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Background: Previous studies have shown that glycosylation of proteins ofen

plays an important role in HCC. However, the potential mechanism of

glycosylation in HCC has not been described systematically.

Methods: We comprehensively evaluated the glycosylation patterns in HCC

samples based on 43 glycosylation regulators, and annotated the modification

patterns with the enrichment of immune cells and stromal cells. Considering

the heterogeneity of HCC patients, the glycosylation score was constructed

using single-sample gene set enrichment analysis (ssGSEA). We also explored

the drugs that different HCC patients were sensitive to based on glycosylation

mode and score.

Results: We identified three glycosylation-regulated gene subtypes. By

annotating the subtypes, it was found that the glycosylation regulated gene

subtypes was highlymatchedwith three immunophenotypes of HCC (immune-

inflamed, immune-excluded, and immune-desert), regardless of the

characteristics of immune cell infiltration or prognosis. Based on the

characteristic genes of glycosylation-regulated gene subtypes, we

constructed a glycosylation-related model, and found that glycosylation-

related model was highly consistent with the glycosylation regulated gene

subtypes. The glycosylation score that evaluates the glycosylation

characteristics of a single HCC sample has high prognostic value, and the

prognosis of patients with high glycosylation score is significantly worse.

Interestingly, we found that the glycosylation score was closely related to
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tumor node metastasis (TNM) staging. By applying glycosylation-regulated

gene subtypes and glycosylation score to explore the sensitivity of different

patients to anticancer drugs, it was found that the sensitivity of Thapsigargin,

Shikonin, Embelin and Epothilone. B was closely related to the

glycosylation mode.

Conclusion: This study reveals that the diversity of glycosylation patterns plays

an important role in HCC. Therefore, evaluating the glycosylation patterns of

patients with HCC will be helpful in identifying the characteristics of immune

cell infiltration and selecting accurate treatment methods.

KEYWORDS

hepatocellular carcinoma, glycosylation, prognosis, immunocyte infiltration, sensitive
drugs

1 Introduction

Post-translational modification of proteins is the main factor

that affects the functional diversity of the proteome. At present,

post-translational modification of protein mainly includes

phosphorylation, glycosylation, ubiquitination, nitrosylation,

methylation, acetylation, lipidization, and proteolysis (Vu

et al., 2018). Glycosylation, an important post-translational

modification of proteins, plays an important role in various

diseases, such as tumors, viral infections, and Alzheimer’s

disease, mainly by affecting the stability of protein structures

(Park, 2019; Tao and Huang, 2019; Liu et al., 2021). Abnormal

glycosylation can affect the progression of a variety of tumors and

usually involves the regulation of epithelial mesenchymal

transformation and the immune microenvironment

(Wattanavises et al., 2019; Zhang et al., 2020a). Therefore, an

in-depth exploration of the role of these regulatory factors in

hepatocellular carcinoma (HCC) will help reveal their

mechanism of action.

Glycosylation of different proteins play different roles in

HCC. For example, Hitomi et al. showed that N-glycosylation of

fuc increases with the progression of HCC and can be used as an

independent prognostic factor for HCC (Asazawa et al., 2015). A

recent study on HCC showed that N-glycosylation of Ces1 can

inhibit the proliferation of HCC cells (Na et al., 2020).

Glycosylation of LAMP2 and SV40 serves as a protective

mechanism against HCC (Pousset et al., 1997; Chiu et al.,

2022). Glycosylation of HCC mostly occurs in oncogenes such

as AFP, AACT, and MDR, which can be used as risk factors for

HCC (Ledoux et al., 2003; Lee et al., 2022). Glycosylation of these

genes is not only involved in the molecular mechanism of HCC

progression but is also closely related to tumor drug resistance. In

HCC, mRNA, miRNAs, and lncRNAs can participate in the

regulation of glycosylation (Liu et al., 2017; Liu et al., 2018).

Glycosylation of PD-L1 may lead to immunosuppression or

inactivation (Huang et al., 2019). However, the role of

glycosylation in the tumor microenvironment of HCC

remains unclear.

