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Lung adenocarcinoma (LUAD) is the one of the most prevalent and fatal form

of malignant tumors worldwide. Recently, immunotherapy is widely used in

the treatment of patients with LUAD and has proved to be clinically effective

in improve the prognosis of patients. But there still has been a tremendous

thrust to further improve the efficacy of immunotherapy in individual patients

with LUAD. The suppression of T cells and their effector functions in the

tumormicroenvironment (TME) of LUAD is one of the primary reasons for the

low efficacy of immunotherapy in some patients with LUAD. Therefore,

identifying positive regulators of T cell proliferation (TPRs) may offer

novel avenues for LUAD immunotherapy. In this study, we

comprehensively evaluated the infiltration patterns of TPRs in

1,066 patients with LUAD using unsupervised consensus clustering and

identified correlations with genomic and clinicopathological

characteristics. Three infiltrating TPR clusters were defined, and a TPR-

related risk signature composed of nine TPRs was constructed using least

absolute shrinkage and selection operator-Cox regression algorithms to

classify the individual TPR infiltration patterns. Cluster 1 exhibited high

levels of T cell infiltration and activation of immune-related signaling

pathways, whereas cluster 2 was characterized by robust T cell immune

infiltration and enrichment of pathways associated with carcinogenic gene

sets and tumor immunity. Cluster 3 was characterized as an immune-desert

phenotype. Moreover, the TPR signature was confirmed as an independent

prognostic biomarker for drug sensitivity in patients with LUAD. In

conclusion, the TPR signature may serve as a novel tool for effectively

characterizing immune characteristics and evaluating the prognosis of

patients with LUAD.
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Introduction

Lung cancer is the most frequently diagnosed and most lethal

cancer worldwide, with a 5-year relative survival rate of 21% (Siegel

et al., 2021). Lung adenocarcinoma (LUAD) is the most common

pathological type of non-small cell lung cancer (NSCLC),

accounting for 50% of lung cancers (Travis, 2011; Brustugun

et al., 2018). Surgery remains the primary treatment for patients

with stage I LUAD, but the prognosis remains poor, owing to the

prevalence of metastasis before diagnosis (Herbst et al., 2018). The

risk of recurrence 5 years after surgery is as high as 27% (Yan et al.,

2009). Recent advances in targeted therapies for driver genes of

LUAD may reduce metastasis, delay postoperative recurrence, and

improve patient survival rates (Mayekar and Bivona, 2017). For

example, targeted therapies that employ epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitors (TKIs) against tumors

with EGFR mutations or anaplastic lymphoma kinase (ALK) TKIs

against tumors with ALK fusions have improved the outcomes in a

subset of patients (Saito et al., 2018; Harrison et al., 2020). However,

these target genemutations are only present in 15%–20%of patients,

and targeting agents are ineffective in a small portion of patients with

advanced LUAD (Mayekar and Bivona, 2017). Therefore, novel

biomarkers and therapeutic targets are needed to predict prognosis

and improve the survival of patients with LUAD.

The tumor microenvironment (TME) refers to the ecosystem

surrounding the tumor, which includes immune cells, blood vessels,

extracellular matrix, stromal cells, and signaling molecules

(Anderson and Simon, 2020). Recent studies have shown that

interactions between the tumor and TME play an important role

in LUAD initiation, development, and progression (Hanahan and

Coussens, 2012; Altorki et al., 2019). Studies elucidating the

molecular and cellular biology of the TME have led to the

development of novel immunotherapy strategies, including

checkpoint blockade, adoptive cellular therapy, and cancer

vaccinology (Waldman et al., 2020). Drugs targeting various

components of the TME have been used in clinical trials and

have demonstrated durable responses in patients with NSCLC

(Gettinger et al., 2016; Herbst et al., 2018). Immune checkpoint

blockades of programmed death-1 (PD-1) and its ligand, PD-L1,

are the most effective treatments for LUAD, as they positively

regulate T cell activation. As one of the most effective anti-PD-

1 drugs, nivolumab has been shown to significantly improve the 5-

year overall survival (OS) of patients with advanced NSCLC,

compared with chemotherapy (Saka et al., 2021). However, the

clinical efficacy of anti-PD-1 drugs has been reported in only 10% of

patients with PD-L1-expressing tumors (Borghaei et al., 2015), and

most patients with PD-L1+ tumors respond shortly.

Adoptive T cell (ATC) therapy, which involves the infusion of

autologous or allogeneic T cells, is an efficient and promising

cancer treatment approach. Allogenic hematopoietic stem cell

transplantation was the first effective adoptive transfer approach

used for the clinical treatment of leukemia, and the T cell graft-

versus-tumor effect produced an improved prognosis (Weiden

et al., 1979). Recently, a novel ATC therapy using autologous

patient T cells redirected against specific antigens was shown to be

an efficient treatment for blood cancers and has been approved for

clinical applications (Munshi et al., 2021). However, the response

and cure rates still require improvement, especially in the

treatment of solid tumors. Owing to the suppression of T cell

effector functions in the TME of solid tumors, the efficiency of

chimeric antigen receptor T therapy in solid tumors is much lower

than that in blood cancers. Moreover, the generation of adaptive

immune responses in patients with cancer depends on the antigen-

specific activation of naive T cells and the coordination of T cell

signaling. Thus, regulators of T cell proliferation (TPRs) in solid

tumors may be ideal targets for improving ATC immunotherapy.

