. ZmILI1 was located

within the qLA2, which was identified in a maize F2:3 population

constructed from the compact inbred line Yu82 and the expanded

inbred line Yu87-1. ZmILI1 (Zm00001d002121) binds to the

promoter of CYP90D1 (Zm00001d039453) and inhibits

expression of CYP90D1 through a CYP90D1-mediated

cytochrome P450-catalyzed reaction, Brassinosteroids (BRs) can

be delivered to the BR receptor BAK1, which binds to the

nuclear transcription factors BZR1, BZR2 and BES1, resulting in

a smaller LA (Upper LA) (Tang et al., 2010; Ren et al., 2020). Li et al.

found that the rice gene oslazy1 regulates LA by affecting

gravitropism (Li et al., 2007), its maize homolog ZmCLA4

regulates LA by changing mRNA accumulation, leading to

changes in gravitational properties and cell development (Zhang

et al., 2014). Gao et al. used a Gmilpa1 mutant with increased

soybean petiole angle and isolated the gene GmILPA1, which

encodes the APC8 protein. It is expressed in leaf primordium

cells and can increase petiole angle by promoting the growth and

division of leaf occipital cells (Gao et al., 2017).

Genome-wide association study (GWAS) has been widely used

in plant genetics research and has proven to be a powerful tool for

mining QTLs or causal genes for complex quantitative traits. The

first GWAS report in plants was published in 2008. Single

nucleotide polymorphism (SNP) haplotypes at 8,590 loci across

10 maize chromosomes were tested for association with kernel oleic

acid content in 553 maize inbred lines, and a putative gene

responsible for the target trait (fad2) was identified (Belo et al.,

2008). Recently, Wang et al. performed whole-genome sequencing

on 350 elite maize inbred lines representing multiple eras of

germplasms from China and the United States and measured

15 agronomic traits for GWAS. A number of key candidate

genes, such as ZmNAC16, ZmSBP18, ZmPIF4, and ZmPIF3.3,

that regulate maize density tolerance and ideal plant architecture

were cloned, providing an important foundation for future

genomics-enabled maize breeding (Wang et al., 2020). Besides,

meta-analysis is an objective method for statistically re-analyzing

existing empirical literature, enabling a more unbiased evaluation of

the evidence than that provided by traditional narrative

commentary (Egger et al., 1997). It has been widely used to

summarize and further explore complex biological mechanisms

(Makinde et al., 2021), and it has also been applied in genetic studies

of crop heterosis, grain yield, and stress tolerance (Li et al., 2011;

Thiemann et al., 2014; Sharma et al., 2018; Wang et al., 2021). As an

important plant architectural trait, LA affects the ability of themaize

canopy to capture light and the light energy utilization efficiency of

the population, understanding natural variation in LA and

identifying its key genes are very important for breeding maize

with high photosynthetic efficiency (Tao et al., 2002).

Here, 492 diverse maize inbred lines were used to investigate

LA-related traits at different leaf positions inmultiple environments.

AGWASwas performed with 1.25 M SNPs to explore natural allelic

variations that influence LA; in addition, a large amount of LA QTL

data from previously published studies was used for meta-analysis.

The main purposes were: 1) to explore the phenotypic variation of

LA 2) to identify natural variation of SNPs/loci and candidate genes

significantly associated with LA 3) to select germplasms with the

favorable haplotypes of LA to improvemaize plant architecture. The

results will enrich our understanding of the genetic basis of LA and

enhance ideotype-based maize breeding.

Materials and methods

Plant materials and growth conditions

The association mapping panel (AMP) used in this study

consists of 492 maize inbred lines, including 225 tropical/

subtropical germplasms and 267 temperate germplasms, which

is a subset of 527 inbred lines (Yang et al., 2011). In 2020, all

492 maize inbred lines were planted in Yuanyang Modern

Agricultural Science and Technology Park of Henan

Agricultural University (Yuanyang, N35°N, E113°E) in the end

of April (defined as YYC) and in early July (defined as YYX). In

addition, 269 inbreds (73 tropical/subtropical and

196 temperate) were randomly selected from the AMP and

planted at the XunXian Experimental Station of Hebi

Academy of Agricultural Sciences in Henan province (Hebi,

N35°N, E114°E, defined as HB), the Cotton Seed Farm in
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Yongcheng, Henan (YongCheng, N33°, E116°, defined as YC)

and the Yuanyang Modern Agricultural Science and Technology

Park of Henan Agricultural University (Yuanyang, N35°, E113°,

defined as YY) in early June 2020. All inbred lines were planted in

a randomized complete block design with two replications, a

single row length of 3 m, a row spacing of 0.67 m, and a final

planting density of 45,000 plants/ha in all environments.

Measurement of LA

LA data from the AMP were collected using a digital angle ruler

(digital display 360° angle ruler 0–200mm, Wenzhou Weidu

Electronics Co., Ltd.). To be consistent, we investigated the

flowering date of each line, and LA were investigated at 15 days

after pollination for each line at all environments. Three Leaf Angle

(LA-related traits) was scored at three positions: the upper leaf (first

leaf below the flag leaf, ULA), the middle leaf (first leaf above the first

ear, MLA), and the lower leaf (second leaf below the first ear, LLA).

