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The Philippines is a mega-diverse country that lies at the crossroads of past human
migrations in the Asia-Pacific region and is believed to have never been connected to the
Asian continent, even during the major sea-level subsidence of the Quaternary. As a result,
the history of pig dispersal in the Philippines remains controversial, due to limited molecular
studies and absence of archaeological evidence of pig domestication. This study provides
the first comprehensive analysis of 184 complete mitochondrial DNA D-loop region from
Philippine pigs to elucidate their early dispersal history by performing a phylogenetic
comparison with wild boars and domestic pigs worldwide. The results showed a
demographic signal of the ancestry of Philippine pigs that had a close genetic
relationship with those from the mainland Southeast Asia and Northeast Asia,
suggesting gene flow that may have resulted from human migration and trade. Here
we have suggested two possible dispersal routes. One parallels the Neolithic expansion in
Island Southeast Asia and Oceania via Northeast Asia, the other from the mainland
Southeast Asia, into Palawan and Sulu Archipelago as early as prehistoric times via the
Sundaic Region. Despite geographic barriers to migration, numerous genetic lineages
have persisted across the Philippine islands, even justifying the recognition of a Philippine
Lanyu subclade. The prehistoric population history suggests a demographic expansion
that coincided with the interglacial periods of the Pleistocene and may have spread from
the southern regions into the eastern and central regions of the Philippines. The intriguing
signal of discrepancy discovered between the ancestral pattern and distribution range of
the numerous endemic Philippine wild pigs opens a challenging new approach to illuminate
complexity among these animals. Our study has contributed significantly towards
completing the sparse molecular studies on Philippine pigs, an essential for creating
win-win conservation measures.
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INTRODUCTION

The Philippines is an archipelago of 7,641 islands situated in
Island Southeast Asia (ISEA) tagged as a nexus of ancient human
migrations within the western Pacific region (Arenas et al., 2020;
Larena et al., 2021). It is a mega-biodiverse country with almost
half of the terrestrial vertebrates and vascular plants considered
endemic (Posa et al., 2008). Together with Madagascar it shares
the distinction as both a mega-diverse country and a global
hotspot for biodiversity conservation (Mittermeier et al., 1999).
In recent decades, a growing community of biogeographers,
population geneticists, conservation biologists, and
phylogeneticists has begun to focus on the archipelago and its
diverse, endemic life forms as a model system to investigate a
variety of conceptual questions related to evolutionary
diversification (Heaney et al., 2005; Brown and Diesmos, 2009;
Brown et al., 2013; Oaks et al., 2013). Although the Philippines
has always been characterized as a region of global priority for
species conservation, the unforeseen threat of extinction of some
animal genetic resources is well known (Heaney andMittermeier,
1997; Myers et al., 2000; Roberts, 2002; Posa et al., 2008).

The Philippines has one of the highest wild pig diversities in
the world. It harbors four endemic wild pigs such as the
Philippine warty pigs (Sus philippensis), Visayan warty pigs
(Sus cebifrons), Palawan bearded pig (Sus ahoenobarbus), and
Mindoro warty pig (Sus oliveri), as well as one native shared with
Sundaic biogeographic region, the Bornean bearded pig (Sus
barbatus) (Oliver, 1995). Unfortunately, these wild species are
listed as Critically Endangered in the International Union for
Conservation Nature (IUCN) Red List (Oliver and Heaney,
2008). Although they do not receive much international
attention, maintaining a viable population of these ecologically
important species should be a high conservation priority.