In this study, we comprehensively evaluated the

characteristics of TPRs in 526 patients with LUAD and

identified three subgroups of TPRs associated with distinct

immune infiltration patterns, prognoses, genomic features,

and clinicopathological characteristics. We then established a

TPR-related risk model to quantify T cell activation patterns in

individuals. The model was shown to be a robust prognostic

factor and predictive biomarker for the response to drugs in

patients with LUAD.

Materials and methods

Data collection

A total of 1,883 patients with LUAD from six independent

datasets were included in this study. TRP-related genes were

extracted from the Gene Set Enrichment Analysis (GSEA)

database (https://www.gsea-msigdb.org/gsea/msigdb/cards/GOBP_

ACTIVATED_T_CELL_PROLIFERATION.html) and Legut et al.

(2022) report (Supplementary Table S1). Gene expression data,

gene mutation data, and LUAD clinical profiles from The Cancer

Genome Atlas (TCGA) were acquired from the XENA database

(https://xena.ucsc.edu/). The gene expression matrix and

corresponding survival files from GSE68465, GSE50081, and

GSE72094, based on the Affymetrix Human Genome platform,

were downloaded from the Gene Expression Omnibus database.

Gene expression data and survival profiles for the validated cohort

were extracted from the GEO database (GSE42127 and

GSE36471 datasets). The Affy package was used to perform a

background adjustment among these datasets (Gautier et al.,

2004). According to the empirical Bayes framework using the

Frontiers in Genetics frontiersin.org02

Li et al. 10.3389/fgene.2022.1003754

https://www.gsea-msigdb.org/gsea/msigdb/cards/GOBP_ACTIVATED_T_CELL_PROLIFERATION.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOBP_ACTIVATED_T_CELL_PROLIFERATION.html
https://xena.ucsc.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1003754


sva package, we adjusted and removed batch effects between the

different expression profiles, which were subsequently merged to

form amixed cohort for further analyses. To prevent influencing the

accuracy of patient survival predictions, this study did not include

patients without prognostic data. The baseline information of the

patients with LUAD is shown in Table 1.

Unsupervised consensus clustering of
T cell proliferations

The ConsensusClusterPlus package was used to perform

consensus analysis. LUAD samples were divided into three

clusters based on significantly differential TPR-associated gene

expression levels (false discovery rate <0.05 and |fold change| >
0.5) (Wilkerson and Hayes, 2010). Among the different k-means

clustering results (k = 2–7), three groups (k = 3) demonstrated

the most stable discrimination.

Survival and clinical analysis

OS was evaluated in each group using the Kaplan-Meier

(KM) method and compared among groups using the log-rank

test. The chi-square test was used to compare differences between

groups. The threshold for statistical significance was defined as a

p-value less than 0.05.

Pathway enrichment analysis

To exploit the potential processes betweenTPR group, we utilized

the limma package [PMID: 25605792] to perform the differential

expression analysis between different TPR and risk group. Firstly, the

differential expression genes (DEGs) were obtained between TPRs

group and risk group by differential expression analysis using limma

package. Then, we screened the DEGs at certain condition (log2FC >
1 and adjust p-value < 0.05). Final, those DEGs were enrolled to

performed next step enrichment analysis. The GSEA analysis of

different groups from two independent cohorts was performed

(Powers et al., 2018). The profiles extracted from the GSEA

database (http://www.gsea-msigdb.org/gsea/downloads.jsp; project:

h.all.v7.5.1. symbols.gmt) were analyzed using a reference gene set.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analyses were conducted for the different

groups using the clusterProfiler package.

Immune infiltration analysis

The MCP-counter method can be used to infer the immune

and stromal cell composition of heterogeneous tissue (Aran et al.,

2017; Petitprez et al., 2020). The IOBR package was used to assess

T cell infiltration via the MCP-counter method (Zeng et al., 2021).

The ESTIMATE algorithm was used to evaluate the immune score

and stromal score in different groups via the IOBR package

(Yoshihara et al., 2013). Tumor immune dysfunction and

exclusion (TIDE) scores were calculated using the TIDE online

database (http://tide.dfci.harvard.edu/) (Fu et al., 2020). The T cell

exhaust score (gene set come from IOBR package) and T cell

activation score (gene set come from: http://cis.hku.hk/TISIDB/

index.php) were calculated by ssGSEA algorithm.

Construction and validation of the least
absolute shrinkage and selection
operator-Cox regression model

We first identified TPR-related genes that were significantly

differentially expressed between LUAD tissues and normal lung

TABLE 1 Clinical baseline features of the LUAD patients in three databases.

