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Objectives: Baise, a multiethnic inhabited area of southwestern China, is a historical
malaria-endemic area with a high prevalence of G6PD deficiency. However, few
studies of G6PD deficiency have been conducted in this region. Therefore, we
performed a genetic analysis of G6PD deficiency in the Baise population from
January 2020 to June 2021.

Methods: A SNPscan assay was developed to simultaneously detect 33 common
Chinese G6PD mutations. 30 G6PD-deficient samples were used for the method’s
validation. Then, a total of 709 suspected G6PD-deficient samples collated from the
Baise population were evaluated for G6PD status, type of mutation and effect of
mutations.

Results: The SNPscan test had a sensitivity of 100% [95% confidence interval (CI):
94.87%–100%] and a specificity of 100% (95%CI: 87.66%–100%) for identifyingG6PD
mutations. A total of fifteen mutations were identified from 76.72% (544/709) of the
samples. The most common mutation was discovered to be G6PD Kaiping (24.12%),
followed by G6PD Canton (17.91%), and G6PD Gaohe (11.28%). We compared the
G6PD mutation spectrum among Zhuang, Han and other Southeast Asian
populations, and the Zhuang population’s mutation distribution was quite similar
to that in the Han population.

Conclusion: This study provided a detailed G6PD mutation spectrum in Baise of
southwestern China and will be valuable for the diagnosis and research of G6PD
deficiency in this area. Furthermore, the SNPscan assay could be used to quickly
diagnose these G6PD mutations accurately.
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1 Introduction

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one
of the most common enzymatic disorders of red blood cells, with a
particularly high prevalence in tropical and subtropical regions,
including southern China (Howell, 2006). According to the degree
and extent of the enzyme deficiency, the World Health
Organization (WHO) divided G6PD variants into four
classifications in homozygous and hemizygous individuals
(WHO, 2022). G6PD insufficiency manifests clinically as a range
of conditions, ranging from severe enzyme deficiency to enhanced
enzyme activity (Filosa et al., 1996). The most frequent clinical
symptoms in patients are acute hemolysis, newborn
hyperbilirubinemia, and chronic hemolysis, which are brought
on by external factors including eating fava beans, taking
specific medications, contracting an infection, or having a
metabolic disorder (Jiang et al., 2006).

The G6PD gene (OMIM ID: 305900) spans 18 kb on the X
chromosome (Xq28), contains an open reading frame of 1,545 bp,
and encodes 515 amino acids (Tian et al., 2013; Wisnumurti et al.,
2019). To date, approximately 217 mutations have been described
worldwide (Gómez-Manzo et al., 2016). TheG6PDmutation spectrum
varies between different regions and ethnicities. The frequency
distribution of these mutations closely correlates with populations
that were exposed historically to endemic malaria (Dombrowski et al.,
2017). Baise is a multiethnic inhabited area of southwestern China.
The minority population accounts for 85% of the total population. It
has a monsoon-influenced, humid subtropical climate and is a
historical malaria-endemic area (Ji-Guang et al., 2017; Liang et al.,
2020; Zheng et al., 2020). The spectrum of G6PDmutations, however,
is poorly understood.

Currently, several analytical methods have been validated and
developed to detect G6PD mutations, such as direct sequencing
(Maloukh et al., 2021), reverse dot blot (RDB) assays (Chen et al.,
2012; Duan et al., 2017; Zhang et al., 2016), high-resolution melting
analysis (HRMA) (Boonyuen et al., 2021; Yang et al., 2015) and PCR-
restriction fragment length polymorphism (PCR-RFLP) (Kumar et al.,
2020). Although the aforementioned methods are powerful and exact,
they are expensive, time-consuming and have low throughput (Zhang
et al., 2016). The accuracy, sensitivity, and specificity of the SNPscan
technology have been shown in numerous investigations. It is also
high-throughput and cost-effective (Duan et al., 2017). Because of this,
SNPscan is regarded as an acceptable method for the genetic diagnosis
of G6PD deficiency.

In the present study, we established a SNPscan assay to identify
33 G6PD mutations. Combining the SNPscan assay with DNA
sequence analysis for genotype detection and phenotypic screening,
we studied the spectrum of G6PD mutations in Baise. Our research is
essential for creating a community-based carrier screening and
prevention program in the area.