Only ULA was investigated at YYC and YYX, whereas all three LA-

related traits were recorded at HB, YC, and YY. The average values of

ULA, MLA, and LLA were calculated from five uniformly growing

plants in each row. The average of each LA-related traits for the two

replications in each environment was calculated. Overall, ULA at all

the five environments (YYC, YYX, YY, HB, and YC), MLA, and LLA

at the three environments (YY, HB, and YC) were collected. These

phenotypic data was used for general statistical analysis, Pearson

correlation analysis, two-way ANOVA, broad-sense heritability

calculation, Best Linear Unbiased Prediction (BLUP) and GWAS.

Statistical analyses of LA

General statistical analyses (e.g. mean, variation range,

standard deviation, kurtosis, skewness) were finished in SPSS

Statistics V17.0 after removal of outliers. For the five values

measured for one trait of a genotype, if a value is not within the

range of the mean plus or minus 1.5 times of standard deviation,

it will be regarded as an outlier. A repeated-measures two-way

ANOVA, using the following formula: V = G + E + G × E + e,

here, V is total variance, G is variance of genotype, E is

environmental variance, G × E is variance of genotype-

environment interaction, e is error. It was also performed in

SPSS Statistics V17.0. The mixed linear model of the

lme4 package in R (version 4.1.1, R Foundation for Statistical

Computing, http://www.r-project.org/) was used to calculate the

Best Linear Unbiased Prediction (BLUP) value for each trait in

the five environments (Eugster et al., 2011). In addition, the Best

Linear Unbiased Prediction (BLUP) was calculated for GWAS,

which can estimate the random effects (Coram et al., 2017). For

MLA and LLA, broad-sense heritability was computed using the

following formula: H2 = [δG2 /δG2 +(δGE2 /n)+δe
2/(nr)], where δG2 is

the genotypic variance, δGE2 is the genotype × environment

variance, δe2 is the error variance, r is the number of

replications, and n is the number of environments.

Considering the unbalanced data for ULA, the harmonic

mean (h), h = (492 + 269)/(492/2 + 269/3), was used to

instead of the number of environments (n) for calculating the

H2 (Nyquist and Baker, 1991; Schmidt et al., 2019). Pearson

correlation coefficients between paired traits were calculated

using the corr function in R (version 4.1.1).

GWAS

The genotype data used in this study was downloaded from the

Maizego website (http://www.maizego.org/Resources.html) and have

been deposited in the European Variation Archive (EVA) at EMBL-

EBI under accession number PRJEB56161 (https://www.ebi.ac.uk/eva/

?eva-study=PRJEB56161). This genotype data was inferred from the

Illumina MaizeSNP50 array, reduced-representation genome

sequencing (genotyping-by-sequencing, GBS), the high density

Affymetrix Axiom Maize 600K array (600K), and previous deep

RNA-sequencing data of whole kernels at 15 days after pollination

obtainedbyLiu et al. (Liu et al., 2016). The genotype data consisted of 1.

25M SNPs (B73_RefGen_v2) covering the whole maize genome with

a minimum allele frequency (MAF) ≥ 0.05 (Liu et al., 2016). Here, the

GLM approach controlling population structure (Q) was adopted after

comparing the performances of three linear models, that is, GLM

(GLM +Q, only control population structure), MLM (GLM+K, only

control relative kinship) and MLM (GLM + Q + K, correcting for

population structure and relative kinship) models (Li et al., 2013)

implemented in TASSEL 3.0 (Bradbury et al., 2007) was therefore used

to performGWAS. For GLMmodel, y = Xα + Zβ + e. or y = SNP +Q

+ e. ForMLMmodel, y =Xα+Zβ+Wμ+ e. or y = SNP+Q+Kinship

+ e. where, y is the trait value, Xα (population structure or Qmatrix) is

fixed effect, Zβ (SNP or marker effect) is fixed effect, Wμ (Kinship

matrix) is random effect and e is residual (Yu et al., 2006). In addition,

to control the type I (false positive) and type II (false negative) error

rates, Quantile-Quantile (QQ) plots of the three statistical models for

each LA-related trait were compared, if a model that has a distribution

closer to the diagonal line indicates a better control for type I and II

errors (Zhang et al., 2010). Thus, the more appropriate model was

selected to interpret the GWAS results of LA-related traits.

Taking into account the linkage disequilibrium (LD) among SNP

markers, the effective marker number (En) for the genotypic dataset

was 490548, as previously calculated using GEC software (Deng et al.,

2017). The suggested p-value of 2.04 × 10–6 (1/En) was used as the

genome-wide threshold for significant SNP–trait associations, as

commonly used in plant genome-wide association studies.