Owing to experimental limitations, research in the field has

been limited to one or two glycosylation regulators, even though

the mechanism of glycosylation regulation in HCC is regulated

by the interaction of many other glycosylation regulators in a

highly coordinated manner. Therefore, a systematic

understanding of the role of multiple glycosylation regulators

is essential for studying glycosylation regulatory models in HCC.

In this study, we integrated the genomic information of HCC

samples in ‘The Cancer Genome Atlas’ (TCGA) and Gene

Expression Omnibus (GEO) databases to comprehensively

evaluate the glycosylation regulatory model and defined

different subtypes using the enrichment of immune cells and

stromal cells. We identified three glycosylation subtypes in this

study and surprisingly found that the characteristics of these

three subtypes were highly consistent with immune rejection,

immune inflammation, and immune desert phenotypes. In

addition, we constructed a glycosylation score for HCC to

predict the prognosis and drug sensitivity of different patients.

2 Materials and methods

2.1 Hepatocellular carcinoma data set and
preprocessing

HCC datasets with gene expression data and complete

clinical information were retrieved from TCGA and GEO

databases. Finally, TCGA-LIHC, GSE76427, and

GSE14322 were included in subsequent analysis. By deleting

samples with missing clinical information in the dataset, TCGA-

LIHC included 281 HCC samples. GSE76427 included

microarray data of 115 HCC cases with complete clinical data.

GSE14322 included 167 samples, including 115 cases of HCC

and 52 cases of normal HCC. Gene annotation and data

standardization were performed to obtain a standard gene

expression matrix. Data on somatic mutations and copy

number variation (CNV) of HCC were obtained from TCGA.

The list of glycosylation regulators were summarized from
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previous literature and the molecular signature database V7.4

(Liberzon et al., 2015). The specific analysis process of this study

is shown in Figure 1.

2.2 Unsupervised hierarchical clustering
analysis of glycosylation regulators

Univariate Cox regression analysis was applied to screen for

prognosis-related glycosylation regulatory genes, with a

screening criteria of p < 0.05. The limma package was applied

based on the GSE14322 cohort analysis of glycosylation

regulatory genes differentially expressed in HCC and adjacent

tissues. The intersection of the two was used to identify

differentially expressed glycosylation regulatory genes with

prognostic value for subsequent unsupervised cluster analysis.

Before unsupervised clustering, the conditional survival curve

was constructed using the surviviner and survival packages to

check the availability of the data. Consensus clustering was

applied to build a glycosylation regulatory gene model, and its

clustering number and stability were determined by a consensus

clustering algorithm (Timmerman et al., 2013). This process was

performed on the ConsensusClusterPlus package of R version

4.1.2, which was repeated 1,000 times to ensure the stability of the

model (Wilkerson and Hayes, 2010).

2.3 Verification of glycosylation regulated
gene subtypes

To verify the prognostic value of different glycosylation

regulatory genes, survival analysis of patients with different

subtypes was performed using the surviviner and survival

packages to compare the survival of different subtypes.

Nomograms were constructed for clinical application based on

age, sex, tumor node metastasis (TNM) stage, race, and

glycosylation-regulated gene subtypes. A calibration curve was

constructed to test the accuracy of the nomogram. This process

was performed on the nomogramEx package.

2.4 Principal component analysis and
calculation of glycosylation score

To further verify the subtypes of glycosylation regulatory

genes, common differentially expressed genes among the

FIGURE 1
Flow-process diagram.
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different subtypes were analyzed using the limma package as

glycosylation-related genes. Univariate Cox regression was used

to screen for glycosylation-related genes with prognostic value.

The advantage of PCA is that it can cluster genes with the largest

contribution, whereas genes with smaller contributions are not

included in the clustering process. In this study, PCA was used to

conduct a secondary clustering of patients with HCC. Surviviner

and survival packages were used to explore the survival of

patients with different subtypes. Then, single-sample gene set

enrichment analysis (ssGSEA) was used to calculate the

glycosylation score for each sample (Yi et al., 2020). The

relationship between the glycosylation score and different

subtypes was explored to verify the predictive power of the

glycosylation regulation model in HCC.