2 Materials and methods

2.1 Subjects

A total of 709 suspected G6PD-deficient samples were enrolled
from the Baise region of Guangxi Zhuang Autonomous Region
between January 2020 and June 2021. These subjects included

346 males and 363 females, between the ages of 1 day old and
ninety. Information on ethnic groups was collected. The Affiliated
Hospital of Youjiang Medical University for Nationalities’ Ethics
Committee accepted the study. Informed written consent was
obtained from all adult participants or the guardians of pediatric
participants. Ethylenediaminetetraacetic acid (EDTA) tubes were used
to collect blood samples, which were then brought to the lab and kept
in storage at 4°C.

2.2 Quantitative G6PD enzyme activity

The G6PD enzyme activity was measured by a commercial G6PD
Detection kit (Korfang Biotechnology Co., Guangzhou, Guangdong,
China) according to the rate method (Zhong et al., 2018), which was
approved by the China Food and Drug Administration (CFDA) (reg.
no. CFDA (P) 20193400771). According to the National Inspection
Operational Regulations, 1 mL solution (Korfang Biotechnology Co.,
Guangzhou, Guangdong, China) was added to a small cup, and then
20 μL of erythrocyte was accurately absorbed into the solution without
the plasma layer. The activity of G6PD was detected by the rate
method on Hitachi 7170A automatic biochemical analyzer
(HITACHI, Japan), and the concentration of hemoglobin in
hemolysis was detected by the HiCN method. This method can
detect NADPH production in fixed time, which reflect G6PD
activity in red blood cells. In each test run, the accuracy of the test
findings was checked by calibration and the use of controls offered by
KOFA Medical. The reference range of adults with values below
1.30 KU/L (1.30–3.60) and infants with values below 1.70 KU/L
(1.70–4.00).

2.3 Genomic DNA extraction

According to the manufacturer’s recommendations, genomic
DNA was extracted from all samples using a QIAamp DNA Blood
Mini kit (Qiagen, Hilden, Germany). The DNA concentration was
measured using a Thermo Scientific Nanodrop™
2000 spectrophotometer and subsequently adjusted to 50 ng/L.

2.4 SNPscan assay for G6PD mutations

A multiplex SNPscan assays were designed to detect 33 G6PD
mutations reported in Chinese population (Wang et al., 2021) as
follow: G6PD Gaohe (c.95A>G), G6PD Songklanagarind (c.196T>A),
G6PD Asahi (c.202G>A), G6PD Chinese-4 (c.392G>T), G6PD
Valladolid (c.406C>T), G6PD Liuzhou (c.442G>A), G6PD Shenzhe
(c.473G>A), G6PD Mahidol (c.487G>A), G6PD Taipei (c.493A>G),
G6PD Nankang (c.517T>C), G6PD Miaoli (c.519C>T/G), G6PD
Mediterranean (c.563C>T), G6PD Shunde (c.592C>T), G6PD
Nanning (c.703C>T), G6PD Haikou (c.835A>G/T), G6PD
Viangchan (c.871G>A), G6PD Fushan (c.1004C>A/T), G6PD
Chinese-5 (c.1024C>T), G6PD Beverly Hills (c.1160G>A), G6PD
Santiago de Cuba (c.1339G>A), G6PD Jiangxi (c.1340G>T), G6PD
Union (c.1360C>T), G6PD Canton (c.1376G>T), G6PD Yannan
(c.1381G>A), G6PD Kamiube (c.1387C>T), G6PD Kaiping
(c.1388G>A), G6PD Laibin (c.1414A>C), and four unnamed
mutations (c.274C>T, c.371A>G, c.691G>C and c.1225C>T) and
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two Silent mutation (c.1311C>T, c.1365-13T>C). The 33 G6PD
mutation sites in the G6PD gene are shown in Figure 1A.

As shown in Figure 1B, previously mentioned, the double
ligation and multiplex fluorescence PCR serves as the
foundation for the SNPscan test. (Wei et al., 2013). The primers
and probes are listed in Supplementary Table S1. For each SNPscan
assay, 12 µL of ligation mixture was first prepared to contain 2 μL of
10 × ligase buffer, 1 μL of 1 × probe mix, .5 μL of ligase, 7 μL of
ddH2O and 1 μL of 30–250 ng of DNA sample. The ligation
reaction was performed on an ABI 2720 thermal cycler with the
following cycling program: 98°C for 2 min; 5 cycles of 95°C for
1 min, 58°C for 3 h; 94°C for 2 min, hold at 72°C. Fluorescence in
multiplex After that, PCRs were run on each ligation product.
Every PCR mixture was made in 20 μL containing 2× PCR Buffer,
1 μL of primer mix, 8 μL of ddH2O, and 1 μL of ligation product.