It is interesting to note that the Philippines was never thought
to be connected to the Asian continent, not even during the
Quaternary sea-level subsidence (Voris, 2000). Thus, the faunal
assemblages of the Philippines have become vital as it presents
several palaeoecological, biogeographic, and archaeological
questions and offers a unique evolutionary and ecological
laboratory for understanding island biodiversity changes in
Southeast Asia (Ochoa, 2019). For instance, the lack of
archaeological evidence and molecular studies on Sus scrofa
have poses a challenge in identifying its prehistoric arrival and
domestication in the Philippines. The S. scrofa is a ubiquitous
species that was not considered native to the Philippines and was
likely introduced as a domestic animal within the last few
thousand years (Ingicco et al., 2017). Studies have shown that
S. scrofa has a very broad natural habitat and has been
independently domesticated in different parts of the world
(Groves, 1981; Giuffra et al., 2000; Larson et al., 2005) and has
adapted to a variety of new environments in a relatively short
evolutionary time frame (Frantz et al., 2016). A schematic profile
of wild boar origin, dispersal and domestication across Eurasia
has been well documented using mitochondrial DNA (mtDNA)
from sequences of wild boar, domestic pigs, and ancient
specimens worldwide (Bellwood and Dizon, 2005; Larson
et al., 2005; Larson et al., 2007; Wu et al., 2007). In addition,

long-term gene flow between domestic pigs and wild boars during
and after domestication has been well documented throughout
Eurasia (Giuffra et al., 2000; Kijas and Andersson, 2001; Franz
et al., 2015; Yang et al., 2017). Although archaeological and
genealogical evidence suggests that domestication of pigs
occurred independently at multiple sites in Northeast Asia
(NEA) and on the Mainland Southeast Asia (MSEA) (Wu
et al., 2007; Larson et al., 2010; Yang et al., 2011; Jin et al.,
2012; Li et al., 2017), and despite the role of the hypothesized
Austronesian human expansion in ISEA (Bellwood and Dizon,
2005), the origin, dispersal, and domestication of pigs in the
Philippines remain unclear. Thus far, the only potential domestic
pigs identified in the archaeological record of the Philippines are
from the Neolithic (4,000–3,000 cal. BP) and early Metal Age
(3,000–2000 cal. BP) site at Nagsabaran in Northern Luzon,
which confirmed the clear distinction between the
domesticated pig and the Philippine warty pigs (Pipper et al.,
2009; Amano et al., 2013), which is associated with the Neolithic
expansion into ISEA and Oceania by Austronesian-speaking
populations (Larson et al., 2005). However, this has recently
been questioned as there is no evidence of domestic pigs in
Taiwan at a similarly early date, casting doubt on the possible
Neolithic introduction of domestic pigs to the Philippines (Li
et al., 2015).

The only leading theory postulates that the Philippine pig is a
product of indiscriminate interbreeding between numerous
domesticated endemic Philippine wild pigs and an introduced
pig breed (Eusebio, 1969) that was able to survive and reproduce
even withminimal human intervention. However, this hypothesis
remains tentative due to the paucity of molecular studies to
support this claim, as the evolution and dispersal of Philippine
pigs have yet to be elucidated. Today, they are very common even
in the remotest villages throughout the country. Since they are
among the indigenous animals found in most rural agricultural
areas, they are of great importance for supplementary income,
high quality protein food, and socio-cultural and economic
services, especially in cultural festivals and ceremonies.
Therefore, genetic studies of the diversity of these ecologically
and economically important animals should be a priority for
conservation strategies, as they represent excellent genetic
resources for local economies and could also serve as a genetic
basis for studying human settlement and migration.

On the other hand, mtDNA is a very informative genetic
marker to study genetic diversity, relationships, and variability
within and between populations (Giuffra et al., 2000; Kijas and
Andersson, 2001; Yue et al., 2016; Ming et al., 2017; Arenas et al.,
2020). Studies using the mtDNA variation has been effective in
establishing the relationships between domestic species and wild
relatives (Bruford et al., 2003), identifying domestication sites
(Larson et al., 2005; Naderi et al., 2007; Larson et al., 2010), and
tracing the maternal origin of the population back to ancient
times (Upadhyay et al., 2017; Margeta and Margeta, 2019).
Meanwhile, the displacement loop (D-loop) region of the
mtDNA tends to be widely used because of its higher
variation than the remaining regions of the mitogenome
(Cann et al., 1984; Wang et al., 2019) and thus, has been
frequently used for phylogenetic studies of closely related
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groups, especially for determining intra-specific phylogenies
(Seabusry et al., 2011). In the present study, we aim to
determine the genetic diversity, phylogeography, population
dynamics, and extent of genetic introgression of Philippine
pigs using the mtDNA D-loop region and to contribute
important insights towards elucidating the history of pig
dispersal and evolution worldwide.