GSE36471 GSE42127 TCGA-LUAD p-value

High Low High Low High Low

(N = 58) (N = 58) (N = 88) (N = 88) (N = 250) (N = 250)

TPS

Subtype 1 37 (63.8%) 8 (13.8%) 15 (17.0%) 23 (26.1%) 46 (18.4%) 161 (64.4%) <0.001
Subtype 2 11 (19.0%) 31 (53.4%) 23 (26.1%) 50 (56.8%) 99 (39.6%) 38 (15.2%)

Subtype 3 10 (17.2%) 19 (32.8%) 50 (56.8%) 15 (17.0%) 105 (42.0%) 51 (20.4%)

Event

Death 36 (62.1%) 30 (51.7%) 41 (46.6%) 23 (26.1%) 116 (46.4%) 66 (26.4%) <0.001
Alive 22 (37.9%) 27 (46.6%) 47 (53.4%) 65 (73.9%) 134 (53.6%) 184 (73.6%)

Missing 0 (0%) 1 (1.7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
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tissues. Univariate Cox regression analysis was used to determine

the OS associated with TPR-related genes (p < 0.05). Finally,

LASSO-Cox regression analysis was performed. Nine key TPRs

in LUADwere identified and used to construct a TPR-related risk

model for LUAD. The risk score for each patient was calculated

using the following formula: risk score = −0.004491532* AGER

(gene expression level) + (−0.077486959* CYP27A1) +

0.113176339* CDK1 + (−0.0453135648* CADM1) +

0.342268624* FADD+ 0.133393571* ADA +0.024214523*

LTBR + (−0.022959715* FYN) + (−0.199900841* CRTAM).

Predictive efficacy of the model

Time-dependent receiver operating characteristic (ROC)

curves were used to assess 1-, 3-, and 5-year OS. The

predictive efficacy of the risk model was determined by

assessing the area under the curve (AUC).

Correlations between clinical
characteristics and T cell proliferation
signature

Correlations between clinical features (age, sex, stage, and

TNM stage) and the TPR signature were evaluated using the chi-

square test. The TPR signature was then differentiated into

subgroups based on these clinical characteristics. Univariate

and multivariate Cox regression analyses were used to identify

independent indicators of patient survival.

Nomogram construction and assessment

Univariate Cox regression analysis was performed to screen

for significant factors (p < 0.05), which were subjected to further

multivariate analysis and used for nomogram construction. The

concordance index (C-index) was used to compare the predictive

ability of the nomogram and the clinical features. Calibration

plots were constructed to determine the fitting efficiency between

the nomogram-predicted OS and actual OS. Decision curve

analysis was used to assess the threshold expectation range of

the nomogram in association with clinical characteristics.

Relationship between chemoresistance
and T cell proliferation signature

The half-maximal inhibitory concentration (IC50) of FDA-

approved drugs (rapamycin, cisplatin, paclitaxel, bortezomib,

elesclomol, tipiifarnib, nilotinib, and doxorubicin) was

determined for each TCGA-LUAD patient using the

pRRophetic package. The IC50 was used to differentiate

between high and low risk scores.

RNA extraction and quantitative PCR

Total RNA was extracted from U87 cells using TRIzol

reagent (Invitrogen, Carlsbad, CA, United States), and reverse

transcription was performed using the PrimeScript™ RT Reagent

Kit (Takara, Dalian, China). cDNA was subjected to RT-qPCR

using the SYBR Green Real-Time PCR Kit (Takara, Dalian,

China). Relative mRNA expression were normalized to that of

β-actin. The relative expression were calculated using the 2−ΔΔCT

method.

Statistical analysis

R (version 4.0.2) was used for statistical analysis. A p-value <
0.05 was regarded as indicative of a statistically significant

difference. Comparisons between two groups were conducted

using Student’s t-test or the Kruskal-Wallis H test, and

comparisons among three or more groups were conducted

using the Wilcoxon signed-rank test. Clinicopathological data

for TCGA-LUAD patients grouped by the TPR model were

analyzed using the chi-square test, and the log-rank test was

used for survival analysis.

Results

Characterization of T cell proliferation
patterns

The TPR infiltration patterns were systematically evaluated,

and a TPR signature was constructed (Figure 1A). We integrated

1,066 LUAD samples from the same GEO platform and

constructed T cell proliferation clusters (TPCs) in the mixed

cohort (GSE68465, GSE50081, and GSE72094). Principal

component analysis revealed changes in the sample

distribution before and after integration (Figures 1B,C).

To determine the optimal cluster number, we identified

differentially expressed TPRs between LUAD tumors and

normal lung tissues in TCGA-LUAD cohort (Figures 2A,B).

Next, we evaluated the clustering stability using the

ConsensusClusterPlus package, which indicated the existence

of three powerful TPCs in both the mixed cohort and TCGA-

LUAD cohort (Figure 2C). In addition, the KM survival curves

revealed that the three main TPCs in the mixed and TCGA-

LUAD cohort exhibited significant differences (log-rank test, p <
0.05; Figure 2D–E). In particular, cluster 2 was associated with

worse survival outcomes than the other clusters.
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To exploit the potential processes between TPR group, we

performed the differential analysis by Limma package. We

explored the biological processes associated with the three TPR

clusters by using the clusterProfiler package to perform KEGG

pathway enrichment analysis and GSEA in the mixed cohort.