The PCR program was as follows: 95°C for 2 min; 9 cycles of 94°C
for 20 s, 62°C–.5°C/cycle for 40 s, and 72°C for 1.5 min; 26 cycles of
94°C for 20 s, 58°C for 40 s, and 72°C for 1.5 min; 60°C for 1 h; and
hold at 4°C. Using a capillary electrophoresis system and an ABI
3730XL sequencer, PCR products were separated and identified.
Raw data were analysed with GeneMapper 4.1 software (Applied
Biosystems, United States), and the genotypes of each locus were
determined.

2.5 DNA sequencing

In order to confirm the SNPscan assay results, PCR
amplification and DNA sequencing of the entire G6PD coding
region was performed as described in our earlier research (Pan

FIGURE 1
Theworkings of SNPscan technology and the locations of 33G6PD genemutations. The locations of the 33mutations in theG6PD gene are shown in (A).
The principles of SNPscan technology are shown in (B).
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et al., 2013; Zheng et al., 2020). Purification and sequencing of PCR
products were done by Shanghai Vebery Biotechnology (Shanghai,
China). All primers are in Supplementary Table S4 (Pan et al.,
2013).

2.6 Bioinformatics analysis of G6PD
mutations

The bioinformatics software used in this work was used to analyze
each G6PD mutation identified. Moreover, the pI of G6PD variants
(i.e., monomers) was determined using Kozlowski’s protein isoelectric
point (IP) calculator (http://isoelectric.org/). Utilizing ConSurf (http://
bental.tau.ac.il/new_ConSurfDB/), we looked at the evolutionary
conservation of mutant amino acid residues. The pathogenicity of
these potential variants was assessed by PolyPhen-2 (Polymorphism
Phenotyping v2) (http://genetics.bwh.harvard.edu/pph2/) and Sorting
Intolerant from Tolerant (SIFT) web server (http://sift.jcvi.org)
prediction models.

2.7 Statistical analysis

The data are collated in Excel. All data were statistical using SPSS
22.0. Descriptive statistics were used to estimate the accuracy.

3 Results

3.1 Development and validation of the
SNPscan assay

A SNPscan assay was developed to detect 33 G6PD mutations
reported in Chinese individuals. As shown in Figure 1, it could
precisely distinguish heterozygous mutations and homozygous/
hemizygous mutations by capillary electrophoresis (Figure 2). To
confirm the accuracy of the SNPscan assay, 30 samples were blindly
analysed using PCR amplification and DNA sequencing (Supplementary
Table S2). Comparatively speaking to direct DNA sequencing, the
SNPscan assay was 100% sensitive [95% confidence interval (CI):
94.87–100%] and 100% specific (95% CI: 87.66–100%), without any
cross-reactivity for the identification ofG6PDmutations. Additionally, the
SNPscan assay could precisely distinguish double mutations, such as
Canton/Viangchan, Gaohe/Kaiping and Canton/Kaiping. The created
approach is dependable for identifying G6PD mutations, according to
all of the evidence, detailed data are shown in Supplementary Table S3.

3.2 Mutation spectrum of G6PD deficiency

Fifteen G6PD mutations were identified by the SNPcan assay in the
Baise population (Table 1). Among the 709 G6PD-deficient people, 544

FIGURE 2
The results of G6PD positive mutation detected by SNPscan technology.
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(277 females and 267 males) had at least one mutation in the G6PD gene.
Among the 277 females with mutated G6PD deficiency, we identified 22
(3.10%) homozygotes and 255 heterozygotes, including 73 compound
heterozygotes. Themutations ofG6PDKaiping,G6PDCanton andG6PD

Gaohe were the three dominant mutations with an overall frequency of
higher than 79.06%, followed by G6PD Chinese-5, G6PD Viangchan and
G6PD Valladolid, with a frequency of 2.11% as a minimum, respectively.
The number and frequency of various mutations are presented in Table 1.

TABLE 1 Frequency of all G6PD-positive mutations and predicted consequences before and after amino acid changes.