Meta-analyses

Based on a published review (Cao et al., 2022), the QTL

information have been reported for LA-related traits (Lu et al.,
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2007; Ku et al., 2010; Tian et al., 2011; Ku et al., 2012; Chen et al.,

2015; Ding et al., 2015; Hu et al., 2015; Li et al., 2015; Yang et al.,

2015; Ku et al., 2016; Pan et al., 2017; Shi et al., 2017; Wang et al.,

2017; Dzievit et al., 2019; Liu et al., 2019; Zhang et al., 2019;

Zhang et al., 2020; Tang et al., 2021). The QTL information

(Chromosome, LOD, R2, Confidence Interval and so on) were

summarized from eighteen studies published in the lasted

15 years. For QTLs whose confidence interval (CI) was

unknown, the following formulas were used to calculate CI:

CI � 530/(N × R2) (1)
CI � 163/(N × R2) (2)

where CI is the confidence interval, N is the number of materials

in the mapping population, and R2 is the phenotypic variation.

Eq. 1 was used for Backcross and F2 mapping populations, and

Eq. 2 was used for recombinant inbred line (RIL) mapping

populations (Darvasi and Soller, 1997). If the LOD value was

unknown, it was calculated using R2 = 1–10(−2LOD/N) (Nagelkerke,

1991; Liu, 1997). QTLs without R2 information were discarded.

IBM2 2008 Neighbors (MaizeGDB, https://www.maizegdb.org/)

(Sharopova et al., 2002) was used as a reference genetic map, and

19051 high-density markers (SSR, RFLP, RAPD, and SNP) covering

the wholemaize genome were obtained. Themarkers were combined

with the collected QTLs and genetic map information, and a meta-

analysis was performed to analyze all QTLs and markers in the

genome and obtain the most suitable number of QTLs (Veyrieras

et al., 2007). Five different models (1-, 2-, 3-, 4-, or N-QTL) with

different Akaike information criterion (AIC) values were proposed

and used in BioMercator V4.2.3, a genetic map compilation and

meta-analysis software to integrate QTL data with genome structural

and functional annotation. The model with the lowest AIC-value was

considered optimal (Arcade et al., 2004). Finally, the QTLs presented

by the optimum model were regarded as the meta-QTLs, we named

TABLE 1 Descriptive statistics for leaf angle-related traits of maize in the association mapping panel in different environments.

Trait Environment Range (°) Mean (°) sd. Ske. Kur. H2

ULA HB 11.65–67.56 34.65 11.57 0.61 0.08 0.59

YC 14.32–62.98 37.65 10.47 0.17 −0.56

YY 9.90–86.50 31.93 14.19 1.17 1.60

YYC 11.48–72.65 33.11 11.49 0.69 0.59

YYX 6.71–80.08 35.11 12.56 0.74 0.60

BLUP 14.71–61.08 35.08 8.37 0.58 0.21

MLA HB 16.95–63.60 38.08 9.31 0.43 −0.03 0.71

YC 14.05–63.34 38.26 9.97 0.18 −0.45

YY 18.68–79.68 39.51 11.67 0.85 0.74

BLUP 23.31–60.31 38.77 6.72 0.58 0.36

LLA HB 23.42–77.64 43.43 10.39 0.72 0.68 0.69

YC 19.62–68.87 42.00 9.21 0.14 −0.13

YY 19.48–74.00 43.87 9.95 0.37 −0.04

BLUP 30.81–62.95 43.19 5.69 0.46 0.49

sd., STDEVP, standard deviation calculated based on the given sample population.

Ske., SKEW, the degree of asymmetry used to represent the relative mean.

Kur., KURT, a peak value used to represent the dataset.

H2, Broad-sense heritability.

FIGURE 1
Pearson correlation coefficients for LA-related traits of maize
in the association mapping panel in different environments. (a‒f):
HB, YC, YY, YYC, YYX, and BLUP, respectively; (1–3): ULA, MLA, and
LLA, respectively.
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these meta-QTLs using the format M-q-trait-chromosome number-

sequence number [for example, MqLA1-1, MqLA (Leaf Angle) 1

(chromosome number) -1 (sequence number)].

Analyses of candidate genes

The previously estimated decay distance of LD in this AMP

(~30 kb, R2 = 0.1) (Liu et al., 2016) was used to define a 60-kb QTL

interval, i.e., the 30 kb upstream and downstream of each SNP. In

each environment and for each trait, all QTLs with overlappingQTL

intervals were categorized as non-redundant QTLs. If a non-

redundant QTL was detected by different LA-related traits, in

different environments, from previously published LA QTLs, or

physical distance of less than 10Mb by GWAS and meta-QTL

analysis, it will be defined as a co-located QTL. All potential

candidate genes within all non-redundant QTLs or co-located

QTLs were identified based on the filtered working gene list

from the reference genome of the maize inbred line B73

(RefGen_v2). These genes were downloaded from MaizeGDB

and annotated using InterProScan (http://www.ebi.ac.uk/interpro/

scan.html). Phenotypic variation explained (PVE) by each QTL was

estimated based on the R2 value of the most significant SNPs within

the QTL. Candidate genes within the CIs of meta-QTLs were also

obtained. In each non-redundant QTL or co-located QTL, the most

likely candidate gene was selected based on its annotation or because

it contained the peak SNP (themost significant SNP). If there was no

gene in the interval, the neighboring gene of the peak SNP was

considered to be the most likely candidate gene.