2.5 Analysis of immune cell infiltration and
stromal cell enrichment

An increasing number of studies have shown that the tumor

microenvironment plays an important role in the pathogenesis

and drug resistance of tumors (Wang et al., 2021). Exploring the

infiltration of immune cells in different glycosylation regulatory

genes is not only helpful in the choice of immunotherapy for

different patients, but also in defining different glycosylation

subtypes. xCell is a new gene signature method based on the

1822 pure human cell-type transcriptome, which infers

64 immune and stromal cell types (Aran et al., 2017). To

show the differences in immune cell infiltration and stromal

cells in different subtypes, we used xCell to comprehensively

analyze the distribution of immune and stromal cells in each

subtype. This process was primarily performed on the IOBR

package and was visualized using the pheatmap package.

2.6 Immune checkpoint analysis

The distribution of immune checkpoints is closely related to

HCC (Xu et al., 2018). In this study, we selected common

immune checkpoints for HCC, including CYBB, IDO1,

KIR3DL1, HAVCR2, CD274, PDCD1, TIGIT, CTLA4, LAG3,

BTLA, CD27, CD28, CD40, IL2RB, TNFRSF9, TNFRSF4,

TNFRSF18, and ICOS. By verifying the expression of immune

checkpoints in different subtypes, we can determine the

responsiveness of patients with different subtypes to

immunotherapy.

2.7 Gene set variation analysis

GSVA can calculate the pathway enrichment score of each

sample according to the expression matrix and enrichment of the

reaction pathway in the sample (Tao et al., 2021). The

clusterProfiler package was used to calculate the path

enrichment score of each sample and to construct the

expression matrix of the pathway. The limma package was

used for differential expression analysis to determine pathways

with differences between different subtypes. In this study, to

show the enrichment of pathways in different genotypes, we

performed GSVA analysis on the subtypes based on the

glycosylation-regulated gene model. h.all.v7.4. symbols.gmt

was downloaded from the MSigDB database as the reference

gene set, and p < 0.05 was considered statistically different.

2.8 Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC)

database (Yang et al., 2013), which is designed to apply

therapeutic biomarkers to improve the therapeutic efficacy in

cancer patients, can detect drug sensitivity based on the genetic

characteristics of different patients. In this study, to guide clinical

medication based on the glycosylation regulatory gene subtype,

we applied the pRRophetic package to identify sensitive drugs in

patients with HCC with different glycosylation subtypes.

2.9 Statistical analyses

All statistical analyses were performed using R version 4.1.2.

Measurement data between the two groups were tested for

normality and homogeneity of variance and significant

differences estimated using two-sample t-test if the two

conditions were met, and a Wilcoxon rank-sum test

otherwise. The measurement data among three groups were

analyzed using ANOVA, and the Bonferroni test was used for

comparison between the two groups. Statistical significance was

set at p < 0.05.

3 Results

3.1 Genetic variation of glycosylation
related genes in hepatocellular carcinoma

This study analyzed a glycosylation gene modification model

based on 255 glycosylation-regulatory genes (Supplementary

Table S1). A total of 56 prognosis-related glycosylation

regulatory genes (Figure 2A) were identified using univariate

Cox regression analysis. Excepting that the high expression of

MGAT4C and GALNT15 suggested a better patient prognosis, all

the other genes were risk factors for HCC. By differential

expression analysis of the 56 prognosis-related genes, 43 genes

were found to have significant differences between HCC and

normal tissues (Figure 2B). The positions of 43 differentially

expressed glycosylation regulators with prognostic value on
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chromosomes are shown in Figure 2C. Based on the analysis of

43 prognostic genes of mutation data in the TCGA database,

18 genes, namely XXYLT1, STT3B, POMGNT2, GXYLT1,

B4GALT5, B4GALT3, B4GALT2, B3GNTL1, B3GAT3,

B3GALNT1, ALG3, TMTC3, TMEM165, MOGS, PIGZ, PIGM,

EXT2, and MUC6 were mutated in HCC. Among them, MUC6

had the highest mutation frequency (Figure 2D). Most of the

mutations were missense, and MUC6 expression was

significantly lower in HCC, suggesting that mutations in

MUC6 may affect MUC6 expression. CNV analysis suggested

that amplified copy number variation appeared in PIGM,

B4GALT3, and MGAT4B, and deletion CNV appeared in

MUC6, B3GAT3, and B4GALT4 (Figure 2E). Gene mutation

and CNV analyses indicated that the CNV of the 43 glycosylation

regulators was the main factor affecting their expression in HCC.