Name Mutation Protein PolyPhen-2 PROVEAN SIFT FoldX (stability) PI Total (n) Frequency
(%)

Gaohe c.95 A>G p.His32Arg PROBABLY DAMAGING Deleterious Tolerated -.583907 6.19 90 17.25

Songklanagarind c.196 T>A p.Phe66Ile BENIGN Neutral Tolerated .58045 6.10 2 .38

NR c.274 C>T p.Pro92Ser BENIGN Neutral Tolerated 1.66913 6.10 1 .19

Chinese-4 c.392 G>T p.Gly131Val PROBABLY DAMAGING Deleterious Damaging 29.6132 6.10 3 .58

Valladolid c.406 C>T p.Arg136Cys PROBABLY DAMAGING Deleterious Damaging 2.53579 5.98 11 2.11

Mahidol c.487 G>A p.Gly163Ser POSSIBLY DAMAGING Deleterious Damaging 7.96808 6.10 2 .38

Miaoli c.519 C>T p.Phe173Leu PROBABLY DAMAGING Deleterious Damaging 1.35032 6.10 7 1.34

Shunde c.592 C>T p.Arg198Cys PROBABLY DAMAGING Deleterious Damaging 4.70525 5.99 3 .58

Nanning c.703 C>T p.Leu235Pro PROBABLY DAMAGING Deleterious Damaging 6.46278 6.10 2 .38

Viangchan c.871 G>A p.Val291Met PROBABLY DAMAGING Deleterious Damaging -1.19782 6.10 24 4.61

Fushan c.1004 C>A p.Ala335Asp POSSIBLY DAMAGING Neutral Damaging 1.44222 6.10 8 1.54

Chinese-5 c.1024 C>T p.Leu342Phe BENIGN Neutral Tolerated 3.94837 6.10 45 8.64

Union c.1360 C>T p.Arg454Cys PROBABLY DAMAGING Deleterious Damaging 2.33769 5.98 1 .19

Canton c.1376 G>T p.Arg459Leu PROBABLY DAMAGING Deleterious Tolerated -.424977 5.99 137 26.30

Kaiping c.1388 G>T p.Arg463His PROBABLY DAMAGING Deleterious Damaging .798808 6.02 185 35.51

NR: class not reported.

TABLE 2 The 709 samples were classified by ethnicity.

Name Mutation Zhuang (n, %) Han (n, %) Yao (n, %) Buyi (n, %) Mulao (n, %) Total (n, %)

Caohe c.95 A>G 76 (18.45) 9 (10.34) 0 4 (25.00) 1 (100) 90 (17.25)

Songklanagarind c.196 T>A 1 (.24) 1 (1.15) 0 0 0 2 (.38)

NR c.274 C>T 0 1 (1.15) 0 0 0 1 (.19)

Chinese-4 c.392 G>T 2 (.49) 1 (1.15) 0 0 0 3 (.58)

Valladolid c.406 C>T 9 (2.18) 2 (2.30) 0 0 0 11 (2.11)

Mahidol c.487 G>A 1 (.24) 1 (1.15) 0 0 0 2 (.38)

Miaoli c.519 T>G 3 (.73) 2 (2.30) 0 2 (12.5) 0 7 (1.34)

Shunde c.592 C>T 2 (.49) 1 (1.15) 0 0 0 3 (.58)

Nanning c.703 C>T 1 (.24) 1 (1.15) 0 0 0 2 (.38)

Viangchan c.871 G>A 19 (4.61) 5 (5.75) 0 0 0 24 (4.61)

Fushan c.1004 C>A 7 (1.70) 0 0 1 (6.25) 0 8 (1.54)

Chinese-5 c.1024 C>T 32 (7.77) 10 (11.49) 2 (40) 1 (6.25) 0 45 (8.64)

Union c.1360 C>T 0 1 (1.15) 0 0 0 1 (.19)

Canton c.1376 G>T 113 (27.43) 17 (19.54) 3 (60) 4 (25.00) 0 137 (26.30)

Kaiping c.1388 G>T 146 (35.44) 35 (40.23) 0 4 (25.00) 0 185 (35.51)

Total 412 (100) 87 (100) 5 (100) 16 (100) 1 (100) 521 (100)
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These 709 samples were classified by ethnicity. There were
412 allele mutations and 15 variants in the Zhuang nationality,
most of which were G6PD Kaiping, G6PD Canton and G6PD
Gaohe, accounting for 79.08% (Table 2). However, there were only
87 (16.70%) allele mutations in the Han nationality. In addition, in
order to examine the association of the major G6PD-deficient alleles in
Chinese people and Southern Asian populations, data from our
research or other studies were further analysed (Liu et al., 2020;
Zheng et al., 2020). As shown in Figure 3, the frequencies of
different G6PD-deficient alleles in different regions were plotted on
a heatmap. The color of each block varies with the corresponding
frequency. Purple represented the lowest allele frequency on the color
scale, which went up to red for the greatest allele frequency. Obviously,
Four G6PD-deficient alleles (Canton, Kaiping, Gaohe and Chinese-5)
were present in relatively high frequencies in Chinese people, whereas
G6PD Viangchan and G6PD Kaiping were prevalent in Southern
Asian populations (Vietnam populations).

