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Complex intracellular organizations are commonly represented by dividing the

metabolic process of cells into different organelles. Therefore, identifying sub-

cellular organelle architecture is significant for understanding intracellular

structural properties, specific functions, and biological processes in cells.

However, the discrimination of these structures in the natural organizational

environment and their functional consequences are not clear. In this article, we

propose a new pixel-level multimodal fusion (PLMF) deep network which can

be used to predict the location of cellular organelle using label-free cell optical

microscopy images followed by deep-learning-based automated image

denoising. It provides valuable insights that can be of tremendous help in

improving the specificity of label-free cell optical microscopy by using the

Transformer–Unet network to predict the ground truth imaging which

corresponds to different sub-cellular organelle architectures. The new

prediction method proposed in this article combines the advantages of a

transformer’s global prediction and CNN’s local detail analytic ability of

background features for label-free cell optical microscopy images, so as to

improve the prediction accuracy. Our experimental results showed that the

PLMF network can achieve over 0.91 Pearson’s correlation coefficient (PCC)

correlation between estimated and true fractions on lung cancer cell-imaging

datasets. In addition, we applied the PLMF network method on the cell images

for label-free prediction of several different subcellular components

simultaneously, rather than using several fluorescent labels. These results

open up a new way for the time-resolved study of subcellular components

in different cells, especially for cancer cells.
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1 Introduction

For cell biology, cell function determined by its variety of

organelles and subcellular structures is the central conjecture.

Therefore, determining the subcellular organization is very

important for elucidating the cell state, as well as the response

to environmental perturbations or mutations (Koenig et al., 2001;

Szabo et al., 2014; Mottis et al., 2019; Yuan et al., 2019; Parlakgül

et al., 2022). However, the resolution of the subcellular structure

in a natural tissue environment and its functional consequences

are still challenging, which are largely decided by the large

amount of different molecules, complexes, and organelles that

constitute living cells and influence their functions (Chou and

Shen, 2007; Hung and Link, 2011; Xu et al., 2013; Guo et al.,

2016). Accordingly, the capability of imaging, extracting, and

exploring cells and their subcellular compartments is very

essential in various research fields such as cell physiology and

pathology and is closely related to a variety of diseases.

Based on the aforementioned reasons, various imaging tools

of cell biology have been developed to overcome the limitations

of the human eye and enable us to observe the structural and

molecular adaptation of individual cells in their

microenvironment (Chou and Shen, 2007; Hung and Link,

2011; Xu et al., 2013; Szabo et al., 2014; Guo et al., 2016;

Ounkomol et al., 2018; Vicar et al., 2019; Zhang et al., 2019).

These imaging methods mainly include mass spectrometry,

emerging microscopy technologies such as electron

microscopy, atomic-force microscopy, and different types of

optical-imaging technologies such as fluorescence-imaging

technology, confocal-microscopy imaging, phase-contrast

imaging, Raman-imaging technology, and super-resolution

fluorescence microscopy, which are extensively applied in

unveiling cellular states and offer an important way to study

different angles of cell information at high spatial and temporal

resolutions (Chou and Cai, 2004; Chou and Shen, 2010;

Armenteros et al., 2017; Buggenthin et al., 2017; Hasan et al.,

2017; Wei et al., 2018; Falk et al., 2019; Jing et al., 2020; Wang

et al., 2022a; Thi Le et al., 2022).

The optical-based method for single-cell imaging is one of

the most effective approaches to predict protein subcellular

localization, which has certain properties such as high-

detection sensitivity, high quality, and low cost, and

tremendously boosts the proceedings of non-destructive cell

research (Armenteros et al., 2017; Buggenthin et al., 2017;

Hasan et al., 2017; Jing et al., 2020; Thi Le et al., 2022).

Especially in the last few years, great amounts of label-free

optical-imaging instruments such as bright field, phase,

differential interference contrast (DIC), and stimulated

Raman scattering (SRS) microscopy were developed and

utilized for cell survey (Zhang et al., 2012; Armenteros

et al., 2017; Buggenthin et al., 2017; Hasan et al., 2017; Jing

et al., 2020; Thi Le et al., 2022). Compared with pathological

images that need to be stained and fluorescent images

requiring labeling, label-free optical imaging overcomes the

unfavorable influence of staining reagents on cytoactive and

cell-signal transduction, and can be used for long-time

detection in tissues and living cells (Zhang et al., 2012;

Armenteros et al., 2017; Hasan et al., 2017; Thi Le et al.,

2022). On the other hand, it is difficult to analyze and extract

effective features from the images collected by these label-free

optical methods due to the rich information contained and

spectral overlap. Therefore, there are increasing demands to

develop advanced optical-imaging analysis methods for

handling the specificity and clear separation of the

structures of interest contained in the label-free cell images

(Jiang et al., 2017; Kobayashi et al., 2017; Wei et al., 2019).

Although different types of predictors have been developed

for specific subcellular localizations, the systematic predicting

approaches are still missing for revealing valuable biological

patterns from pixel-level values with high sensitivity and high

accuracy. Capturing the non-linear, subtle, and inhomogeneous

features of optical-based label-free cell images requires a high

understanding of important visual variations, which is easier to

achieve through deep learning (Kobayashi et al., 2017; Wei

et al., 2019; Siu et al., 2020; Li et al., 2022). In comparison with

conventional intelligence method, deep learning is able to

perform a series of target recognitions, feature extraction,

and analysis automatically, which makes it possible to

automatically discover image–target features and explore

feature levels and interaction (Chen et al., 2016; Siu et al.,

2020; Ullah et al., 2021; Li et al., 2022). The learning-enhanced

cell optical image-analysis model is capable of acquiring the

texture details from low-level source images and achieve higher

resolution improvement for the label-free cell optical-imaging

techniques (Chen et al., 2016; Lee et al., 2020; Ullah et al., 2021;