Cluster 1 wasmarkedly enriched in carcinogenic pathways, such as

the cAMP signaling pathway, WNT signaling pathway, KRAS

signaling pathway, and P53 pathway (Figures 3A,B;

Supplementary Table S2). Cluster 2 exhibited enrichment in

carcinogenic pathways (PI3K-AKT signaling pathway, MAPK

FIGURE 1
The workflow of this study. (A) The workflow chart of this study. (B,C) Principal component analyses before (B) and after (C) batch removal.
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FIGURE 2
Identify the T cell proliferation cluster (TPC). (A,B) Volcano diagram and heatmap of the positive drive of T cell proliferation that depicts the
abnormal differentially express pattern in lung adenocarcinoma and normal tissue samples. Blue dots: down-regulation, grey dots: none significance
differential genes, and red dots: up-regulation. (C) Unsupervised hierarchical analyses of the differential expression patterns of these T cell-
associated genes in mix-cohort (k-means = 3–5). (D,E) Comparison of overall survival between TPC by using Kaplan-Meier survival curves in
mix-cohort (D) and TCGA-LUAD (E).
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FIGURE 3
Enrichment analysis of TPRs (A–F). Top 5 KEGG enriched gene pathway-related catalogs and top 10 GSEA of tumor-associated items in cluster
1 (A,B), cluster 2 (C,D), and cluster 3 (E,F).
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FIGURE 4
Tumor immune microenvironment of TPC. (A,B) Distribution of T cell in lung cancer and TME in mix-cohort (A) and TCGA-LUAD (B). (C–F)
ESTIMATE tumor purity algorithm was used to calculate the immune score and the stromal score of three TPC patients in the mix-cohort (C,E) and
TCGA-LUAD (D,F) cohort. (G,H) Abnormal expression of immune checkpoint markers between TPC in mix-cohort (G) and TCGA-LUAD cohort (H).
(I,J) TIDE score of mix-cohort (I) and TCGA-LUAD (J) between TPC group. (K,L) T cell activation/exhaust score of mix-cohort (K) and TCGA-
LUAD (L) between TPC group.
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signaling pathway, and IL6-JAK-STAT3 signaling pathway) but

also exhibited robust positive correlations with biological processes

associated with immune activation, including cytokine-cytokine

receptor interaction, interferon-gamma response, and

inflammatory response (Figures 3C,D). Interestingly, cluster

3 annotations included pathways that were negatively associated

with cluster 2 (Figures 3E,F).

Characteristics of T cell proliferation
patterns in the tumor immune
microenvironment

To identify correlations betweenTPRpatterns and the TIME,we

calculated the degree of infiltration of different types of immune and

stromal cells by using single-sample GSEA to analyze the TPCs. The

findings were consistent with the results shown in Figure 3,

indicating that the degree of infiltration of the TPCs decreased in

the following order in the mixed cohort and TCGA-LUAD cohort

(Figures 4A,B): cluster 2 > cluster 1 > cluster 3. However, cluster 2,

which had the highest degree of T cell infiltration and the strongest

association with immune-related response pathways, was not

associated with a corresponding survival advantage. Therefore, we

evaluated the immune and stromal scores of the TPCs. In the mixed

cohort and TCGA-LUAD cohort, cluster 2 had the highest scores,

and cluster 1 had the lowest scores (Figures 4C–F; cluster 2 > cluster

1 > cluster 3). Although cluster 2 exhibited CD4/8 + T cell activation,

this cluster also exhibited stromal cell activation, which exerts an

immunosuppressive effect. Therefore, for these patients,

immunosuppressive therapymay be suitable as a first-line treatment.

In addition, we examined the expression of four immune

checkpoint genes (PDCD1, PDCD1LG2, CTLA4, and LAG3),

which are related to immune blockage. The expression of these

genes in the mixed cohort (Figure 4G) and TCGA-LUAD cohort

(Figure 4H; Supplementary Table S3) decreased in the following

order: cluster 2 > cluster 1 > cluster 3. Patients in cluster 2 had the

lowest TIDE scores in both the TCGA-LUAD and mixed cohorts,

suggesting that these patients are most likely to benefit from

immunotherapy (Figures 4I,J). In addition, Cluster 2 have

moderate exhaust and activation score of T cell (Figures 4K,L).

Cluster 3 was characterized as an immune-desert phenotype.

Cluster 2, which featured robust T cell immune filtration and a

high stromal score, was characterized as an immune-inflamed

phenotype. Cluster 1, which featured a moderate immune score

and moderate immune infiltration with T cells, was characterized

as an intermediate phenotype.

Construction and validation of T cell
proliferation-related risk model

TPRs play a critical role in the regulation of different T cell

functions. As TPR pattern prediction in individuals is not a

suitable analysis method, TPCs were identified in the population.