3.3 Effect of mutations on disease
manifestation

Tools from bioinformatics were used to forecast how changing
an amino acid might affect how a protein function (Table 1).
According to PolyPhen2.0, all variants were identified as
potentially damaging (prediction score close to 1) except for
G6PD Songklanagarind, G6PD c.274C>T and G6PD Chinese-5),
similar to the results predicted by PROVEAN (except G6PD
Fushan). However, SIFT predicted that five missense mutations
(G6PD Gaohe, G6PD Songklanagarind, G6PD c.274C>T, G6PD
Chinese-5, and G6PD Canton) could be tolerated, and the rest were
damaging. FoldX was used to predict changes in the protein

stability of G6PD (Table 1), and three variants (G6PD Gaohe,
G6PD Viangchan and G6PD Canton) were found to increase the
stability of the G6PD protein, while other missense variants were
predicted to destabilize the G6PD protein. Additionally, Table 1
provides an overview of the expected pI values for each of the
15 G6PD variations. The changes in protein structure and polar
bonds before and after G6PD mutation are shown in Figure 4.

4 Discussion

In this study, we looked studied the distribution of different G6PD
gene variants, the prevalence of G6PD deficiency, and the relationship
between genotypes and phenotypes related to enzyme function in
Baise, Guangxi Zhuang Autonomous Region. The results showed that
six of the most prevalent mutations were G6PD Kaiping, G6PD
Canton, G6PD Gaohe, G6PD Chinese-4, G6PD Viangchan and
G6PD Chinese-5, accounting for more than 60% of G6PD-deficient
alleles. This result is consistent with LinZou’s research (Liu et al.,
2020). The sexes and different sorts of mutation patterns affected how
G6PD activities were distributed (Driscoll and Migeon, 1990). These
findings present a more precise and thorough characterization of
G6PD deficiency in Baise, Guangxi.

The prevalence of G6PD deficiency varies widely by region in China,
with northern China having a relatively lower prevalence than southern
China. G6PDdeficiencywas present in 2.1% of China’s population overall
(He et al., 2020), and over 35 differentG6PD genemutations were known,
with G6PD Kaiping and G6PD Canton predominating in earlier
investigations (Liu et al., 2020; Jiang et al., 2006). Africa, Asia,
southern Europe, the Middle East, Southeast Asia, and Mediterranean
nations have the highest prevalence rates, according to reports (He et al.,
2020; Liu et al., 2020). In India, in various population groups, it was

FIGURE 3
Heatmap of G6PD-deficient allele frequency distributions for Baise populations and others cities populations. Red represents the highest G6PD-
deficient allele frequency, while purple represents the lowest.
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discovered that 8.5% of people have G6PD deficiencies (Saravu et al.,
2016). The prevalence rate varies between the tribal groupings, ranging
from 2.3% to 27.0%, with an overall incidence of 7.7% (Mukherjee et al.,
2015). In contrast to southern India, where it is continuously low except in
the states of Andhra Pradesh and Tamil Nadu, the frequency of the
G6PD-deficient allele is higher in northern and western India (Devendra
et al., 2020). In Indian caste groupings, G6PD Mediterranean was
discovered to be the most prevalent variation (Devendra et al., 2020;
Sukumar et al., 2004). However, G6PD Kaiping was found to be the most
common variant in China (Lin et al., 2018; Liu et al., 2020; Yan et al.,
2010). In Southeast Asia, G6PD deficiency is diverse, as previously
demonstrated by epidemiological and molecular research (Louicharoen
andNuchprayoon, 2005). In Thais, Laotians, Cambodians, andMalaysian
Malays,G6PDViangchan appears to be the most prevalent form (Ainoon
et al., 2003; Iwai et al., 2001; Louicharoen and Nuchprayoon, 2005;
Nuchprayoon et al., 2002), while the most prevalent form of G6PD in
the population of Myanmar is Mahidol (Matsuoka et al., 2004). In the
current research, a total of 15 harmful mutations were found, which were
dominated by G6PD Kaiping and G6PD Canton, accounting for
approximately 42% of all G6PD-deficient alleles. However, it is lower
than previous research results (84.1%, 75.3%) in the Guangxi population
(Fu et al., 2018; Yan et al., 2006). This can be because we only collected a

