AUTHOR=Liang Xue , Meng Ye , Li Cong , Liu Linlin , Wang Yangyang , Pu Lianfang , Hu Linhui , Li Qian , Zhai Zhimin TITLE=Super-Enhancer–Associated nine-gene prognostic score model for prediction of survival in chronic lymphocytic leukemia patients JOURNAL=Frontiers in Genetics VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.1001364 DOI=10.3389/fgene.2022.1001364 ISSN=1664-8021 ABSTRACT=

Chronic lymphocytic leukemia (CLL) is a type of highly heterogeneous mature B-cell malignancy with various disease courses. Although a multitude of prognostic markers in CLL have been reported, insights into the role of super-enhancer (SE)–related risk indicators in the occurrence and development of CLL are still lacking. A super-enhancer (SE) is a cluster of enhancers involved in cell differentiation and tumorigenesis, and is one of the promising therapeutic targets for cancer therapy in recent years. In our study, the CLL-related super-enhancers in the training database were processed by LASSO-penalized Cox regression analysis to screen a nine-gene prognostic model including TCF7, VEGFA, MNT, GMIP, SLAMF1, TNFRSF25, GRWD1, SLC6AC, and LAG3. The SE-related risk score was further constructed and it was found that the predictive performance with overall survival and time-to-treatment (TTT) was satisfactory. Moreover, a high correlation was found between the risk score and already known prognostic markers of CLL. In the meantime, we noticed that the expressions of TCF7, GMIP, SLAMF1, TNFRSF25, and LAG3 in CLL were different from those of healthy donors (p < 0.01). Moreover, the risk score and LAG3 level of matched pairs before and after treatment samples varied significantly. Finally, an interactive nomogram consisting of the nine-gene risk group and four clinical traits was established. The inhibitors of mTOR and cyclin-dependent kinases (CDKs) were considered effective in patients in the high-risk group according to the pRRophetic algorithm. Collectively, the SE-associated nine-gene prognostic model developed here may be used to predict the prognosis and assist in the risk stratification and treatment of CLL patients in the future.