To account for the individual heterogeneity and complexity of

TPR patterns, we aimed to construct a TPR-associated risk model

to quantify the TPR patterns of individuals with LUAD. To

illustrate TPR patterns in transcriptomic data, 11 TPRs were

selected using univariate Cox regression analysis (Supplementary

Table S4). LASSO-Cox regression was used to identify nine

candidate prognostic genes, which were then used to establish

the risk score (Figure 5A). The coefficients of each TPR are

shown in Supplementary Table S3. The heatmap depicts the

transcriptome characteristics associated with the risk score and

the distribution of risk scores among the TPCs (Figure 5B). KM

survival curves showed that the OS of LUAD patients with low-

risk scores was better than that of those with high-risk scores

(Figure 5C). The AUC for the time-dependent ROC curve, which

was used to evaluate the predictive efficacy of the prognostic

model, was 0.69 for 1-year survival, 0.70 for 3-year survival, and

0.73 for 5-year survival (Figure 5D).

To confirm the reproducibility and stability of the TPR

signature, two independent LUAD cohorts acquired from the

GEO database were used for external validation. The

transcriptome features of the two validation sets were

consistent with those of the training set (Figures 6A,B). KM

survival analysis also indicated that patients in the validation

cohorts with high-risk scores were associated with a poor OS,

compared with those with low-risk scores (Figures 6C,D).

Similarly, the AUCs for GSE42127 (Figure 6E; 1-year AUC =

0.80, 3-year AUC = 0.82, 5-year AUC = 0.80) and GSE36471

(Figure 6F; 1-year AUC = 0.68, 3-year AUC = 0.69, 5-year

AUC = 0.68) indicated that the TPR signature exhibited

excellent performance when used to predict the OS of LUAD

patients.

Tumor mutation characteristics of T cell
proliferation clusters

To investigate whether the distinct T cell prognostic

phenotypes were determined by genetic events, we conducted

an integrative analysis of the mutation data. We first explored the

quantity and quality of somatic mutations in the high- and low-

risk groups of the TCGA-LUAD cohort. As depicted in Figures

7A,B, the frequency of TP53 mutations was significantly higher

in the high-risk group than in the low-risk group.

Mutually exclusive or co-occurring gene mutations are

frequently observed in cancer patients (Kang et al., 2008; Kim

et al., 2017). Detecting such mutation patterns is critical for

identifying novel cancer signaling pathways and developing

potential therapeutic strategies. As shown by the differences

among the top 10 genes in the heatmap, TP53 and KRAS

mutations exhibited mutual exclusivity (p < 0.05) in the high-

risk group, but not in the low-risk group (Figure 7C). In addition,

co-occurring mutations in TTN and KRAS were identified in the
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FIGURE 5
Construct the TPR-related risk model in TCGA-LUAD. (A,B) Lasso-Cox regression model analysis results and heatmap of T cell proliferation
prognostic model signature: (A) lasso regression analysis (left panel); partial likelihood deviance for the lasso regression (right panel); dotted line:
lambda.min (left) and lambda.se (right); (B) heatmap between high and low-risk scores and clinical parameters. (C) KM curves showingOS in patients
with risk group; blue line: high-risk score (n = 250) and red line: low-risk score (n = 250). (D) Receiver operating characteristic (ROC) curve of 1
(light blue), 3 (orange), and 5 years (green).
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FIGURE 6
External validation of TPR signature in GSE42127 and GSE36471 cohorts. (A,B) Heatmap of nine TPR signature in external validate cohort
(GSE36471 n = 115: left, and GSE42127 n = 176: right). (C,D) KM curves showing OS in patients with TPR signature (Left: GSE36471, and right:
GSE42127). (E,F) AUC curves of 1 (light blue), 3 (orange), and 5 years (green) in both external cohorts (Left: GSE36471, and right: GSE42127).
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FIGURE 7
The landscape of somatic mutation between high- and low-risk group in TCGA-LUAD cohort. (A,B)Oncoplot of genes with highest counts of
variants between high- (A), n = 250 and low-risk score (B), n = 250 in TCGA-LUAD cohort. (C,D) Significant exclusive or co-occurrence top
10 mutation gene sets are indicated in the high-risk score (C) and low-risk score (D) in TCGA-LUAD. (E,F) Distribution of tumor mutation burden in
TPR signature (E) and TPC (F) group patients; TMB, tumor mutation burden.

Frontiers in Genetics frontiersin.org12

Li et al. 10.3389/fgene.2022.1003754

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1003754


FIGURE 8
The landscape of TME between high- and low-risk groups in TCGA-LUAD cohort. (A) Distribution of T cell between TPR signature in TCGA-
LUAD. (B–D) ESTIMATE tumor purity algorithm was utilized to calculate an immune score (B), stromal score (C), and tumor purity (D) of risk-related
patients in the TCGA-LUAD cohort. (E–G) Pearson correlation analyses between risk score and immune score (E), stromal score (F), and estimate
score (G) in the TCGA-LUAD cohort.
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FIGURE 9
Gene set enrichment analysis for high- and low-risk scores in the TCGA-LUAD cohort. (A,B) Top 5 GO and KEGG enriched gene pathway-
related catalogs (A) and top 10 GSEA (B) of tumor-related items between high- and low-risk scores in TCGA-LUAD (C,D). Cluster 1 in GO/KEGG
analysis (C) and GSEA (D) results in the TCGA-LUAD cohort (n = 207) (E,F). Cluster 2 in GO/KEGG analysis (E) and GSEA (F) results in the TCGA-LUAD
cohort (n = 137). (G,H) Cluster 3 in GO/KEGG analysis (G) and GSEA (H) results in the TCGA-LUAD cohort (n = 156).
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low-risk group, whereas mutual exclusivity was observed in the

high-risk group (Figure 7D).