Ullah et al., 2022). The deep-learning pipeline of cell optical

microscopy imaging can extract complex data representation in

a hierarchical way, which is helpful to find hidden cell structures

from the microscope images, such as the size of a single cell, the

number of cells in a given area, the thickness of the cell wall, the

spatial distribution between cells, and subcellular components

and their densities (Boslaugh and Watters, 2008; Donovan-

Maiye et al., 2018; Falk et al., 2019; Manifold et al., 2019;

Rezatofighi et al., 2019; Yao et al., 2019; Zhang et al., 2019;

Lee et al., 2020; Voronin et al., 2020; Zhang et al., 2020; Chen

et al., 2021a; Gomariz et al., 2021; Manifold et al., 2021; Wang

et al., 2022b; Islam et al., 2022; Kim et al., 2022; Melanthota

et al., 2022; Rahman et al., 2022; Ullah et al., 2022; Witmer and

Bhanu, 2022).

To address these technical limitations and challenges for

deeply exploring the cellular structure and morphological

information, we developed a pixel-level multimodal fusion

(PLMF) deep network to predict immunofuorescent-like

images using stimulated Raman scattering microscopy data.

In our work, we find that the pixel-level multimodal fusion

method which incorporates all the merit features, both high-
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resolution local detailed spatial information from CNN

features and the global context information from

transformers, presents a better way to predict the location

of cellular organelle using label-free cell optical images

compared with previous CNN-based self-attention

methods. Moreover, it is demonstrated that subcellular

structures could be more precisely reconstructed with the

combination of transformer and Unet than both methods

working individually. The model also has strong

generalization ability and can be extended to be utilized by

the new cell-imaging investigation.

2 Materials and methods

2.1 Experiment of the simultaneous
stimulated Raman scattering and
fluorescence microscopy

The complete experiment and process of predicting the

protein’s subcellular localization based on a deep-learning

network is shown in Figure 1. The deep-learning-based

computer-aided method for detecting proteins’ subcellular

localization using the stimulated Raman scattering (SRS)

FIGURE 1
Workflow of the single-cell analysis by stimulated Raman scattering (SRS) imaging and deep-learning model prediction process. (A) cell sample
is prepared. (B) The SRS signal and fluorescence signal of different lung cancer cell samples were collected simultaneously using the multimodel
microscopy. (C) Protein subcellular localization based on Pixel Level Multimodal Fusion Deep Networks.
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microscopic image framework consists of the following stages:

the cell sample is first prepared. Later, the SRS signal and

fluorescence signal of different lung cancer cell samples are

collected simultaneously using stimulated Raman scattering

microscopy. Finally, the protein subcellular localization of the

lung cancer cell is performed using different machine-learning

techniques.

Specifically, the lung cancer cells (A549, from ATCC) were

first cultured in an ATCC F-12K medium. Then, the cells were

fixed using 2% paraformaldehyde after being dyed. For the

prepared live cells, after installing the living cell samples, the

prepared cells were imaged with stimulated Raman scattering

(SRS) microscopy. After that, fluorescence images of nuclei,

mitochondria, and the endoplasmic reticulum were detected

FIGURE 2
Pixel-level multimodal fusion deep networks for the protein subcellular localization from label-free live-cell imaging.
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with fluorescent dyes of different colors. After denoising and

enhancing the collected images, the processed cell-sampling

image set is divided into two subsets, one of which is used for

training, and the deep-learning algorithm based on different

algorithms is used to train the model. Another subset is used as a

test set and to validate the model.

2.2 Pixel level multimodal fusion deep
network experiment

The bottleneck in predicting the protein subcellular locations of

SRS cell imaging lies in modeling complicated relationships

concealed beneath the original cell-imaging data owing to the

spectral overlap information from different protein molecules.

Concerned with the aforementioned issue, a pixel-level

multimodal fusion (PLMF) deep network for the protein

subcellular localization from label-free live cell-imaging is

proposed to overcome the crowded and highly convoluted

information as shown in Figure 2. Themain processes are as follows:

Step 1. According to the lung cancer cell-imaging experiment,

the lung cancer cell SRS-imaging data set was established and

stored.

Step 2. Lung cancer cell SRS raw-data sequences for deep-

learning-enabled image denoising and restoration were

preprocessed.

Step 3. An integrated pixel-level multimodal fusion (PLMF)

deep network framework was built.

Step 3.1. An independent transformer and CNN fusion models

corresponding to different protein subcellular sites and

fluorescence-imaging labels were constructed.

Step 3.2. Pixel-level multimodal fusion models were trained.

The protein subcellular location prediction performance was

evaluated according to the quantified metrics.

Step 4. The different cell data sets are applied to optimize the

model parameters and find the optimal model combination.

Step 5. The protein subcellular sites are located by using new

cell data.

2.3 Neural network architecture and
implementation

The overview diagram of the Transformer and Unet fusion

model-based label-free organelle-prediction method from the

optical microscopy images is shown in Figure 2. The

performance of subcellular prediction depends largely on the

feature extracted from the original cell images; the original input

cell image is first fed into a multiscale filtering fusion-based

convolutional neural network (CNN), which is used to remove

FIGURE 3
The architecture of the Pyramid Real Image Denoising Network (PRIDNet). The number of channels of the feature maps is shown below them;
the symbol C indicates concatenation.
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noises from the raw cell images. Then, the fused image is fed into

a Transformer and Unet fusion model-based network to obtain

its corresponding cell fluorescence images for different

subcellular organelles (seen in Figure 3; the nuclei,

mitochondria, endoplasmic reticuli, etc.).