3.2 Modification models mediated by
43 glycosylation regulating genes

The conditional probability survival results are shown in

Figure 3A. The longer the survival time of patients with HCC, the

higher the subsequent survival rate. The 5-year survival rate of

patients increased by 66%, 75%, 81%, and 86%, respectively, from

FIGURE 2
Genetic variation in glycosylation-regulatory genes in HCC. (A). Univariate Cox regression analysis of glycosylation regulatory genes; (B).
Differential expression of glycosylation regulated genes with prognostic value; (C). Location of 43 differentially expressed genes with prognostic
value on the chromosome; (D). Gene mutation of glycosylation regulator; (E). CNV of glycosylation regulators.
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the overall survival rate of 49%. The conditional probability of

survival was consistent with that of patients with HCC, indicating

that the data could be used for subsequent analysis. Based on

consensus clustering, HCC patients were divided into three

subtypes (Figure 3B): female patients, T3-T4 patients, and

M1 patients were most likely to be in Cluster_A, and

M0 patients were not found in Cluster_C. Patients in

Cluster_B had the best prognosis among the three

glycosylation types, whereas the survival of patients in

Cluster_A and Cluster_C was not significantly different

(Figure 3C), which showed that the typing model was highly

correlated with the TNM stage. Therefore, we constructed a

nomogram based on the glycosylation regulatory gene model.

The calibration curve showed the high accuracy of the

nomogram (Figure 3D). Using the nomogram plot, we can

predict patient survival at five and 8 years based on age, sex,

TNM stage, ethnicity, and glycosylation regulatory gene model.

3.3 Annotations of glycosylation
regulatory gene model

To understand the biological behavior associated with the

different glycosylation regulatory models, we annotated them

using immune cell infiltration analysis, stromal cell enrichment

analysis, immune score, stromal score, immune checkpoint, and

FIGURE 3
Glycosylation regulatory gene model. (A). Conditional probability survival curve; (B). Apply consensus clustering to construct a glycosylation
regulator gene model; (C). Kaplan-Meier survival analysis of the glycosylation regulator gene model; (D). Calibration curve at 5 and 8 years; (E).
Nomogram.

Frontiers in Genetics frontiersin.org06

Zhao et al. 10.3389/fgene.2022.1001901

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1001901


GSVA. Immune cell infiltration analysis showed (Figure 4A)

basophils_ xCell, and CD8. The naive T. Cells and macrophages_

M1_ Xcel and other immune cells in cluster_ A had the highest

infiltration, whereas cluster_C had the lowest infiltration. The

distribution of stromal cells, such as preadipocytes and

hepatocytes, in different subtypes was consistent with that of

the immune cells. Surprisingly, stromal and immune scores also

tended to be consistent across the subtypes (Figure 4B). Analysis

of the expression of immune checkpoints in different

glycosylation regulatory gene subtypes (Figure 4C) revealed

that all the immune checkpoints, except IDO1, KIR3DL1, and

CD40, had the highest expression in Cluster_A and the lowest

expression in Cluster_C. Based on the above analysis (Figures

4A–C), we classified Cluster_A as an immune rejection

phenotype, which was characterized by the highest immune

cell infiltration and stroma activation. Cluster_B was classified

as an immune-inflammatory phenotype, characterized by partial

immune activation. Cluster_C was classified as an immune desert

phenotype,characterized by immunosuppression. Further

mining of molecular mechanisms in different models of

glycosylation regulators. The GSVA results of Cluster_A and

Cluster_B indicated that pathways like (Figure 4D), G2-

M_checkpoint, PI3K/_AKT/_mTOR_signaling, inflammatory

response, and Myc Target were significantly enriched in

Cluster A, whereas xenobiotic metabolism, angiogenesis, and

coagulation were significantly enriched in Cluster_B. The GSVA

FIGURE 4
Annotation of the glycosylation regulatory genemodels. (A). Enrichment of immune cells and stromal cells in different subtypes; (B). Differences
in immune scores and stromal scores in different subtypes. (C). Differential expression analysis of immune checkpoints in different subtypes; (D). The
GSVA of Cluster_A-Cluster_B; (E). The GSVA of Cluster_B-Cluster_C.
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results of Cluster_ B and Cluster_C showed (Figure 4E) that G2-