small number of samples or because geographical disparities exist. In
addition, we are a region with a high prevalence of thalassemia, moreover,
hemolysis and anemia are common (Lin et al., 2015). Medication,
hemolysis, and anemia can affect the detection of G6PD activity
(Nuinoon et al., 2022; Pfeffer et al., 2022). In our study, these may be
one of the reasons that the 165 samples with no detection of any of the
33 common mutations. However, they were detected with G6PD activity
deficiency. Certainly, the other reason is that they may have rare
mutations (besides 33 common mutations).

G6PD was first described by Carson in 1956 (ALVING et al., 1956).
Its clinical manifestations include fulminant hemolysis, severe
hyperbilirubinemia, and kernicterus, which contribute to neonatal
neurological injury and risk of death (He et al., 2020; Kaplan et al.,
2015; Liu et al., 2020). This condition may be brought on by infections,
specific foods (such as fava beans), oxidizing medicines, and/or specific
herbal therapies (Liu et al., 2020). To date, after a newborn’s screening
results in a positive result, the most effective treatment for this illness is to
prevent hemolysis by avoiding some oxidative stressors (Liu et al., 2020).
Therefore, the general survey of G6PD deficiency, early detection and
early prevention are important measures to prevent and treat the disease.
There are three common measures to prevent the disease, the most
important is to avoid accidental ingestion of fava beans (Reading et al.,

FIGURE 4
Changes in protein structure and polar bonds before and after G6PD mutation.
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2016); secondly, avoid taking anti-malarial drugs (primaquine,
chloroquine, malaria quinine, pentaquine and adipine), sulfones
(thiazole sulfone, aminophene sulfone), sulfonamides
(sulfamethoxazole, sulfadimethoxine, sulfapyridine and
salazosulfapyridine) and antipyretics (acetazolamide and acetanilide)
and so on (http://www.g6pd.org) (Chu and Freedom, 2019; Reading
et al., 2016). Finally, when the patient has an infection (viral hepatitis,
influenza, pneumonia, typhoid), which should immediately seek medical
help to avoid hemolysis.

Today’s G6PD deficiency diagnosis primarily uses the enzyme
activity detection assay, and themain diagnosis used to avoid oxidative
hemolysis cannot be other than a phenotypic test, especially in women;
however, there is an added value in G6PD genotyping, different sorts
of mutations can result in various classes of variations and exhibit
various symptoms (Beutler et al., 2002; WHO, 2022). So, to establish a
certain diagnosis of G6PD insufficiency, genotyping of G6PD
mutations is beneficial (Jiang et al., 2006). In addition, the analysis
of G6PD genotypes contributes to the study of molecular biology and
genetic characterization of human populations (Hamali, 2021; Lee
et al., 2022). Aside from this, the genotyping of G6PD deficiency also
has a significant impact on the field’s understanding of the disorder (Li
et al., 2008). The SNPscan assay used in the study covered 33 common
mutations in the Chinese population and could identify more than
95% of G6PD deficiencies. Based on the detection of SNP loci,
SNPscan technology can simultaneously type multiple SNP loci in
one detection process (Yu et al., 2021). Numerous investigations have
shown that it has good accuracy, sensitivity, and specificity and is cost-
effective and high-throughput (Du et al., 2014; Yin et al., 2014; Zhang
et al., 2016). Compared with the direct sequencing method, it saves
more tedious operations in the experimental process, can detect
multiple sites in multiple samples at the same time, and reduces
the cost (Zhang et al., 2016). Compared with the gene chip method,
SNPscan technology has more detection sites, so it can be flexibly
designed for known target gene mutation sites and achieves high
throughput (Chen et al., 2012; Duan et al., 2017; Hu et al., 2015; Zhang
et al., 2016). In addition, we investigated a general comparison of costs
associated with these different techniques and found that the SNPscan
technique has the lowest cost (SNPscan technology: $14.26/sample,
direct sequencing method: $20.97/sample, gene chip method: $69.93/
sample). Therefore, a trustworthy, quick, and affordable method for
identifying G6PD point mutations would be beneficial to patients,
their families, the doctors who treat them, and the testing labs.
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