2.3.1 Pyramid real-image denoising (PRID)
network for image denoising and restoration

In non-linear optical-imaging technology, several aspects

need to be overcome. On one hand, the light beam will be

affected by absorption and scattering effects during the

propagation of the sample tissue. On the other hand, in order

to reduce the influence of the photo on the sample damage, which

leads to the application of power limitation, it is necessary to

comprehensively consider the factors such as sampling depth,

laser power, and detection scheme, which often results in

these obtained images having low signal-to-noise ratio. In

the synthesis of the factor, all these challenges that include

inadequate resolution, background noise, and scanning

artifacts for the non-linear optical-imaging techniques often

result in being susceptible to adverse effects and hinder their

widespread application in cell optical imaging. Although

different denoising methods have been developed to improve

image quality in last few years, for conventional methods, when

processing non-linear optical images, it is often difficult to

clearly distinguish the relevant biological features, which is

caused by the inability to recover its internal quantitative

information. In addition, general denoising algorithms

usually need a priori knowledge of interference noise or

multiple images with the same characteristics to achieve an

average, which usually leads to adverse consequences, such as

the reduction of the effective spatial resolution of the image

(Wang et al., 2004; Esakkirajan et al., 2019; Manifold et al.,

2019).

Recently, deep-learning-based denoising tools which

perform well in image-denoising work with induced Gaussian

noise or inherent compression corruption as well as in blind

denoising tests have shown great advantages and prospects

(Hsieh et al., 2013; Zhang et al., 2018; Zhao et al., 2019).

However, the most common CNN denoising model that is

based on full-connection architecture often encounters some

shortcoming to be solved, such as being unable to effectively

remove the relative broadband noise, requiring a lot of training

time and a large number of training samples to be effective

(Zhang et al., 2018). In this work, several new CNN models,

namely, the fast and flexible denoising convolutional neural

network (FFDNet) and Pyramid Real Image Denoising

Network (PRIDNet), for flexible, effective, and fast

discriminative denoising, the PRIDNet is specifically presented

in detail for blind denoising of cell images through three

sequential stages (Al-Kofahi et al., 2018; Chen et al., 2021b;

Fang et al., 2022).

As shown in Figure 3, the channel attention mechanism is

first utilized in the noise-estimation stage for extracting the

relative importance of feature channels hidden in the noisy

image. For the input feature maps U ∈ RH×W×C, the key process

is acquired the channel weight μ � [μ1, μ2, . . . , μc]ϵR1×1×C for

generating recalibrated features, which can be formulated as:

μ � Sigmoid(FC2(ReLU(FC1(GAP(U))))), (1)
U′ � U+μ, (2)

where U′ ∈ RH×W×C is the final output of the channel-attention

module, + refers to channel-wise multiplication between

Ui ∈ RH×Wand scalar calibration weight μi, i � 1, 2, . . . , C .

At the multi-scale denoising stage, five parallel-level

pyramid pooling is applied to denoise multi-scale features, in

which each branch pays attention to one-scale features, and

each pooled feature is followed by U-Net that is composed of

deep encoding–decoding and skip connections. The multi-level

denoised features are finally upsampled by bilinear

interpolation to the same size and then concatenated

together. Benefitting from it, we can extract global

information and retain local details simultaneously, thereby

making preparations for the following comprehensive

denoising.

At the last stage in Figure 3, multi-scale features are

adaptively fused by selecting size-different kernel-selecting

operation. For the input feature mapsV ∈ RH×W×C, three

feature branches V′ ∈ RH×W×C, V″ ∈ RH×W×C,and

V‴ ∈ RH×W×C can be acquired by using parallel convolutions

on V with different kernel size 2 (k+1), k = 1,2,3. Then, all

branches are summed by element-wise operation:

�V � V′ + V″ + V‴, (3)
�V is squeezed by passing through a global average pooling

and then expanded by using two fully connected layers. The soft

attention vector α, β, and γ forU′ , U″,and U‴ can be computed

as follows:

αc � eα
′
c

eα′c + eβ
′
c + eγ′c

, (4)

βc �
eβ

′
c

eα′c + eβ
′
c + eγ′c

, (5)

γc �
eγ

′
c

eα′c + eβ
′
c + eγ′c

. (6)

Where αc βc and γc are the c-th elements of α, β, and γ,

respectively.

The final output feature maps Y are computed via combining

various kernels with their attention weights:

Yc � αc · V′ + βc · V″ + γc · V‴ (7)

where α, β, and γ should satisfy αc + βc + γc � 1 and Y �
[Y1, Y2, . . . , Yc], Yc ∈ RH×W.
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2.3.2 Pixel-level multimodal fusion deep
networks for the protein subcellular localization

As shown in Figure 4, the Transformer and Unet fusion

model is constructed to predict the optical microscopy images by

bridging CNN for extracting feature presentations and an

efficient deformable Transformer for modeling the long-range

dependency on the extracted feature maps. In our experiment, in

the multi-layer perceptron (MLP) layers of the transformer

model, the activation function GELU is replaced with ELU,

which performs better because in medical images, negative

values are as important as positive values, which is defined as

(Witmer and Bhanu, 2022):

ELU � { x, if x≥ 0
∝ ex − 1, if x< 0,

(8)

where hyper parameter α is set to 1.

Given an H × W spatial resolution raw image with C

channels, which are matrices as X ∈ RH×W×C, the advantage of

the Transformer and Unet fusion model-based image

segmentation task lies in predicting the corresponding cell

fluorescence images for different subcellular organelles. The

input raw image X is first split into N non-overlapping 2D

spatial patches with size P×P, which can be defined as

{xi
p ∈ RP2.C|i=1..., N}, where N � HW

P2 is the number of images.

Then, the vectorized xp is mapped to multi-dimensional feature

spaces through a learnable linear patch-embedding projection∅.