Gene Ontology enrichment analyses

Gene Ontology (GO) enrichment analysis was performed

using OmicShare tools (https://www.omicshare.com/tools)

(Ding et al., 2019). Specifically, the candidate genes were

mapped to the various sets of the GO database (http://www.

geneontology.org/), the number of genes in each set was counted,

and the list of genes with a specific GO function and the number

of genes were obtained. The top 20 GO terms with minimum p

values were selected for analysis and plotting (Lv et al., 2019).

Linkage disequilibrium analyses

Linkage disequilibrium (LD) was estimated by the squared

correlation of the paired SNPs, which was calculated with

TASSEL 3.0 software. An LD plot was generated using the

‘genetics’ and ‘LDheatmap’ package in R (version 4.1.1).

Haplotype analyses

All SNPs (MAF ≥0.05) in target genes (ZmULA1, ZmCLA4,

lg1, lg2 and ZmTAC1) were used for haplotype analysis by using

1.25M SNPs genotype data (Liu et al., 2016). The BLUP values of

LA-related traits in 492 inbred lines were used as phenotypic

data. Haplotypes contained in more than 10 inbred lines were

used for comparative analysis.

Results

Phenotypic evaluation

LA at three positions, ULA, MLA and LLA (Supplementary

Figure S1), were investigated in five environments. The LA-

related traits showed the greatest variation in YY and lowest

variation in YC. The maximum angle was 8.7-fold higher than

the minimum angle (9.90°–86.50°) for ULA, 4.5-fold higher for

FIGURE 2
Distribution of significant loci detected by GWAS on maize chromosomes. Red arrows indicate co-located QTLs, for the same trait in different
environments.
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TABLE 2 List of meta-QTLs and accompanying details for leaf angle-related traits in maize.

Meta QTL Chr Position (cM) CI (cM) CI(Mb) Left marker Right marker

MqLA1-1 1 181.08 180.53–181.63 24.58–25.28 sfp3 cdo860a

MqLA1-2 1 209.46 209.18–209.75 32.87–33.12 bnlg176 xyl5

MqLA2-1 2 169.93 169.92–169.94 15.57–16.04 msl2 hon101

MqLA3-1 3 50.37 50.27–50.47 3.56–3.82 cdo511 isu157

MqLA3-2 3 63.28 62.42–64.15 4.19–4.36 IDP8355 cl19880_1

MqLA3-3 3 92.58 90.70–94.46 6.94–7.41 T3-9 (8447) (3) eif3

MqLA3-4 3 107.90 107.66–108.14 8.59–8.89 csu728c gts1 (CBM 3.03)