In patients with LUAD, tumor mutation burden (TMB) has

been regarded as an independent predictor of immunotherapy

success (Goodman et al., 2017; Hellmann et al., 2018). As shown

in the violin plot, patients belonging to the low-risk group or

cluster 2 had a higher TMB, indicating that they may respond to

PD-1/PD-L1 blockade therapy (Figures 7E,F). Therefore, we

further assessed the differences in the TME among the TPR

signature groups.

Characteristics of T cell proliferation-
related risk model

We quantified immune cell infiltration using the MCP-

counter algorithm to further investigate the association

between TPRs and the TME. Consistent with the TMB

analysis results, the low-risk group exhibited a higher degree

of T cell infiltration than the high-risk group (Figure 8A).

Moreover, the ESTIMATE algorithm results revealed a greater

elevation in the immune score, stromal score, and estimate score

in the low-risk group (Figures 8B–D). Similarly, the Pearson

correlation coefficients also indicated that risk was negatively

associated with the immune-associated scores (Figures 8E–G;

immune score R = −0.41, stromal score R = −0.31, and estimate

score R = −0.39; p < 0.001).

To further explore the potential differences in biological

functions between the TPR-associated groups, GO and KEGG

enrichment analyses of hallmark pathways in the high-risk and

low-risk groups were performed. Chromatid segregation-related

pathways and cytokine-cytokine receptor interaction pathways

were significantly enriched (Figure 9A; Supplementary Table S5).

Similar to cluster 3, the low-risk group displayed more

enrichment in immune-related functions than the high-risk

group, including the interferon-associated response,

inflammatory response, and IL2/STAT5 signaling pathway

(Figure 9B). Like the previous TPC results, the enrichment

results for TCGA-LUAD cohort were consistent with those

for the mixed cohort (Figures 9C–H).

Subgroup overall survival analysis

Clinical subgroup OS analysis demonstrated that the TPR

signature was suitable for predicting survival in older (≥65 years),
N2-N3 stage, M0 stage, or stage I-II LUAD patients. Among

these patients, high risk was correlated with a notably poor OS.

Sex and T stage did not affect the TPR model. Furthermore, a

statistical difference (log-rank test) in OS between the high-risk

group and the low-risk group was not observed in younger

(<65 years), N0-N1 stage, M1 stage, or stage III-IV patients

(Figures 10A–L).

Prediction of drug sensitivity

The predictive IC50 was calculated using the pRRophetic

package. The high-risk group exhibited more sensitivity to

doxorubicin (Figure 11A, High_median = −1.96 vs.

Low_median = −1.90, p < 0.001), rapamycin (Figure 11B,

High_median = −0.28 vs. Low_median = −0.03, p < 0.001),

cisplatin (Figure 11C, High_median = −3.06 vs.

Low_median = −3.30, p < 0.001), paclitaxel (Figure 11D,

High_median = −3.18 vs. Low_median = −2.64, p < 0.001),

bortezomib (Figure 11E, High_median = −5.31 vs.

Low_median = −5.10, p < 0.001), and elesclomol (Figure 11F,

High_median = −2.98 vs. Low_median = −2.77, p < 0.001). The

low-risk group exhibited more sensitivity to tipifarnib

(Figure 11G, High_median = 2.18 vs. Low_median = −2.14,

p < 0.001) and nilotinib (Figure 11H, High_median = 4.42 vs.

Low_median = −4.28, p < 0.001). In addition, we predicted the

response rate to immunotherapy in the TCGA-LUAD cohort

using the TIDE algorithm. These results indicated that

immunotherapy may be more suitable for patients with a

lower risk score (Figure 11I).

Nomogram construction and assessment

The results of the univariate analysis indicated that TPR

signature, T stage, N stage, andM stage and stage were associated

with OS (Figure 12A, p < 0.001). To exclude the interference of

other phenotypes to the prognosis, we perform a multifactorial

cox analysis of TPR signature in the TCGA-LUAD cohort. As

shown in Figure 12B, the TPR signature was identified as

independent prognostic variables associated with OS. Stage

and TPR signature were included in a nomogram model

established for predicting OS in clinical settings (Figure 12C).

Calibration and C-index curves were used to assess the

agreement between the actual prognosis value and the value

predicted by the nomogram. The calibration curves for the 1-, 3-,

and 5-year survival rates exhibited a close fit with the nomogram

values (Figure 12D). According to the C-index curves, in terms of

predictive ability, the nomogram and clinical data performed in

the following order: nomogram > TPR signature > T/N stage >M

stage (Figure 12E).