To maintain position information, the positions embedded∅pos

were added to patch features for encoding the spatial information

of the patches, which is as shown (Wang et al., 2004; Manifold

et al., 2019):

FIGURE 4
Diagram of the Transformation and CNN multimodel fusion-based network architecture underpinning presented tool. Part (A) is CNN blocks
combined with an image restoration model; Part (B) is a transformer taking raw image as input; and part (C) is a classical Unet where the decoder
takes the output of the transformer as its input.
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z0 � [x1
p∅; x2

p∅;//;x1N
p ∅] +∅pos, (9)

where φpos ∈ RN×D is the position embedding; x1
p,x

2
p,...x

1N
p

represent the vectorized patches; and N is the size of non-

overlapping patches. ∅∈ R(P2.C)×Dis the learnable patch

embedding projection, C is the channel number of the

input raw image X, and P is the size of the input raw image X.

In these cases, as shown in part B in Figure 2, the

Transformer block containing K = 12 Transformer layers in

the encoder part is used to extract the features. For the kth

transformer layer, which is mainly composed of a multi-head

self-attention module and a multi-layer perception module. The

output of each layer can be defined as follows (Wang et al., 2004;

Manifold et al., 2019).

v̂k � MHSA(NM(vk−1)) + vk−1, (10)
vk � MLP(NM(v̂k) + v̂k, (11)

where NM(·) is the layer normalization and vk denotes the

encoded image representation.

The MHSA (.) is defined as follows (Donovan-Maiye et al.,

2018):

MHSA(α, β, μ) � Cat(h1, h2,//, hNh)WO, (12)
s.t.hi � Atf(αPα

i , βP
β
i , μP

μ
i ), (13)

Atf(α, β, μ) � softmax(αβT


nk

√ )μ, (14)

where α is the query vector, β denotes the key vector, and μ

denotes the value vector of the input maps. PO is the projection

matrix of the output vector, Pα denotes the projection matrix of

the query vector, Pβ denotes the projection matrix of the key

vector, Pμ denotes the projection matrix of the value vector, and

nk denotes the dimensions of α and β.

2.4 Dataset

We employed a subset of SRS images in the fixed lung cancer

cell (A549, from ATCC) data set as one of pre-trained sources of

data. These data sets were acquired simultaneously using

ScanImage by collecting the SRS signals from lock-in

amplifiers and fluorescence signals from photomultiplier tubes

(Zhang et al., 2019). For the fluorescence signals, all dyeing

schemes were based on the standards, provided that three

different color fluorescent dyes were used to label and track

the nucleus, mitochondria, and endoplasmic reticulum,

respectively. The optical cell images with 512 × 512 pixels

were obtained at a dwell time of 4 μs.

Another trained source data we employed are the dataset

cell images which were acquired using GE’s IN Cell Analyzer

systems (Esakkirajan et al., 2019). These data sets were applied to

test different deep-learning methods and evaluate their

performance.

3 Results

3.1 Experimental settings

To compare the performance of differentmodels, the setting of

experimental parameters should be as consistent as possible.

First, the development, training, prediction, and image

processing of all models are calculated by using the Pytorch

platforms, and the graphics card of the server adopts the

GeForce RTX 3080. Second, during model training, the value

of momentum is set at 0.9, the value of the batch size is set to 8,

and the weight attenuation for the training neural network is set

to 1 × 10−4. At the same time, the maximum number of epochs

for the contrasting models is set at 200. In order to select the

initial learning rate, a series of values are computed to test its

training effect in the model. According to the experimental

comparison, it was proved that 0.001 was the best choice to set

as the initial learning rate.

The neural network training curves for three different

prediction methods are shown in Figure 5. For a better

performing Transformer and Unet fusion model, as Figure 5

depicts, the training process only took about 120 steps until the

training accuracy increased over 96%. The error decay in Figure 5

demonstrates that the method with the PLMF-net mechanism

gained better performance on different training samples, in

comparison with the classical Unet and UwUnet models,

where our strategy avoids over-fitting because the error does

not increase with the change of the training mode, and the error

attenuation remains stable.

FIGURE 5
The neural network training curves for three prediction
models which are Unet, UwUnet, and PLMF-net.
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3.2 Metrics for performance evaluation

In order to verify the credibility of predictions, five quantified

metrics are applied in measuring the performance of different

prediction algorithms. All the evaluation metrics mentioned

previously can be consecutively calculated as follows.

The accuracy (AY) and overall accuracy (OA) are common

standard metrics for predicting subcellular locations, which can

been calculated as follows:

AY(i) � R(i)
S(i) , (15)

OA � ∑10
i�1R(i)∑10
i�1S(i)

, (16)

where R(i) is the correctly predicted values in the ith subcellular

locations, and S(i) represents the total values in the ith subcellular

locations.

Mean intersection over union (MIoU) is another standard

metric for segmentation purposes (Rahman et al., 2022).

Intersection over union (IoU) is a ratio computed on a per-

class basis between the ground truth and the protein subcellular

location prediction. Mean intersection over union (MIoU) is the

average of the IoU ratio which can been calculated as follows:

IoU � T ⋂ P

T ⋃ P
, (17)

MIoU � 1
k + 1

∑k

i�0
pii∑k

j�0pij +∑k
j�0pji − pii

, (18)

where it is assumed that the total number of classes is (k + 1), and

pij is the amount of pixels of class i inferred to class j. pii
represents the number of true positives, while pij and pji are

FIGURE 6
The neural network training curves for four denoising models
which are Unet, TransUnent, FFDNet, and PLMF-net.

FIGURE 7
Results of deep-learning-based image denoising. Different stains and cell cultures. The first column shows the source optical images of Hela
cells; the second column shows the ground truth optical images; and the following two columns display the denoising results by UNet and
MultiFusion models, respectively.
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usually interpreted as false positives and false negatives,

respectively.

Pearson’s correlation coefficient (PCC) (rpy ∈ [−1, 1]) is

another metric which give the relationships between the feature

values and the predicted values by measuring the correlation

between the pixels of the true and predicted images. Given N

sample pairs {(p1, y1),..., (pN, yN)}, we can get:

rpy � ∑N
i�1(pi − �p)(yi − �y)


























((∑N

i�1(pi − �p)2)(∑N
i�1(yi − �y)2))√ (19)

where �p and �y are the sample means. Note that when pi and yi are

binary, rpy becomes the Matthews correlation coefficient which is

known to be more informative than the F1 score (Dice

coefficient) on imbalanced datasets.