MqLA4-1 4 12.20 4.80–19.60 1.09–1.99 bnlg1434 IDP4473

MqLA4-2 4 61.87 59.77–63.97 3.75–4.09 uaz52a pd1

MqLA4-3 4 88.11 85.62–90.60 5.25–5.38 TIDP2802 uaz61a

MqLA4-4 4 106.32 105.69–106.95 5.54–9.80 uaz184 (hfi) umc1288

MqLA4-5 4 108.76 108.07–109.45 6.44–7.57 cle7 mads25

MqLA4-6 4 122.55 120.36–124.75 10.02–10.90 nbcs11 IDP4286

MqLA4-7 4 133.29 131.80–134.79 10.46–11.92 gpm574a bnlg1126

MqLA4-8 4 183.50 181.95–185.05 17.50–17.86 umc1902 wrky36

MqLA5-1 5 10.10 4.20–16.00 0.54–0.88 telomere5S AY109758

MqLA5-2 5 46.73 46.29–47.17 2.14–2.59 IDP7849 umc1901

MqLA5-3 5 53.24 52.52–53.96 2.32–2.59 IDP2557 prh24

MqLA5-4 5 61.67 61.12–62.23 2.70–2.86 umc2591 phm5359

MqLA5-5 5 76.90 75.53–78.28 3.73–4.22 bhlh159 IDP1463

MqLA5-6 5 91.07 89.73–92.41 4.88–5.49 IDP6013 TIDP5654

MqLA5-7 5 108.57 107.26–109.59 6.14–6.67 uaz163 gpm921a

MqLA5-8 5 132.51 132.26–132.76 7.13–7.36 ucsd64a npi305a

MqLA7-1 7 91.36 90.65–92.08 6.60–7.45 ao5 bnlg2160a

MqLA7-2 7 116.55 115.62–117.49 10.52–10.78 gpm913a magi108570

MqLA7-3 7 130.22 129.59–130.86 13.96–14.08 csu794 y8

MqLA8-1 8 34.72 30.97–38.47 3.66–4.24 TIDP3564 arf4

MqLA8-2 8 61.95 60.99–62.91 7.04–7.30 nactf118 nactf130

MqLA8-3 8 68.71 67.00–70.42 5.68–6.70 gpm600 TIDP5156

MqLA8-4 8 74.72 72.37–77.07 6.03–6.86 TIDP5156 IDP1629

MqLA8-5 8 79.01 78.34–79.69 6.86–7.98 ncr (sod3b) IDP1629

MqLA8-6 8 92.51 91.91–93.11 7.52–8.09 TIDP3314 isu1410a

MqLA8-7 8 98.12 95.78–100.47 8.11–8.89 gpm932d IDP7980

MqLA8-8 8 156.01 153.42–158.61 17.24–18.37 cle26 cdo328

MqLA8-9 8 164.53 164.51–164.56 18.20–19.85 wrky80 wrky26

MqLA9-1 9 23.06 20.41–25.72 5.01–5.52 rz144c mads60

MqLA9-2 9 53.11 52.40–53.83 8.23–8.94 bzip100 TIDP4624

MqLA9-3 9 61.86 59.63–64.09 8.36–9.74 mHbrMG162-Mo17 c1

MqLA9-4 9 68.73 67.03–70.43 9.75–10.85 umc113a crs4a

MqLA9-5 9 78.53 73.55–83.51 10.85–11.57 isu1146 ptf1

MqLA9-6 9 93.27 91.91–94.63 11.93–12.35 mkk1 TIDP5270

MqLA9-7 9 103.18 102.71–103.65 12.98–13.45 umc1131 chr113

MqLA10-1 10 41.83 40.53–43.13 2.78–3.06 pza02221 agrc561

MqLA10-2 10 58.78 57.86–59.71 4.07–4.17 cl24029_1 rpp9

MqLA10-3 10 101.90 95.60–108.20 5.38–5.92 glk5 TIDP3571

MqLA10-4 10 133.65 132.93–134.38 7.40–9.23 umc2749 oy1

MqLA10-5 10 187.8 187.45–188.15 58.30–59.51 gpt1 mHbrMC413-Mo17
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MLA (14.05°–63.34°), and 3.8-fold higher for LLA (19.48°–74.00°)

(Table 1). Thus, the panel exhibited rich genetic diversity in LA,

which could be ranked LLA > MLA > ULA (Table 1 and

Supplementary Figure S2). All phenotypes were typical

quantitative traits, in that they were continuous variables that

exhibited a normal distribution (Supplementary Figure S3).

Two-way ANOVA indicated that there were significant

genetic (G) and environmental (E) effects on LA-related traits,

but the effect of their interaction (G × E) was not significant

(Supplementary Table S1). The results also showed that genetics

had a greater effect on LA than environment. There were positive

correlations between LA-related traits in all environments

(Figure 1). The broad-sense heritabilities of ULA, MLA, and

LLA were 0.59, 0.71, and 0.69, respectively (Table 1), again

indicating that they were mainly affected by genetic factors.

GWAS

LA was less sensitive to the K model than other two models,

and this model could better control type I and type II errors

(Supplementary Figure S4). In addition, we examined the

distribution of the three LA traits in each sub-population

across different locations, the results shown that population

structure has a small effect on the leaf angle (Supplementary

Figure S5). Therefore, the GWAS under the K model was

analyzed further (Supplementary Figure S6).

In total, 85 significant SNPs were detected by ULA, MLA and

LLA in all environments, and involving 32 non-redundant QTLs.

The QTLs were distributed on all chromosomes except

chromosome 5 and 9, and there was a QTL hot spot at

chromosome 1 and 3 (Figure 2). Twenty-one major-effect

QTLs explained more than 10% of the phenotypic variation

(R2 = 10.01–24.09%). Twenty-six QTLs were identified for ULA,

with a mean R2 of 9.34% (4.80%–15.16%), and seven QTLs were

detected for MLA, with a mean R2 of 15.14% (9.48%–24.09%).

Only one QTL was associated with LLA, and it explained 11.63%

of the phenotypic variation.

Fourteen non-redundant QTLs were detected in HB and

explained 9.08%–21.93% of the phenotypic variation. Ten non-

redundant QTLs were detected in YY (10.05%–15.16%), nine in

BLUP (4.80%–24.09%), and only four and two in YYC and YYX,

respectively. No significant QTLs were detected in YC (Figure 2).

FIGURE 3
Meta-QTLs distributed on maize chromosomes with IBM2 2008 Neighbors as a reference.

TABLE 3 List of co-located QTLs and physical position revealed by
GWAS and meta-analysis.

Chr GWAS Meta-analysis

QTL name CI (Mb) QTL name CI (Mb)

1 qLA3 23.53–23.59 MqLA1-1 24.58–25.28

1 qLA6 35.71–35.77 MqLA1-2 32.87–33.13

1 qLA7 40.11–40.17 MqLA1-2 32.87–33.13

1 qLA8 40.15–40.21 MqLA1-2 32.87–33.13

3 qLA12 1.95–2.01 MqLA3-1 3.56–3.82

3 qLA13 8.06–8.12 MqLA3-4 8.59–8.89

8 qLA27 28.27–28.33 MqLA8-9 19.83–19.85
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Five QTLs were identified in multiple environments

(Figure 2). For ULA, qLA2 was detected in YYC, YYX, and

BLUP, and qLA3 and qLA27 were detected in YYC and BLUP.