Validation of the expression of T cell
proliferation signature in lung
adenocarcinoma cell lines

To explore the clinical significance of the TPR signature,

mRNA expression were validated in LUAD cell lines

(PC9 and HCC827) and a normal lung cell line (HBE). As

shown in Figure 13, the qPCR results indicated that the

mRNA expression of CDK1, FADD, and LBTR were
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FIGURE 10
Different clinical sub-group survival analyses between high- and low-risk groups in the TCGA-LUAD cohort. (A–L) KM analysis between gender
(Female: a, Male: b), age (<65: c, ≥65: d), T (TX-T2: e, T3-T4: f), N (N0-N1: g, N2-N3: h), M (M0: i, M1: j), and stage (I-II: k, III-IV: l) for high- and low-risk
scores in TCGA-LUAD cohort.
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significantly increased in LUAD cell lines compared with

those in the normal lung cell line, whereas the expression of

CADM, CRTAM, FYN, AGER, and CYP27A1 exhibited the

opposite trend. No statistical difference was observed in the

expression of ADA between LUAD cells and normal lung

cells.

Discussion

LUAD is characterized bymultiple mutations and copy number

alterations (Chen et al., 2020), posing challenges to establishing

individualized immunotherapy. However, advances in

immunotherapies that target the components of the TME have

FIGURE 11
Drug sensitivity between high- and low-risk. (A–H) Calculate the half-maximal inhibitory concentration of FDA-approved drugs in the risk
model, including, Doxorubicin (A), Rapamycin (B), Cisplatin (C), Paclitaxel (D), Bortezomib (E), Elesclomol (F), Tipifarnib (G), and Nilotinib (H). (I)
Response rate between high- and low-risk group by TIDE algorithm in TCGA-LUAD cohort.
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FIGURE 12
Construct and validate the nomogram model. (A,B) Univariate (A) and multivariate (B) analyses were performed using Cox regression of the
TCGA-LUAD cohort. (C) Nomogram based on TPR signature and Stage in TCGA-LUAD. (D) Calibration of a nomogram predicting 1-, 3-, and 5-year
OS. (E) Distributions of concordance index values in a nomogram and relevant clinical data.
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exhibited variable efficacy in the treatment of lung cancers, including

LUAD (Kwak et al., 2018; O’Donnell et al., 2019). T cell functions

are usually inhibited in cancers because of transcriptional and

translational modifications introduced by other cell populations

in the TME. The cytokines, chemokines, and nutrients in the TME

enable cancer cells to escape from antitumor T cells (Speiser et al.,

2016). Thus, secondary immunosuppression contributes to multiple

biological processes involved in tumor progression and initiation.

Recently, numerous positive TPRs have been identified via genome-

scale screening, providing new insights into T cell therapy (Legut

et al., 2022). TPRs are optimal targets for immunotherapy and may

be closely related to the prognosis of LUAD patients.

In this study, nine TPRs in patients with LUAD were identified,

using LASSO-Cox regression analysis. Most of these TPRs are

differentially expressed in LUAD and are correlated with

prognosis. For example, FADD overexpression affects NF-κB
activity and cell cycle progression and is correlated with poor

clinical outcomes in LUAD (Chen et al., 2005). CADM1 is

downregulated by miR-423-5p in LUAD tissues and cell lines,

contributing to proliferation and metastasis (Huang and Feng,

2021). CYP27A1 downregulation enhances the effect of

cholesterol on LUAD cell proliferation and invasion and reduces

high cholesterol-induced LUAD metastasis in vivo (Li et al., 2022).

FYN expression in LUAD correlates with a poor prognosis and is

downregulated in LUAD tissues and cell lines (Xue et al., 2020).

CDK1 upregulation correlates with poor prognosis, poor survival

until first progression, and poor post-progression survival in patients

with LUAD (Li et al., 2020). Downregulation of AGER (Zhang et al.,

2018) and upregulation of LTBR (Zhang et al., 2019) are also

correlated with the prognosis of LUAD, as demonstrated by

multiple bioinformatics analyses. Our RT-PCR results were

consistent with the documented downregulation of CRTAM.

However, the role of ADA in LUAD has not yet been elucidated,

and further studies are needed.

FIGURE 13
Validation of the expression of risk signatures in lung cancer cell lines (PC9 and HCC827) and normal lung cell (HBE) by RT-PCR analysis.
(A–D,G) The expression of CADM1, CRTAM, FYN, AGER (A–D) and CYP27A1 (H) were decreased in normal lung cell lines. (E, F, H) The expression of
CDK1, FADD (E, F) and LTBR (H) were unregulated in normal lung cell lines. *p < 0.05, **p <0.01, ***p < 0.001, ****p < 0.001.