M checkpoint, PI3K/_ AKT/mTOR signaling,

mTORC1 signaling, and other channels were highly enriched

in Cluster_B, whereas interferon gamma response, coalescence,

and adipogenesis were highly enriched in Cluster _ C.

3.4 Clinical features and transcriptomic
characteristics of the glycosylation-
related model

We verified the glycosylation regulatory model by

constructing a glycosylation-related model. First, the limma

package was used to analyze differentially expressed genes

between different glycosylation regulatory gene subtypes. The

screening criteria were | log(FC) | >1 and p < 0.05. In total,

1,592 differentially expressed genes were obtained from

Cluster_A and Cluster_B (Figure 5A). In total,

1,214 differentially expressed genes were obtained from

Cluster_B and Cluster_C (Figure 5B). The intersection of

these two yielded 514 differentially expressed genes

(Figure 5C). Univariate Cox regression analysis of the

514 differentially expressed genes revealed 79 prognosis-

related glycosylation-related genes (Supplementary Table S2).

PCA was applied to construct a glycosylation-related model, and

the two-group model could significantly distinguish patients

(Supplementary Figures S1A–C), whereas the survival of the

four-group model was not significantly different (Supplementary

Figure S1F), and the three-group model was more detailed than

the two-group model (Supplementary Figures S1D, E).

Therefore, the three-group model was the optimal typing

(Gene_Cluster_A, Gene_Cluster_B and Gene_Cluster_C).

FIGURE 5
The transcriptome characterization of the glycosylation-related models. (A). Distribution of differentially expressed genes between Cluster_ A
and Cluster_B; (B). Distribution of differentially expressed genes between Cluster_B and Cluster_C; (C). Venn diagrams; (D). The differential
expression of 43 glycosylation regulators in different glycosylation-related subtypes; (E). G2M_CHECKPOINT and PI3K_AKT_MTOR_SIGNALING in
different glycosylation subtypes.
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Analysis of the expression of 56 prognostis-related glycosylation-

regulatory genes revealed that all genes, except DAD1, had the

highest expression in Gene_Cluster_C and the lowest expression

in Gene_Cluster_A (Figure 5D). The GAVA analysis of the

glycosylation regulatory model found that G2-M checkpoint

and PI3K/AKT/mTOR signaling were significantly enriched in

different models; therefore, we analyzed the expression of G2-M

checkpoint markers (p53, CDK1) and PI3K/AKT/mTOR

signaling markers (AKT1, AKT2, AKT3, and TEC) in

different glycosylation-related models. The expression of key

molecules of PI3K/AKT/mTOR signaling, including AKT1,

AKT2, and AKT3, were highest in gene_cluster_C and lowest

in gene _ cluster _A (Figure 5E). However, p53 and

CDK1 showed the opposite trend. Analysis of immune cell

infiltration in glycosylation-related models revealed that most

immune cells were mainly enriched in Gene_Cluster_C and were

low in Gene_Cluster_A (Supplementary Figure S2A). The

distribution of immune checkpoints among the three

glycosylation-related subtypes showed a consistent trend

(Supplementary Figure S2B).