For MLA, qLA23was identified in HB and BLUP, and qLA29was

detected in BLUP and YY. These loci can be stably inherited in

different environments and play an important role in the

regulation of plant architecture. QTLs detected for different

traits may have pleiotropic effects. qLA1 was identified by

MLA and ULA and may therefore regulate the size of both

ULA and MLA. In addition, qLA21 was also detected in different

traits (ULA andMLA), suggesting that qLA21may have a similar

role in the regulation of LA at different positions. Detailed

information on the GWAS results, including the physical

position, p-value, and R2 for each QTL is provided in

Supplementary Table S3.

Candidate gene analysis

Based on the B73 RefGen_v2 reference genome (https://

www.maizegdb.org/), 82 genes were found within 32 non-

redundant QTLs. For example, GRMZM2G049159 within

qLA7 was identified for ULA in HB and encodes a GRAS

family transcription factor; its homolog OsGRAS23 induces

downstream stress-responsive genes and positively regulates

drought tolerance in rice (Xu et al., 2015), and it may be

involved in the regulation of rosette leaf development in

Arabidopsis (Schmid et al., 2005). qLA18 was also identified

for ULA in HB, and four genes are located in this QTL.

Among them, GRMZM2G071705 encodes an F-box protein;

this type of protein may be involved in the strigolactone (SL)

biosynthetic pathway and further regulate plant architectural

traits such as tiller number and LA (Ishikawa et al., 2005; Dong

et al., 2016).

Twenty genes were identified in co-located QTLs and may be

involved in protein ubiquitination (GRMZM2G134176), carbon

metabolism (GRMZM2G134256), and the citric acid cycle

(GRMZM2G158378) and play important roles in the

regulation of plant growth and stress tolerance.

GRMZM2G311328 is located in qLA21, which was identified

for MLA and ULA in HB. This gene may be pleiotropic; its

homolog encodes a vesicle auxin mediated transporter, and

FIGURE 4
GO enrichment analysis of seventeen genes within seven co-localized QTLs. Three GO Ontologies are shown (A) Cellular Component; (B)
Molecular Function, and (C) Biological Process.
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regulation of auxin polar transport is important for development

and architecture of Arabidopsis (Kitakura et al., 2011).

GRMZM2G134073 in qLA29 was simultaneously identified for

MLA in BLUP and YY; it encodes a NAC family transcription

factor that can promote resistance to heat damage (Li H et al.,

2020). Its homolog OsNAC10 plays a key role in rice drought and

disease resistance (Jeong et al., 2010), and it may also participate

in regulating plant architecture and abiotic stress tolerance.

Among the 82 genes, only GRMZM2G071790 has been

reported, it encodes a beta-6 tubulin and plays an important

role in maize tolerance to Ustilago maydis (Ruan et al., 2021), as

well as catalyzing auxin transport in Arabidopsis (Terasaka et al.,

2005). Although most of these genes screened by GWAS have

unknown functions, their homologous genes can provide

valuable information. Interestingly, some genes may have

pleiotropic effects, that may play important roles at both LA

and stress resistance. Thus, our results provide new and valuable

information for understanding the genetic mechanisms that

underlie LA.

Meta analysis

A total of 294 QTLs related to LA were obtained from studies

published in the last 15 years (Supplementary Table S4) (Cao

et al., 2022). 47 meta-QTLs were obtained by the meta-QTL

analysis, containing 816 genes. These 47 QTLs were distributed

on all chromosomes except chromosome 6 (Table 2 and

Figure 3). The largest number of meta-QTLs (9) were located

on chromosome 8, and only one was located on chromosome 2.

Seven co-located QTLs were identified by both GWAS and meta-

analysis (Table 3). Based on the GWAS results, 17 genes within

the seven co-located QTLs were examined, but none had been

characterized previously. Gene Ontology enrichment was then

performed with the 17 genes, and they were mainly involved in

the synthesis of intracellular parts (cellular component, GO:

0044424), transcriptional regulatory activity (molecular

function, GO:0140110) and organic substance biosynthetic

process (biological process, GO:1901576) (Figure 4).

Interestingly, LA-related genes identified to date encode

transcription factors or participate in hormonal signal

transduction (Cao et al., 2022), and plant hormones are

natural organic compounds (Adam 1999). These results

suggest that the 17 genes in the co-localized QTLs may

regulate LA by encoding transcription factors and/or

participating in the synthesis of organic compounds, including

plant hormones.

qLA7, which was related to ULA, was located on

chromosome 1 and had an extremely strong association signal

(Figure 5A and Figure 5B). There was only one gene

(GRMZM2G049159) within this QTL, and it encodes a GRAS

family transcription factor, involved in the synthesis of organic

(GO:1901576) (Figure 4), plant hormones such as CK and BR, as

natural organic compounds, play an important role in regulating

LA. Therefore, ZmULA1 may be involved in the metabolic

process of plant hormones to regulate maize LA. Additionally,

its homolog may be involved in the development of rosette leaves

in Arabidopsis (Schmid et al., 2005). We speculate that it may

affect the formation of LA in maize, and we named it ZmULA1.