Frontiers in Genetics frontiersin.org19

Li et al. 10.3389/fgene.2022.1003754

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1003754


Three distinct TPC subgroups were identified by unsupervised

consensus clustering. These three clusters exhibited different TME

immune cell infiltration levels, biological pathway enrichment, and

drug sensitivities. Cluster 1 was characterized by moderate T cell

immune infiltration and activation of carcinogenic pathways, while

cluster 2 was characterized by robust T cell immune filtration and

the enrichment of pathways associated with carcinogenic gene sets

and tumor immunity. Furthermore, cluster 2 also exhibited a robust

positive correlation with immune activation-related biological

processes, including cytokine-cytokine receptor interaction,

interferon-gamma response, and inflammatory response.

Additionally, cluster 2 had the highest expression scores for four

immune checkpoint genes (PDCD1, PDCD1LG2, CTLA4, and

LAG3) involved in immune blockage (Masugi et al., 2017;

Solinas et al., 2019; Ali et al., 2020). The cluster 2 also exhibited

moderate T cell exhaust and higher T cell activation score calculated

by ssGSEA algorithm (Figures 4J,K). Therefore, this cluster may be

the most suitable for immunotherapy. However, cluster 2 did not

show amatching survival advantage (Figure 2). Although cluster 2 is

a T-cell activated state (CD8+ T cell), the higher stromal cell

activation indicates that high levels of CD4(+) T-cell-mediated,

Treg infiltration and dendritic cell (poor antigen presentation

capacity) may be induced immunosuppressive effect

(Supplementary Figure S1) (Wang et al., 2012).

These results also indicate that cluster 2 can be classified as an

immune-inflamed phenotype. Cluster 1 represents the

intermediate phenotype, and the prognostic analysis results

indicated that this cluster was associated with the best

prognosis of the three. We attributed this result to the optimal

localization andmigration of T cells, which is essential for immune

surveillance and the inhibition of tumor initiation (Smyth et al.,

2016). In contrast, cluster 3 was negatively associated with the

pathways linked to cluster 2 and featured low levels of immune cell

infiltration, which is associated with immune tolerance and

ignorance. Our analyses indicated that the dense stromal status

in cluster 3 might influence the migration and activation of T cells,

resulting in an immune-desert phenotype (Kim and Chen, 2016).

To confirm the above findings, we performed a validation study in

an independent TCGA-LUAD cohort. By analyzing TME immune

cell infiltration and conducting enrichment analyses, we

demonstrated the reliability of the TPCs for the identification

and classification of immune phenotypes.

We have shown that TPRs are crucial mediators of multiple

T cell functions and adaptive immune responses. However, we

were unable to apply TPC analysis to individuals, as TPCs are a

population-based tool. To account for the individual heterogeneity

and complexity, a TPR risk model was established as a scoring

system to evaluate and quantify the TPR patterns of individual

LUAD patients. The low-risk group was classified as the enhanced

T cell infiltration phenotype. This group was enriched in immune-

related signaling pathways and was associated with a better

prognosis. Conversely, the high-risk group was classified as the

immune-excluded phenotype and was enriched in stromal cell-

associated pathways, which restrict T cell entry into tumor islets by

inhibiting their migration and penetration (Salmon et al., 2012). In

addition, cluster 2, characterized by an immune-inflamed

phenotype, was associated with a higher risk and a poor

prognosis, whereas cluster 1 exhibited a lower risk and a better

prognosis. These results demonstrated the feasibility and reliability

of the risk model for assessing TPR patterns and prognosis in

individuals with LUAD.

Checkpoint blockade therapy has shown surprising efficacy

in the treatment of multiple cancers, especially in patients with an

immune-inflamed TME (Kim and Chen, 2016; Cao et al., 2021).

However, immune escape remains a major obstacle to achieving

an extended OS in patients with solid tumors, including LUAD

(Anichini et al., 2020). Many factors contribute to immune

escape in LUAD, such as impaired antigen presentation, loss

of heterozygosity in the human leukocyte antigen region,

neoantigen silencing, and activation of immune checkpoints

(Gajewski et al., 2013; Anichini et al., 2020). We successfully

employed TPC analysis to distinguish among the immune

phenotypes of the LUAD patients. We hypothesized that

TPCs are associated with TMB and that TPCs can be used to

predict the clinical response to checkpoint blockade

immunotherapies. Consistent with previous reports, patients

in cluster 2 with a high TMB (>10 Mb) and low TIDE score

had a better response to PD-1/PD-L1 blockade therapy (Figures

4G–J) (Chan et al., 2019). In addition, the low-risk group was

more susceptible to ipifarnib and nilotinib, both of which inhibit

PD-1/PD-L1 directly or indirectly (Jackson et al., 1986; Tracy

et al., 2022). Altogether, our results confirmed that TPCs are a

valuable tool for predicting drug sensitivity and immunotherapy

responses in patients with LUAD.

In summary, the TPR-related risk model exhibited reliability

when used to evaluate the mutation features, degree of immune

infiltration, and clinicopathological characteristics of individuals

with LUAD. Moreover, the risk score served as a prognostic

factor for predicting the prognosis of patients with LUAD and as

a predictive factor for drug sensitivity. By developing a TPR-

related risk model, our study provides novel insights into

immunotherapy strategies.
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