MATERIALS AND METHODS

Sample Collection and Ethical Approval
Our experimental procedures were conducted in accordance with
institutional and national guidelines governing the care and use of
animals in experiments as established by the Laboratory of
Animal Genetics, Hiroshima University (No. 015A170426). A
total of 184 samples consisting of 175 Philippine native pigs
(PHnp), six Philippine wild pigs (PHwp), and three crossbred
PHnp to PHwp (part of the governments breeding and
conservation program) were collected from 2017 to 2019 from
nine localities in Central Visayas (n � 93), Western Visayas (n �
54), Western Luzon (n � 19), Eastern Visayas (n � 8), and 10
downloaded GenBank sequences from Northern Luzon
(Figure 1; Supplementary Table S1). Since most of our
sampling was done in the remotest areas across the
Philippines, the absence of pedigree records was one of the
limitations in this study. Therefore, the owners were
interviewed to ascertain the unrelatedness of our samples and
the Guidelines of Measurements of Domestic Animals Diversity
Program set by the Food and Agriculture Organization (FAO,

2011) were strictly implemented throughout the sampling
procedure. Photographs were taken to document the
morphological characteristics and differences within these pig
populations (Figure 2). The owners of the animals were
personally consented to have their animals included in this study.

DNA Extraction, PCR Amplification and
Sequencing
Genomic DNA was extracted from whole blood and meat tissues
of Philippine pigs using the phenol-chloroform method
according to the recommended protocol of Green et al. (2012).
For hair samples, the ISOHAIR kit (available at http://www.
nippongene.com) was used for DNA isolation.

The 5.0-kbp of mtDNA fragment was first amplified with a
Long and Accurate-PCR (LA -PCR) kit (KOD FX- Neo
polymerase, TOYOBO, Otsu, Japan) using the established
primer set, forward: Sus mt. 5.0 FL −2: 5′-ATGAAAAATCAT
CGTTGTACTTCAACTACAAGAAC-3’; reverse: Mum R: 5′-
TTCAGACCGACCGGAGCAATCCAGGTCGGTTTCTAT
CTA-3’. The reaction began with an initial denaturation at 94°C
for 2 min, followed by 30 cycles of denaturation at 98°C for 10 s,
annealing at gradients at 57°C for 30 s, and primer extension at
68°C for 2 min and 30 s. The last step was a final extension at 68°C
for 8 min. For complete amplification of the mtDNA
displacement (D-loop) region, approximately 1.3 kbp fragment
(15,434–16,679 sequenced positions of the mitogenome) was
amplified with another primer set, forward: Sus mtD F1: AAC
TCCACCATCAGCACCCAAAG; reverse: Sus mtD R1: CAT
TTTCAGTGCCTTGCTTTGATA. The PCR reaction was

FIGURE 1 | Distribution map of Philippine pigs and ancestry coefficients visualizing the geographic distribution of the different haplogroups found in this study.
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performed in a total volume of 20 μl and the final concentrations
of each component were as follows: 4.5 μl ddH2O, 10 μl 2× buffer,
4.0 μmol/L dNTPs, 0.3 μl of each primer (10 Pmol) (F & R
primer), 0.6 μL KOD-FX Neo, and 0.5 μl genomic DNA. The
reaction began with an initial denaturation at 94°C for 2 min,
followed by 30 cycles of denaturation at 98°C for 10 s, annealing at
gradient 59°C for 30 s, and extension at 68°C for 30 s. The last step
was a final extension at 68°C for 5 min. Amplification was
performed using GeneAmp PCR System 9,700 (Applied
Biosystems, Foster City, CA, United States). The PCR
products from the segmental amplification were purified with
Exonuclease I (ExoI) and Shrimp Alkaline Phosphatase (SAP) to
degrade the remaining PCR primers and dephosphorylate the
remaining dNTPs, respectively. Then, the mtDNA D-loop

fragments were sequenced with 3,130/3130xl Genetic
Analyzers (Applied Biosystems, Foster City, CA, United States).