FIGURE 6
Clinical characteristics of the glycosylation score. (A). Group information of glycosylation scores; (B). Kaplan-Meier analysis of the high- and
low-score in the TCGA-LIHC cohort; (C). Kaplan-Meier analysis of high- and low-score in the GSE76427 cohort; (D). Correspondence between
glycosylation regulatory gene model, glycosylation-related model and glycosylation score; (E,F). Relations between glycosylation regulator model,
glycosylation-related model and glycosylation score; (G). The relationship fo differentiation grade and TNM stage with glycosylation score; (H).
The relationship of tumor size, lymph node metastasis, and distant metastasis with glycosylation score.
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3.5 Clinical characteristics of the
glycosylation score

Glycosylation scores were calculated for each HCC patient,

and all patients were divided into high-score and low-score

groups (Figure 6A). Analysis of the survival value of the

glycosylation scores showed that patients with high scores had

a significantly worse prognosis (p < 0.001, Figure 6B). When we

verified the prognostic value of the glycosylation score in the

GSE76427 cohort, we found that its prognostic value was high

(Figure 6C). Clinical subgroup analysis was used to determine

whether the glycosylation score had an independent prognostic

value and found that the glycosylation score had a high

prognostic value in multiple subgroups of age, sex, and TNM

stage (Supplementary Figure S3). Analysis of the corresponding

relationship between the glycosylation regulation model,

glycosylation-related gene model, and glycosylation score

revealed that most patients with high glycosylation scores

corresponded to Cluster_ A, whereas the low glycosylation

score included clusters_ B, Cluster_ C, and a small number of

Clusters_ A members (Figure 6D). Interestingly, we found that

there were significant differences in glycosylation scores between

different genotypes of the glycosylation regulatory gene model

and the glycosylation-related gene model (Figures 6E,F). This

further explains the relationship between the glycosylation

regulatory gene model, glycosylation-related gene model, and

glycosylation score. By exploring the relationship between

glycosylation score, differentiation grade, and TNM stage, it

FIGURE 7
The correlation analysis between glycosylation score and drug sensitivity.
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was found that the glycosylation score was significantly

correlated with TNM stage but not with the differentiation

grade of patients (Figure 6G). Further analysis of the

relationship between the glycosylation score and tumor size,

lymph node metastasis, and distant metastasis in TNM stage

showed that the glycosylation score was mainly related to distant

metastasis and tumor size (Figure 6H).

3.6 Screening of drug sensitivity based on
the glycosylation regulatory gene model

The results of analyzing the drug sensitivity of patients with

different subtypes of glycosylation regulatory gene models

indicate that (Supplementary Figure S3), patients in Cluster_A

were most sensitive to drugs such as AS601245, AUY922,

BleomyciBMS.70816, CCT007093, DMOG, Doxorubicin,

Embelin, Epothilone. B, FTI.277, Gemcitabine, Mitomycin. C,

Shikonin, Thapsigargin and VX.702. To ensure the accuracy of

the findings, Pearson’s correlation was used to analyze the

correlation between drug sensitivity and the glycosylation

score (Figure 7). The glycosylation score was positively

correlated with the IC50 of Thapsigargin (r = 0.18, p = 3.1e −

03), whereas it was negatively correlated with Shikonin (r = −

0.14, p = 2.2E − 02), embelin (r = − 0.14, p = 2.0e − 02),

Epothilone B (r = −0.19, p = 1.8e−03), DMOG (r = −0.23, p =

7.7e−05), doxorubicin (r = −0.26, p = 8.2e−06), bleomyci

(r = −0.28, p = 1.2e−06), and mitomycin. C (r = −0.29, p =

5.8e−07), AUY922 (r = −0.29, p = 5.4e−07), VX.702 (r = − 0.47,

p = 1.3e − 16) and gemcitabine (r = − 0.47, p = 5.3e − 17).

4 Discussion

An increasing number of studies have shown that various

glycosylation regulators play an indispensable role in immune

microenvironment regulation, cell proliferation, and tumor drug

resistance in HCC by regulating the glycosylation of proteins. At

present, most studies have only focused on a single glycosylation

regulator and the glycosylation regulator model of HCC has not

been comprehensively described. To bridge this gap, we analyzed

the glycosylation regulator model of HCC based on genomic

data, hoping to help in the formulation of immunotherapy

strategies.

In this study, 43 prognostic genes with differential expression

in HCC were analyzed based on 255 glycosylation regulators in

all tumors. Based on this, three glycosylation regulation models

were revealed, where cluster_ A corresponded to the immune

rejection phenotype, cluster_ B corresponded to the

immunoinflammatory phenotype, and cluster_ C

corresponded to the immune desert phenotype. Immune-

exclusive HCC is not without the infiltration of immune cells,

but these HCC cells escape the detection and destruction of

immune cells via immunogenic shaping (Lindblad et al., 2021).