MSE (mean square error) is a function that is used to evaluate

the difference between the targeted values and the predicted

values (Voronin et al., 2020). RMSE (root mean square error)

further evaluates the spatial detail information between images,

while NRMSE (normalized root mean square error) normalizes

RMSE for easier observation and comparison. For the image

prediction work, the NRMS can be applied in computing the

accuracy between the pixel in the predicted image and the same

pixel in the truth image, which was obtained by:

MSE � 1
M × N

∑M

i�1∑N

j�1(u′(i, j) − u(i, j))2, (20)

RMSE �











MSE(u′, u),√

(21)

NRMSE �





























1
M × N∑M

i�1∑N
j�1(u′(i, j) − u(i, j))2√

u′(i, j) max − u′(i, j) min,
, (22)

where u′(i, j), u(i, j) represent the image to be evaluated and the

original image, respectively. N represents the length and width of

the image.

The peak signal to noise ratio (PSNR) is the most commonly

metric used in the image quality assessment, which can be

obtained by:

PSNR � 10log10
⎛⎝ mx × my × V 2

max∑r,t[t(x, y) − d(x, y)]2⎞⎠, (23)

where Vmax denotes the maximum predicted value of the source

image. t(x,y) is the matrix of the raw-source image, d(x,y) is the

matrix of the noise-removed image, and (x,y) denotes the pixel

coordinate in an given mx × my image.

Structural similarity index (SSIM) can be used as a quality

evaluation index for similarity comparison among image

prediction results, which can be obtained by:

s(x, y) � σxy + c3
σxσy + c3

, (24)

l(x, y) � 2μxμy + c1

μ2x + μ2y + c1
, (25)

c(x, y) � 2σxσy + c2
σ2x + σ2y + c2

. (26)

The SSIM value is calculated for two signals as well as for

images after combining Eqs 24 and 25 as:

SSIM(x, y) � [l(x, y)]m[c(x, y)]n[s(x, y)]p
� (2μxμy + C1)(2σxy + C2)(μ2x + μ2y + C1)(σ2x + σ2y + C2) (27)

where m, n, and p denote the magnitude values of the structure

component s(x,y), the luminance component l(x,y), and the

contrast component c(x,y), respectively. µx and µy are the

average of xi, yi, respectively. σx and σy are the variance of xi
and yi, respectively.

3.3 Comparison among the different
methods for image denoising and
restoration

In this work, we mainly focus on applying various deep-

learning methods to significantly enhance the quality of non-

linear optical images. A series of cellular images acquired using

GE’s IN Cell Analyzer systems were tested in this work. The

neural network training curves for four different restoration

methods which are Unet, TransUnet, Fast and Flexible

Denoising Convolutional Neural Network (FFDNet), and

Pyramid Real Image Denoising Network (PRIDNet) module

are shown in Figure 6. For better performing Transformer

and Unet fusion model, as Figure 1 depicts, the training

process only took about 140 steps until the training accuracy

increased over 96%. The error decay in Figure 6 demonstrates

that the method with the PRIDNet mechanism had better

performance on different training samples in comparison with

the Unet, TransUnet, and FFDnet models, where our strategy

avoids over-fitting because the error does not increase with the

change of the training mode, and the error attenuation remains

stable.

For a better comparison, we built a set of raw-cell optical

images to have a common ground truth, and the zero-mean

TABLE 1 The performance comparison results of the various deep
learning-based denoised images related to subcellular detection
with three different metrics (SSIM, RMSE, and PSNR).

Model SSIM↑ RMSE↓ PSNR (dB)↑

Unet 0.775 5.762 28.398

FFDNet 0.817 4.731 30.683

TransUnet 0.842 3.240 31.469

PRIDNet 0.845 2.707 31.716
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Gaussian noise with independent identical distribution is mixed

into the original image as the input feature map for training (seen

in Figure 7). The performance comparison results of the various

deep-learning-based denoise images related to subcellular

detection with three different parameters (RMSE, PSNR, and

SSIM) are also shown in Figure 7.

The denoising ability of different deep-learning algorithms

based on Unet, TransUnet, FFDnet, and the denoising method

based on PRIDNet is compared. This work further uses several

metric indicators such as SSIM, RMSE, and PSNR values for

quantitative analysis (seen in Table 1). As discussed previously,

the Structural Similarity Index (SSIM) which is usually used as a

representative image fidelity measurement by judging the

structural similarity of two optical images based on three

metrics, which are luminance, contrast, and structure, is a

valuable and meaningful reference-based index for natural

images. Another quantified metric PSNR used in this work to

analyze the denoising effect for these different deep-learning

methods. The higher the PSNR value, the higher the image

fidelity. The quantified metric RMSE is also used to measure

the accuracy of different deep-learning-based imaging-

restoration methods relative to the truth data. From Table 1,

it can be clearly found that the PRIDNet method is better than

the Unet, TransUnet, and FFDnet denoising methods at different

condition sets. The increase of PSNR from 28.398 to 31.716 dB,

and the decrease of RMSE from 5.762 to 2.707 validate the

remarkable resolution enhancement; meanwhile, the higher level

SSIM index of 84.5% of the PRIDNet method compared to 77.5%

of the Unet method proves the authenticity of reconstruction.

Apparently, SSIM and PSNR of the PRIDNet network

reconstruction are both better than that of the deconvolution

results of Unet, TransUnet, and FFDnet-based denoising

measurements. As discussed previously, it is proved that the

PRIDNet method can help in cell-imaging restoration work and

improve its denoising performance.