DNA Sequence Alignment
The complete sequences of the mtDNA D-loop were assembled
from the overlapping forward and reverse sequences using
GeneStudio™ Professional, available at http://www.genestudio.
com. Profile alignments of the sequenced data were performed
using the ClustalW algorithm (Thompson et al., 1994) as
implemented in Molecular Evolutionary Genetics Analysis
(MEGA) (Tamura et al., 2013) to generate refined and
continuous sequences for each animal. The nucleotide
sequences were evaluated relative to the representative
haplotypes of Asian domestic pigs under accession number

FIGURE 2 | Photographs of Philippine pigs across the Philippine islands and their raising system. (A): (a) Bugasong, Antique; (b) Balderama, Antique; (c) Banga,
Aklan; (d) Numancia, Aklan; (e) Dingle, Iloilo; (f) Conception, Iloilo; (g)Mambusao, Capiz; (h) Sapian, Capiz. (B): (i) Balilihan, Bohol; (j) Bilar, Bohol; (k) Balilihan, Bohol;
(l,m,n) Guindulman, Bohol; (o) Talibon, Bohol; (p) San Miguel, Bohol; (C): (q) Irawan Village, Puerto Princesa, Palawan; (r) Sandoval Village, Narra, Palawan; (s) Puerto
Princesa, Palawan; (t,u) Dumarao Village, Roxas, Palawan; (v) Sandoval Village, Narra, Palawan (crossed endemic Sus ahoenobarbus with native pigs); (w) Sus
ahoenobarbus (a wild pig endemic to Palawan Faunal Region).
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AB041480 (Supplementary Table S1) along with the complete
worldwide sequences of domestic and wild boars
(Supplementary Table S2). About 1,044 bp of the complete
mtDNA D-loop sequences were aligned and edited until one
tandem repeat motif (5′-CGTGCGTACA-3′) remained, as the
number of repeats was variable within individuals, indicating a
high degree of heteroplasmy (Ghivizzani et al., 1993), and thus
the repeat itself is not phylogenetically informative. The
haplotype sequences were submitted to the GenBank National
Center for Biotechnology Information (NCBI) databases with
accession number OL957183-OL957251, MN625805-MN625830
and MW924902-MW92973.

Genetic Diversity and Phylogenetic
Reconstruction
The diversity measures such as the number of polymorphic
segregating sites, haplotype diversity, and nucleotide diversity
were estimated using DNA Sequence Polymorphism (DnaSP)
5.10 software (Librado and Rozas, 2009).

Two datasets were assembled for the phylogenetic analyses.
The first dataset was the newly sequenced data from 184 animals
used to study the genetic structure of the Philippine pig
population. In the second dataset, we downloaded complete
mtDNA D-loop sequences of global domestic and wild boars
representing Asian and European pigs from GenBank to make
further inferences about the relationships and demographic
distribution of the Philippine pig populations (Supplementary
Table S2). The Bayesian phylogenetic tree based on posterior
probabilities was constructed using the program MrBayes 3.2
(Ronquist et al., 2012), using HKY +G + I as the best-fitted model
of molecular evolution determined using MEGA 7.0.26 (Tamura
et al., 2013) and jModelTest based on the Bayesian information
criterion (Darriba et al., 2012). Trees were rooted with Warthog
(Phacochoerus africanus; DQ409327). For each tree, two
independent Marcov chain Monte Carlo (MCMC) were run
for 2 × 107 (first dataset) and 5 × 107 chain length (second
dataset), sampled every 1,000 generations. The first 10% of the
sampled trees and estimated parameters of each dataset were
discarded as burn-in. To obtain sufficient convergence of log-
likelihood values, a standard deviation of < 0.05 was considered.
The phylogenetic tree using maximum likelihood (ML) was also
constructed. The phylogenetic consensus of Philippine wild pigs
was constructed using the ML algorithm method with the model
of GTR + R implemented in PhyML v.3.0. (Guindon et al., 2010).
The consensus trees were illustrated using FigTree 1.3.1. Using
BioEdit ver.7.1 (Hall, 1999), we further examined the
haplogroup-specific mutations in all our samples to justify the
haplogroup assignment of each sequence.