In the process of immune escape in HCC, the IL-6 JAK/

STAT3 signaling pathway and MYC pathway play an

important role, in which IL6/JAK/STAT3 mainly promotes

the glycosylation of PD-L1 to increase its stability (Zhou

et al., 2020). MYC mediates the immune escape of HCC cells,

mainly via the β-catenin protein encoded by the CTNNB1 gene

(Luke et al., 2019). In this study, we found that the prognosis of

patients in cluster_B was the best; therefore, our results are

consistent with these previous results, which validates the

reliability of the glycosylation regulator model. The infiltration

characteristics of immune cells and the prognosis of patients with

immune rejection and immune desert HCC highly corresponded

to cluster_ A and cluster_ C, which further proves the

importance of the glycosylation regulatory gene model in

HCC. We also constructed nomograms based on the

glycosylation regulatory gene model. Clinicians can not only

predict the prognosis of patients with HCC based on the

nomogram, but can also use it to formulate clinical treatment

strategies.

Differentially expressed genes are considered to be the

characteristic genes of the phenotype; therefore, this study

verified the glycosylation regulatory model based on the

differentially expressed genes between different glycosylation

regulatory gene models. Similar to the glycosylation regulatory

model, we could divide HCC patients into three subtypes based

on differentially expressed genes. Using enrichment analysis of

immune and stromal cells, we found that these three gene

subtypes were significantly related to the enrichment of

immune and stromal cells. This also proves that the

glycosylation regulatory gene model has different

characteristics of immune cell infiltration. To determine the

influence of individual differences in patients with HCC on

the glycosylation regulator model, we constructed a

glycosylation score. Patients in cluster_A, characterized by

immune rejection, all corresponded to high glycosylation

scores, whereas patients in cluster_B, characterized by

immune inflammation, mostly corresponded to low

glycosylation scores. In addition, we found that both G2-M

checkpoint and PI3K/AKT/mTOR signaling differed

significantly between different glycosylation regulatory models.

Both G2-M checkpoint and PI3K/AKT/mTOR signaling differed

significantly between glycosylation-regulatory gene subtypes

(Sheng et al., 2021). Related studies have shown that LARP4B,

OGDHL, and miR-454-3p may affect the prognosis of patients

with HCC via G2-M checkpoint (Li et al., 2019a; Li et al., 2019b;

Jiao et al., 2019). Glycosylation is closely associated with HCC cell

proliferation (Takahashi et al., 2020). Therefore, we inferred that

glycosylation-regulated genotypes have different cell

proliferation characteristics.

We screened the drug sensitivity in HCC patients based on

the glycosylation regulatory model and glycosylation score, and

found drugs such as thapsigargin, shikonin, embelin, epothilone
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B, DMOG, doxorubicin, bleomycin, mitomycin C, AUY922,

VX.702, and gemcitabine. Among them, the roles of

thapsigargin, shikonin, embelin, doxorubicin, bleomycin,

mitomycin C, and gemcitabine drugs in HCC have long been

reported (You et al., 1994; Newell et al., 2010; Zhang et al., 2020b;

Djokic et al., 2020; Diggs et al., 2021; Song et al., 2021; Cheng

et al., 2022), and there are no clear studies on the indications for

these drugs. In this study, we evaluated the sensitivity of these

drugs on different subtypes based on the glycosylation regulatory

model. We also analyzed the drugs associated with glycosylation

scores to ensure the accuracy of the analysis. Thus, we provide the

scope for the application of these drugs after identification of the

subtypes of patients with HCC.

In conclusion, the glycosylation regulatory gene model

constructed in this study can comprehensively evaluate the

characteristics of immune cell infiltration in HCC patients

and will facilitate guidance for clinical treatment. In addition,

we constructed the glycosylation score for HCC, which had an

independent prognostic value. More importantly, we screened

drug sensitivity for patients with HCC based on the glycosylation

regulatory gene model and glycosylation score. Our results

provide a new approach for improving the clinical treatment

of patients with HCC and promoting individualized HCC

treatment.
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