Haplotype analysis of ZmULA1

To analyze the haplotype of ZmULA1, we extracted all

polymorphic sites within one LD decay distance near the lead

FIGURE 5
ZmULA1 affected LA-related traits. (A)Manhattan plot of ULA
at HB. The line represents the threshold −log10(P) ≥ 5.69 (p ≤ 2.04 ×
10–6). (B) Enlarged Manhattan plot of the lead SNP and 85 SNPs
associated with ZmULA1; red diamonds represent the lead
SNP. (C) R2 values of significant SNPs associated with ZmULA1; the
lead SNP was located in 2.64 kb downstream of ZmULA1.
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SNP (chr1.S_40141659, p = 7.57e−08) to perform LD analysis,

there was a strong linkage relationship (the average pairwise r2

value was 0.45) between the lead SNP and polymorphic sites

(Figure 5C). Subsequent analysis of 17 SNPs in ZmULA1 using

BLUP values of 492 lines identified two haplotypes. All maize

inbred lines belonged to hap1 (412) or hap2 (80), and the mean

value of hap2 was smaller than that of hap1 for the three LA-

related traits (Supplementary Table S5). Specifically, ULA (p =

7.20e−10), MLA (p = 3.80e−08), and LLA (p = 1.40e−05) showed

extremely significant differences between hap1 and hap2

(Figure 6). Temperate materials had smaller values of LA-

related traits (ULA, MLA and LLA) than tropical lines, and

the temperate materials with hap2 had the smallest LAs

(Figure 7). Furthermore, 65% (52/80) of the maize inbred

lines derived from China belonged to hap2 (Table 4), and

these elite inbred lines can be used to improve the plant

architecture of maize cultivars. In summary, these results

suggest that natural variation in ZmULA1 may affect the three

LA-related traits, which may be influenced by constant selection

during maize breeding. In addition, we conducted haplotype

analysis of four known genes (ZmCLA4, lg1, lg2 and ZmTAC1)

that regulate LA in previous studies (Harper and Freeling, 1996;

Moreno et al., 1997; Yu et al., 2007; Zhang et al., 2014), favorable

haplotype for each gene which have smallest LA was identified,

that are hap4 for ZmCLA4, hap4 for lg1, hap2 for lg2 and hap2 for

ZmTAC1 (Figure 8). The germplasms with favorable haplotype

combinations of 492 inbred lines were identified, and a trend was

found that the more favorable haplotypes, the smaller the leaf

angle (Supplementary Table S6).

Discussion

Increasing planting density is an important way to improve

maize yield, and LA is one of the key traits that determine

whether maize can tolerate high planting density. Several genes

that regulate maize LA have been cloned in previous studies. For

example, lg1 (liguleless1) encodes a protein containing an SBP

domain, and its mutation causes the loss of tongues and ears,

making plants more compact (Moreno et al., 1997). lg2

(liguleless2) encodes a basic leucine zipper (bZIP)

transcription factor. These two genes are located in the same

developmental pathway, in which lg2 plays an earlier role than lg1

(Harper and Freeling, 1996; Walsh et al., 1998). ZmTAC1 is also

considered to regulate LA in maize. It encodes a protein

composed of 263 amino acids that is most highly expressed in

FIGURE 6
Differences in LA-related traits between Hap1 and Hap2. (A) ULA. (B) MLA. (C) (LLA). *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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the maize leaf sheath, and the difference in LA traits between the

compact leaf inbred line Yu82 and the extended leaf inbred line

Shen137 is caused by nucleotide variation in its non-coding

region (Ku et al., 2011). Recently, Li et al. cloned ZmACS7

from the Sdw3 mutant; its overexpression caused lower plant

height and higher LA, and multi-omics analysis showed that it

alters plant architecture by promoting growth of the auricle and

inhibiting elongation of the internode cells (Li Z et al., 2020). The

genetic and molecular mechanisms of LA have also been widely

dissected in other crops. For example, OsTAC1 in rice is a

homolog of maize ZmTAC1 and has an intron sequence

AGGA in the 3′ non-coding region. A single SNP variation

(A/G) that changes ‘AGGA’ to ‘GGGA’ can lead to reduced

expression of ZmTAC1 and an LA close to zero, making the rice

plant more compact (Yu et al., 2007).

In this study, 85 significant SNPs in 32 QTLs were

identified by GWAS and included 82 genes. Seven QTLs

could be co-located in different environments or different

LA-related traits (Figure 2), they are considered as genomic

hot regions and worth to mining for valuable information.

qLA1 and qLA21 were co-located by ULA and MLA and they

explained 16.96% and 9.48% of phenotypic variation,

respectively. Only one gene (GRMZM2G158378) was found

within qLA1, and its rice homolog has been shown to promote

the transport and absorption of silicon (Mitani et al., 2009).

Five genes were located in qLA21, one of which encoded a

glycosyltransferase (GRMZM2G014770) and another a

vesicle-mediated substance transporter (GRMZM2G311328).