Haplogroup and Geographic Classification
To obtain more detailed information about the genealogical
relationship between haplotypes, we constructed a median-
joining (MJ) networks (Bandelt et al., 1999) using PopArt 1.7
(Leigh and Bryan, 2015). This method calculates the net
divergence of each taxon from all other taxa as the sum of the
individual distances from variance within and among groups. The

nomenclatures described by Larson et al. (2005) with six clades
(D1 to D6) including the newly proposed mitochondrial
Southeast Asia (MTSEA) haplogroup (Tanaka et al., 2008),
previously renamed D7 by Layos et al. (2021), were used as a
reference for clade notation. We also performed the network
analysis on shorter sequences (509 bp) to accommodate themajor
representative haplotypes by partial mtDNA resolution, which
were used in the previous studies for a thorough haplotype
representation of the different haplogroups and geographical
locations.

Population Expansion Estimation and
Demographic History Analysis
Deviations from selective neutrality were estimated using Fu
(1997) FS based on a coalescent simulation algorithm and
Tajima’s D statistical tests using Arlequin (Excoffier et al.,
2005), and their significance was tested over 1,000 coalescent
simulations. The Fu’s FS test is very sensitive to demographic
expansion, resulting in large negative FS values, whereas the
significant Tajima’s D value could be a sign of population
expansion and bottleneck (Tajima, 1989).

The past population dynamics were examined with the
Bayesian Skyline Plot (BSP) model (Drummond et al., 2005)
with standard MCMC sampling procedures under HKY + G
model of substitution (Hasegawa et al., 1985) with four gamma
categories using BEAST v.2.6.3 (Bouckaert et al., 2014). The BSP
represents changes in population size over time derived from
mtDNA and assumed mutation rate. Analyses were performed
for the entire dataset and the predominant haplogroups D2 and
D7 using a mutation rate of 1.36 × 10−8 (mutation rate per
nucleotide site per year according to previous estimates for the
D-loop of mammalian mtDNA; Pesole et al. (1999)) using the
strict molecular clock model. MCMC analysis was performed for
5×107 generations. Independent runs (logs and trees) were pooled
using Log Combiner, discarding the first 10% burn-in and
sampling parameter values every 5,000 generations. We ran
the MCMC simulation twice independently for all datasets to
ensure that the simulation converged at the same rate. Tracer
v.1.7 (Rambaut et al., 2018) was used to confirm the correct
convergence of the MCMC chain with an effective sample size
(ESS) > 200 in the log files and to visualize the dynamics of the
effective population size over time. The light blue shaded area in
Figure 6 marks the 95% highest posterior density (HPD). The
X-axes are time in thousands of years before present (BP) and the
Y-axes are mean effective population size (Ne) in millions of
individuals divided by generation time on a logarithmic scale.

RESULTS

Mitochondrial DNA Variation and Genetic
Diversity
Among the 184 sequences, we identified 49 haplotypes (PHL1-
PHL49), 25 of which were found only once among the sequences
(Table 1). Of the 25 private haplotypes, eight were from Bohol,
seven from Western Visayas, six from Palawan, three from
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Samar, and one from Cebu. The geographic distribution of these
haplotypes is shown in Figure 1. When the distribution of these
49 haplotypes is summarized, 45 haplotypes occurred in PHnp
and four are unique to PHwp. PHL1 was the most common
haplotype, shared by 43 individuals (24.37%) and had the largest
geographic distribution across all sampling sites except Northern
Luzon. To avoid overestimating the expected values of the genetic
diversity indices, we did not include the PHwp haplotypes in the

calculation due to the high genetic variation in the sequences. In
the 45 PHnp haplotypes, we detected 69 polymorphic sites
delineated by 55 transitions and 14 transversion sites. The
distribution of nucleotide positions and sequence variations of
the haplotypes are shown in Supplementary Table S1. The
overall diversity of haplotypes was 0.968 ± 0.004 and ranged
from 0.889 ± 0.019 (Bohol) to 0.556 ± 0.075 (Northern Luzon).
Total nucleotide diversity was 0.009 ± 0.005 and ranged from

TABLE 1 | List of haplotypes and their geographic distribution.