3.4 Comparison of the performance with
various prediction models

In this section, it is investigation and comparison among

different deep-learning models are conducted for predicting the

subcellular organelle localization from label-free optical

microscopy images. Even though the traditional imaging-

based pipeline has cells stained, the SRS imaging can give

more information on cell shape and subcellular structure

without using molecular probes. At the same time, it also

produces low-contrast and complex images, which makes it

difficult to clearly indicate the biochemical features of these

cells. So there exist some challenges of using these deep-

learning-based methods to identify, segment, and quantify

each subcellular structure in the cell’s optical image. As a

FIGURE 8
Predicted organelle fluorescence from hyperspectral SRSmicroscopy images by using different methods. The first column shows the input SRS
image, the second column shows the ground-truth fluorescence image, and the following three columns display the predicted fluorescence results
by UwUNet, U-Net, and PLMF-Net, respectively, for nuclei (top row), mitochondria (middle row), and endoplasmic reticulum (bottom row).
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result, some advanced analysis methods are needed to be

developed for exploring the rich information hidden in a cell

image. Based on the aforementioned reasons, the new PLMF-net

method is proposed in this work which bridges the Transform

model and convolutional neural networks to automatically

segment organelles.

To demonstrate the application of the deep-learning model

in label-free organelle prediction, we used fluorescence imaging

of the fixed lung cancer cells as a ground-truth model and SRS

microscopy images as the source-image model. As shown in

Figure 8, the first column shows live cell Raman optical image,

the second column is ground-truth fluorescence images taken

after the cells that are stained, and the following three columns

are predicted fluorescence cell images with the UwUnet method,

Unet method, and PLMF-net method, respectively. From the

experimental analysis results, we can see that the PLMF-net

method can accurately predict the location of each organelle from

cell-optical imaging data at the same time.

In order to quantitatively compare and analyze the effects of

different prediction methods, we calculated the several

quantitative metrics to explore the differences between the

predicted results and expected results of different methods, so

FIGURE 9
Themean intersection over union (mIoU) of different deep-learningmodels over all SRSmicroscopy images in the fixed lung cancer cell (A549,
fromATCC) detection dataset. (A)mIoU for each epoch comparison among differentmethods. Unet (purple triangle dash line), UwUnet (green circle
solid line), PLMFNet (pink arrow dotted line) represent Unet, UwUnet, and PLMFNet, respectively; (B) Box plot of mIoU accuracy over all organelle
(nuclei, mitochondria, and endoplasmic reticuli) prediction task sets with the PLMFNet-based learningmodel and comparedwith that of various
deep neural network-based prediction models such as Unet and UwUnet learning models. (C) Box plot of mIoU accuracy on the nuclei prediction
task set with PLMFNet-based learning model and compared with that of varied deep neural network-based prediction models such as Unet and
UwUnet learning models on all. Horizontal bars depict Mann–Whitney U tests for significance of differences in the mIoU value between different
deep-learning models (corrected p < 0.001; not significant p > 0.05). (D) The box plot of mIoU accuracy on the endoplasmic reticuli prediction task
set with the PLMFNet-based learning model and compared with that of varied deep neural network-based prediction models such as Unet and
UwUnet learningmodels. Horizontal bars depict theMann–Whitney U tests for significance of differences in themIoU value between different deep-
learning models (corrected p < 0.001; not significant p > 0.05). (E) The box plot of mIoU accuracy on the mitochondria prediction task set with
PLMFNet-based learning model and compared with that of varied deep neural network-based prediction models such as Unet and UwUnet learning
models. Horizontal bars depict Mann–Whitney U tests for significance of differences in the mIoU value between different deep-learning models
(corrected p < 0.001; not significant p > 0.05).
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as to compare the prediction performance between the methods

proposed in this work with other classical methods. We first

measured the accuracy of label-free prediction algorithms using

the mean intersection over union (IOU) evaluation metric. Here,

we used the box-plot graph to give a more visual and intuitive

representation for the quantitative evaluation of mIOU

parameters on the prediction results of different algorithms

(Figure 9). The boxplot in Figure 9 shows five statistics in the

data: minimum, first quartile, median, third quartile, and

maximum. In the Figure 9, the minimum value is represented

by the extension of the black lines at the bottom, while the

maximum value is represented by the extension of the black line

on the top. The range of these two black lines refers to the mIOU

accuracy range. The top and bottom of the box refer to the

accuracy of the upper quartile (=0.75) and lower quartile (=0.25),

respectively. The gray solid line in the box indicates the median

accuracy. It can be seen from Figures 9B–E that compared with

other methods, the PLMFNet method achieves the best

performance among all the nuclei, mitochondria, and

endoplasmic reticuli datasets. Compared to the observed

datasets, PLMFNet significantly performed favorably in metric

mIoU with 0.902, 0.894, and 0.893 for the nuclei, mitochondria,

and endoplasmic reticuli task sets, respectively, against

alternative UwUnet approaches with mIoU 0.8520.861, 0.854.

Specifically, the classical Unet approach performed significantly

worse with mIoU 0.716, 0.771, 0.731, respectively.

In addition, we also give a comparison of the prediction

performance with the mean pixel accuracy curves among the

Unet, UwUnet, and PLMFNet models as shown in Figure 10. One

can observe from Figures 9, 10 that the PLMFNet ensemble

method can achieve the highest mean pixel accuracy of 0.92.

To further characterize the predictive performance of the

three variants of deep-learning-based predictor on the organelle

(nuclei, mitochondria, and endoplasmic reticuli) segmentation

task and to give comparable measures, we also provide cosine

correlation performance metric to quantify the accuracy of the

predictions. A cosine-similarity value is usually used to

determine the degree of similarity between two non-zero

vectors by measuring the cosine of the angle between them in

the inner product space.