Five co-located QTLs (qLA2, qLA3, qLA23, qLA27, and

qLA29), explaining 6.13%–18.89% of phenotypic variation,

were identified in at least two environments, indicating that

they are genetically stable and less affected by the

environment. Most QTLs (~84%) were detected in only one

environment (27/32); a possible explanation is that LA is a

complex quantitative trait regulated by a large number of

minor genes that are greatly affected by the environment,

leading QTL effects to vary in different environments. It is

worth mentioning that 21 of the 32 QTLs (~66%) were major

FIGURE 7
Differences in LA-related traits betweenHap1 (temperate), Hap1 (tropical), Hap2 (temperate), andHap2 (tropical). (A)ULA. (B)MLA. (C) (LLA). The
significance level was obtained by comparing others haplotypes with Hap1(temperate), respectively. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p <
0.0001, not marked stands for not significant.
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QTLs with R2 values greater than 10%. These results provide

new information for understanding the genetic basis of the

natural variation in LA.

In the current study, we collected QTLs for LA published

over the past 15 years. In total, 294 QTLs were obtained and

mapped to the IBM2 2008 Neighbors genetic map; 47 meta-

QTLs were then identified by meta-analysis (Figure 3 and

Table 2). Meta-analysis can effectively narrow the confidence

interval of QTL and improve the prediction accuracy of

candidate genes (Goffinet and Gerber, 2000; Arcade et al.,

2004). Moreover, 816 genes were examined in 47 meta-QTLs;

fifteen had been reported previously, and five had been

functionally characterized. Two genes (GRMZM2G005066,

c1 and GRMZM2G089713, sh1) were involved in kernel

colored aleurone and endosperm development (Tohge

et al., 2017; Zhou et al., 2021). GRMZM2G141399 (du1)

encoded starch synthase III, which makes kernels glassy

and inhibits glycogen accumulation (Cao et al., 1999). Two

additional genes (GRMZM2G051637, cr4 and

GRMZM2G419806, oy1) were associated with plant height

and senescence of maize seedlings (Peiffer et al., 2014;

Khangura et al., 2020). Notably, AC195340.3_FG001 (tua1),

located in MqLA5-6, is associated with plant architecture at

different planting densities and encodes an alpha tubulin

TABLE 4 The number of haplotypes for ZmULA1 in 492 maize inbred lines classified by origin and source, respectively.

Haplotype Total Origin Source

Temperate Tropical/sub-tropical China United States CIMMYT Other

Hap1 412 202 210 166 46 195 5

Hap2 80 65 15 52 14 14 0

FIGURE 8
Differences of haplotypes in LA-related traits within four cloned genes that regulate maize LA. (A–D), ULA, of ZmCLA4, lg1, lg2, ZmTAC1,
respectively; (E–H), MLA, of ZmCLA4, lg1, lg2, ZmTAC1, respectively; (I–L), LLA, of ZmCLA4, lg1, lg2, ZmTAC1, respectively. The significance level was
obtained by comparing others haplotype with hap1, respectively. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001, not marked stands for not
significant.
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family protein; it has been annotated but not functionally

characterized (Incognito et al., 2020). These results suggested

that meta-analysis can provide more valuable information.

Seven QTLs were jointly identified by GWAS and meta-

analysis (Table 3), and two, qLA3 and qLA7, had significant

association signals at chromosome one by GWAS (Figure 5A).

Three genes (AC205725.3_FG010, GRMZM2G471253, and

GRMZM2G171073) were located in qLA3 and were expressed

in leaves, potentially affecting leaf development.

GRMZM2G171073 encodes a C2H2-like zinc finger protein,

and its homolog IDD1 is involved in gibberellin (GA) signal

transduction and transport in Arabidopsis (Fukazawa et al.,

2014). GA affects plant structure and interacts with BR,

causing variation in LA (Tang et al., 2018). ZmULA1 was

located in qLA7, and hap1 and hap2 for this gene showed

highly significant differences in LA-related traits (Figure 6).

Hap2 was considered as a favorable haplotype because the

hap2 had smaller LA (ULA, MLA and LLA) than other

haplotypes, and temperate germplasms with hap2 had the

smallest LA (Figure 7). About 80% (52/65) of the elite

temperate germplasms from China (Table 4). Four genes

(ZmCLA4, lg1, lg2 and ZmTAC1) have been shown to regulate

LA, and a lot of maize inbred lines with favorable haplotypes

were selected by haplotype analysis (Figure 8). The results

indicated that there was a trend that the more favorable

alleles, the smaller the leaf angle. The germplasms carrying

favorable haplotypes can be used to improve maize plant

architecture to increase planting density and increase maize yield.

Although GWAS has been recognized as a powerful method

for understanding the genetic basis of complex quantitative traits,

meta-analysis is complementary to GWAS and can increase

precision and accuracy of detected QTLs. Therefore,

combining GWAS and meta-analysis, we screened a lot of

potential targets/loci regulating LA in maize, and the

candidate gene, ZmULA1, was predicted to play important

roles in the regulation of LA. These results will provide

reference for improving maize plant architecture.
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