Haplotypes Geographic Distribution Total

Bohol Western
Visayas

Cebu Samar Palawan Leyte Northern Luzon

PHL1 17 13 5 0 8 0 0 43
PHL2 7 8 2 0 1 0 0 18
PHL3 6 5 0 0 0 0 0 11
PHL4 7 0 1 0 0 0 0 8
PHL5 1 0 0 0 0 0 0 1
PHL6 1 0 0 0 0 0 0 1
PHL7 10 0 0 0 0 0 0 10
PHL8 1 0 0 0 0 0 0 1
PHL9 1 0 0 0 0 0 0 1
PHL10 1 0 0 0 0 0 0 1
PHL11 1 0 0 0 0 0 0 1
PHL12 2 0 0 0 0 0 0 2
PHL13 1 0 0 0 4 0 0 5
PHL14 4 0 0 0 0 0 0 4
PHL15 4 0 0 0 0 0 0 4
PHL16 2 0 0 0 0 0 0 2
PHL17 4 0 1 0 0 0 0 5
PHL18 1 0 0 0 0 0 0 1
PHL19 1 0 0 0 0 0 0 1
PHL20 0 0 0 0 1 0 0 1
PHL21 0 0 0 0 1 0 0 1
PHL22 0 0 0 0 1 0 0 1
PHL23 0 0 0 0 1 0 0 1
PHL24 0 0 0 0 1 0 0 1
PHL25 0 8 0 0 0 0 0 8
PHL26 0 2 0 0 0 0 0 2
PHL27 0 1 0 0 0 0 0 1
PHL28 0 1 0 0 0 0 0 1
PHL29 0 2 0 0 0 0 0 2
PHL30 0 1 0 0 0 0 0 1
PHL31 0 2 0 0 0 0 0 2
PHL32 0 1 0 0 0 0 0 1
PHL33 0 1 0 0 0 0 0 1
PHL34 0 3 0 0 0 0 0 3
PHL35 0 2 0 0 0 0 0 2
PHL36 0 0 0 3 0 0 0 3
PHL37 0 0 0 1 0 0 0 1
PHL38 0 0 0 1 0 0 0 1
PHL39 0 0 0 1 0 0 0 1
PHL40 0 0 6 0 0 0 0 6
PHL41 0 0 1 0 0 0 0 1
PHL42 0 0 2 0 0 0 0 2
PHL43 0 0 3 0 0 0 0 3
PHL44 0 1 0 0 0 0 0 1
PHL45 0 0 0 0 0 2 0 2
PHL46 0 1 0 0 0 0 0 1
PHL47 0 1 0 0 1 0 0 2
PHL48 0 0 0 0 0 0 5 5
PHL49 0 0 0 0 0 0 5 5
TOTAL 72 54 21 6 19 2 10 184
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0.0134 ± 0.004 (Palawan) to 0.0005 ± 0.001 (Northern Luzon)
(Table 2).

Phylogeography and Distribution of
Philippine Pig Haplogroups
For the first dataset, the 49 haplotypes were used to infer the
population genetic structure of Philippine pigs based on the
complete mtDNA D-loop sequences (1,044 bp). The
phylogenetic tree generated from the Bayesian tree showed
clear maternal-genetic divergence in the Philippine pig
populations and revealed eight topologies of phylogenetically
distinct clades with posterior probabilities ranging from 72 to
100% (Supplementary Figure S1). The two clades in the basal
position of the phylogenetic tree that represented the Philippine
wild pig samples with significantly high posterior probabilities fell
outside the S. scrofa lineages.