Compared with Pearson similarity measure, the adjusted

cosine similarity metric is an improved evaluation index and a

modified form of vector-based similarity. It makes up for the

disadvantage that different users may have different scoring

schemes just like some users may generally give a higher

evaluation of the project, while others may give a lower

evaluation of the project. In order to eliminate the

disadvantage of vector-based similarity, the adjusted cosine-

similarity measure subtracts the average score from the score

of each user on related items. In principle, Pearson’s method will

perform worse than the cosine similarity approach in contexts

where users tend to have very differing sets of items in their

profiles. It is because that the cosine similarity approach provides

a kind of Bayesian regularization for the metric, ensuring that the

similarity is not completely determined by the item subset (which

may be very small) jointly owned by two users, while this does

not exist in Pearson correlation although it can be added by

significance weighting Figure 11A.

Compared with other methods, it can be seen in Figures

11B–E that the PLMFNet method achieved the top performance

on all the nuclei, mitochondria, and endoplasmic reticuli

datasets. Compared to the observed datasets, PLMFNet

significantly performed favorably in the metric cosine

similarity value with 0.978, 0.982, 0.957 for the nuclei,

mitochondria, and endoplasmic reticuli task sets, respectively,

against alternative UwUnet approaches with cosine similarity

values of 0.951, 0.969, and 0.943. Especially, the classical Unet

approach performed significantly worse with cosine similarity

values of 0.862, 0.821, and 0.883, respectively.

Moreover, in terms of giving an explicit and quantitative

analysis, the details of the evaluation results are calculated in this

work shown in the Tables 2–4. For different prediction models,

three different quantitative parameters are computed to compare

and analyze the accuracy of protein subcellular localization from

label-free live-cell imaging. As can be seen from Tables 2–4, it

presents the label-free prediction results of three variants of deep-

learning-based predictor on organelle (nuclei, mitochondria, and

endoplasmic reticuli) segmentation task, in terms of quality

metric values with NRMSE, PCC, and mean IoU. Comparing

with the Unet method and UwUnet prediction methods, our

proposed method PLMFNet surpasses the Unet and UwUnet

methods on all quality metric values with NRMSE, PCC, and

FIGURE 10
Mean pixel-accuracy comparison among different methods.
The red dashed line, green dotted line, and purple dashed dotted
lines represent the Unet, UwUnet, and PLMFNet models,
respectively.
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FIGURE 11
Comparison of the cosine correlation performance among various prediction algorithms. (A) The cosine correlation performance measures
that are typical for predictive tasks. (B) The box plot of cosine similarity value over all organelle (nuclei, mitochondria, and endoplasmic reticuli)
prediction task sets with the PLMFNet-based learning model and compared with that of varied deep neural network-based prediction models such
as Unet and UwUnet learning models. (C) The box plot of cosine similarity value on the nuclei prediction task set with the PLMFNet-based
learning model and compared with that of varied deep neural network-based prediction models such as Unet and UwUnet learning models. (D) The
box plot of cosine similarity value on endoplasmic reticuli prediction task set with PLMFNet-based learning model and compared with that of varied
deep neural network-based prediction models such as Unet and UwUnet learning models. (E) The box plot of cosine similarity value on the
mitochondria prediction task set with the PLMFNet-based learning model and compared with that of varied deep neural network-based prediction
models such as Unet and UwUnet learning models.

TABLE 2 Comparison of quality measures for labeling-free prediction
results with the PLMFnet model.

Organelle Our method model

NRMSE↓ PCC↑ mIOU↑

Nucleus 0.193 ± 0.007 0.920 ± 0.002 0.902 ± 0.006

Endoplasmic reticulum 0.206 ± 0.009 0.924 ± 0.003 0.894 ± 0.005

Mitochondria 0.214 ± 0.002 0.911 ± 0.005 0.893 ± 0.004

Here, ↓ indicates that the lower the index value, the better the performance.↑ indicates

that the higher the index value, the better the performance of the model.

TABLE 3 The prediction result measure of protein subcellular
localization using the UwUnet model.

Organelle model UwUnet method

NRMSE↓ PCC↑ mIOU↑

Nucleus 0.201 ± 0.002 0.892 ± 0.002 0.852 ± 0.008

Endoplasmic reticulum 0.225 ± 0.003 0.903 ± 0.005 0.861 ± 0.003

Mitochondria 0.217 ± 0.004 0.880 ± 0.006 0.854 ± 0.005

Here, ↓ indicates that the lower the index value, the better the performance.↑ indicates

that the higher the index value, the better the performance of the model.
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mean IoU. Especially for the nuclei prediction task, PLMFNet

achieves a 5.0% improvement over the UwUnet method and

18.6% of mIoU over the Unet method in terms of mIoU, and for

the mitochondria prediction task, PLMFNet achieves a 3.9%

improvement over the UwUnet method and 16.2% of mIoU over

the Unet method in terms of mIoU. To sum up, through the

comprehensive analysis of mIOU quantitative indicators

corresponding to different methods in Tables 2–4, we can

draw a more accurate conclusion from the quantitative

standard that our method is the best of all methods.

Furthermore, not only is the mIOU metric used as the

evaluation index, more quantitative indicators are also utilized

to compare and analyze the performance of different prediction

models in this section. Table 2 shows that on the nuclei

prediction test set, the obtained NMSE of PLMFNet model is

0.193, which has less than half that of the classical UNet model,

and 3.98% improvement compared to UwUnet model. On the

mitochondria-prediction test set, one can observe that the lowest

NMSE value is acquired by the PLMFNet model as 0.217, which

achieves a 55% improvement compared to the classical UNet

model, and an 8.44% improvement compared to the UwUnet

model. As for the mitochondria prediction test set, the obtained

NMSE of the PLMFNet model is also lowest at 0.214 which has

less than half that of the classical UNet model and 1.38%

improvement compared to UwUnet model.

In order to further explore the prediction performance of

different models, we give more calculations to correlate the pixels

for the obtained organelle fluorescence images and the predicted

organelle fluorescence from SRS microscopy images with three

TABLE 4 Comparison of quality measures for labeling-free prediction
results with the Unet model.

Organelle model Unet model

NRMSE↓ PCC↑ mIOU↑

Nucleus 0.442 ± 0.003 0.843 ± 0.004 0.716 ± 0.006

Endoplasmic reticulum 0.454 ± 0.002 0.856 ± 0.009 0.771 ± 0.008

Mitochondria 0.511 ± 0.007 0.835 ± 0.005 0.731 ± 0.004

Here, ↓ indicates that the lower the index value, the better the performance.↑ indicates

that the higher the index value, the better the performance of the model.

FIGURE 12
Subcellular localization prediction results of differentiation model from the label-free cell image experiments. The results for different
organelles’ locations include nuclei (second column), mitochondria (third column), and endoplasmic reticulum (right) from the single raw SRS-
imaging cell (left).
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variants of the deep learning-based predictor, respectively. Another

quantitative parameter PCC is also applied in detecting the

consistency between the prediction results and the target values,

so as to further study the variability. From Tables 2–4, it can be

observed that the PLMFNet model shows the top performance in

terms of the PCC coefficient. The predicted PCC value of the nuclear

validation set is as high as 0.92 for our proposed PLMFNet model.

Similar results were also observed in mitochondrial samples and the

endoplasmic reticuli test set (Pearson’s r = 0.911 and 0.924,

respectively). In terms of the nuclei, mitochondria, and

endoplasmic reticuli test sets, the PCC similarity coefficient results

from PLMFNet are all higher than the classical UNet performance as

follows: 6.99%, 6.95%, and 4.44%, and the PCC similarity coefficient

results from PLMFNet are all higher than the UwUNet performance

as follows: 3.14%, 3.52% and 2.33%.

4 Discussions

For each case prediction of SRS microscopy images in the fixed

lung cancer cell-detection dataset, differences of the median IOU

between cases and deep-learning models were calculated, and

statistical significance was determined using with the

Mann–Whitney U test (Figure 9). As shown in Figures 9C–E, the

Mann–Whitney U test was used to determine significant differences

between each assessment ofmIOUquantitative indicators against the

same dataset in another predictionmethod. Comparedwith theUnet

model, the PLMFNet model showed significant statistical difference

in the mIOU value for predicting the nucleus, endoplasmic

reticulum, and mitochondria (All p < 0.001). Compared with the

UwUnet model, the PLMFNet model showed significant statistical

difference in the mIOU value for predicting the nucleus and

mitochondria (p < 0.01), but it depicted no statistical difference in

the mIOU value for predicting the endoplasmic reticulum (p > 0.05).

For all analyses, the PLMFNet model displayed higher prediction

levels in mIOU quantitative indicators of the nucleus, endoplasmic

reticulum, andmitochondria validation sets to theUnet andUwUnet

methods on mean IoU metric values (Figure 9).

Overall, we demonstrated that the PLMFNet-based predictor

from label-free microscopy offers a powerful experimental

platform for conducting protein subcellular localization of

living-cell imaging. The experiment of this work mainly

investigates the results of the labeling-free method based on

deep learning for protein subcellular localization from

femtosecond-stimulated Raman spectroscopic microscope

images. Compared with other classical optical-imaging methods,

the stimulated Raman spectroscopy imaging has the advantages of

not requiring fluorescent molecular markers and obtaining more

information. However, this rich and overlapped information in the

same collected image also brings difficulties of image analysis and

feature extraction. Though a few of the label-free staining methods

based on Raman imaging have been proposed and show promising

results in some organelles, there is still a lack of rich and effective

means to predict the subtle changes of the Raman spectra for single

organelles.

The results for subcellular localizations can be seen in Figure 12.

One SRS raw image (left) for lung cancer (A549, from ATCC) cells

was output from different deep-learning models at the same time to

determine the accuracy of subcellular localization predictions which

include nuclei (second column), mitochondria (third column), and

endoplasmic reticulum (right). To sum up, through the

comprehensive analysis of all three quantitative indicators in

Figure 12 and Tables 2–4, we can draw a more accurate

conclusion from the quantitative standard that our method is the

best among all modules in Tables 2–4. In conclusion, our results

show that deep learning creates some new opportunities for

accurately predicting the location of cellular organelles from

label-free cell optical images. Compared with the existing U-net-

based medical image-prediction methods that are insufficient in

catching on long-range dependencies in tested images, the pixel-

level multimodal fusion predictor combines the merits of the

Transform and UNet methods. The new multimodal fusion

method can intelligently reveal and extract the non-linear

correlation between features, so as to improve the performance

of prediction. Additionally, as illustrated in Section 3.3, our deep-

learning approach also improves the image SNR, which in addition

offers a solution to highly suppress image artifacts and solve the

distortion problems for high-speed SRS cell imaging.

5 Conclusion

In this work, we introduced a pixel-level multimodal fusion

deep-network methodology which organically fuses the CNN

branch and Transformer branch for efficiently predicting the

location of cellular organelles from label-free cell optical images.

The performance of the proposed pixel-level multimodal method

was estimated and compared with other deep-learningmodels such

as UwU net and Unet methods. It is shown from the experimental

results that the new pixel-level multimodal fusion deep networks

have top prediction performance, suggesting that they have great

potential in the subcellular prediction of label-free cell optical

images. All these experimental results proved that compared

with previous CNN-based self-attention segmentation methods

which lacked understanding of long-range dependencies in the

image, the proposed predictor can encode strong global context by

extracting the image features as sequences and utilize the low-level

CNN features with a U-shaped hybrid architectural scheme that

helps in improving the prediction accuracy. While our study

focused on stimulated Raman scattering (SRS) microscopy, one

could apply the same analytic procedure to other label-free optical-

imaging instruments such as the bright field, phase, and differential

interference contrast (DIC). In future work, we will further develop

more advanced deep-learning methods to the hybrid Transform

and Unet method, so as to further improve the performance of the

protein subcellular location on cell optical imaging.
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