For the second dataset, we performed the phylogenetic
analysis using both Bayesian and ML tree inference. The
phylogenetic tree, both Bayesian (Figure 3) and ML
(Supplementary Figure S2), showed a fundamentally similar
topology, revealing two macro-clades (MC), which we designated
A and E, while D represented samples that formed outside the
wild S. scrofa lineages. Macro-clades A and E were represented by
domestic pigs and wild boars that intermingled, one having an
Asian and the other of European phylogeographic origin. The
MC D represents the Philippine wild pigs (n � 6/184; 3.26%),
which formed a unique lineage that fell outside the MCs A and E
with significant posterior probability and was distinct from the S.
scrofa lineages. Forty of the 49 haplotypes of the Philippine pigs
(n � 172/184; 93.48%) were randomly arranged in MC A and
formed further sub-clades, while MC E assembled the European
wild boars and exotic domestic pigs with Northeast Asian
domestic and wild boars together with the Philippine pigs
(n � 6/184; 3.26%).

By screening and detecting the haplogroup-specificmutational
motifs, we assigned each haplotype based on the smallest named
sub-phylo groups to which it belongs. Recently, it has been
proposed that the six major clusters of porcine mtDNA
sequences, designated D1 to D6 (Larson et al., 2005), with the
addition of D7 (previously designated MTSEA, which is thought
to be restricted to the Indo-Burma Biodiversity Hotspots (IBBH);

Tanaka et al., 2008; Larson et al., 2010; Layos et al., 2021) reflect
domestication from genetically distinct subpopulations of wild
boars (Supplementary Table S3). Our results showed that the
D-loop sequences of Philippine pigs obtained in this study could
be classified into five phylogenetically distinct haplogroups such
as D1, D2, D6, D7, and Lanyu Clade, except for the Philippine
wild pig haplotypes (PHL44-47). At MC A, 16 out of 49
haplotypes (n � 49/184; 27.17%) formed a paraphyletic clade
together with the various domestic and wild boars distributed in
the NEA region. This haplogroup was previously classified as the
D2 haplogroup, which included most of the major Asian
domestic and wild boars, corresponding to the widely
distributed Chinese domestic pigs, a worldwide pig breed that
has some relationship with Asian pigs, and the East Asian wild
boars (Okumura et al., 2001; Fang and Andersson, 2006; Larson
et al., 2010). In this haplogroup, there were four haplotypes such
as PHL3 (11 individuals), which showed genetic relatedness to
Gottingen, Lantang, and Satsuma, a domestic pig found in
Germany, China, and Japan, respectively; PHL7 (10
individuals) with Xiang pig; PHL25 (7 individuals) with Wuyi
black pig; and PHL26 (2 individuals) with Hainan wild boar from
South China, along with modern western pigs such as the
Berkshire and Yorkshire lineages, that have Asian matrilineal
ancestry. Haplogroup D2 is widely distributed in Bohol Island
and in all five provinces of Western Visayas such as Capiz, Iloilo,
Aklan, Antique and Guimaras. Thus, the placement of these
haplotypes in the phylogeny is not composite, suggesting a
derived ancestral population from the numerous wild boars
and domestic pigs from the NEA region.

Based on the patterns of mutational signatures, the most
numerous haplotypes (20 haplotypes; n � 103/184, 55.98%) in
our dataset which covered the largest area, formed an
independent clade although this haplogroup was not present
in Northern Luzon. While this study is the first analysis to
resolve the complete mtDNA D-loop of a substantial number
of sequences from these populations, it shows that it has an
analogous signature to the previously documented haplogroup in
MSEA, which was classified as D7 based on short/partial
fragment analysis (510 bp) (Tanaka et al., 2008; Layos et al.,
2021). Using complete D-loop fragment analysis, we confirmed
that this haplogroup is distinct from the available haplogroup that
has been tentatively classified by haplogroup-specific motif

TABLE 2 | Genetic diversity indices and values of neutrality test statistics of Philippine pigs including the predominant D2 and D7 haplogroups.

Neutrality TestLocation n h Haplotype Diversity Nucleotide Diversity

Tajima’s D Fu’s FS

Bohol 72 19 0.899 (0.019) 0.0072 (0.0010) −0.56236 −0.18375
Palawan 18 8 0.778 (0.086) 0.0134 (0.0041) 0.93285 4.44524
Western Visayas 51 14 0.872 (0.028) 0.0055 (0.0029) −0.74446 0.46914
Samar 6 4 0.800 (0.172) 0.0018 (0.0014) −0.82582 −0.62499
Cebu 21 8 0.857 (0.047) 0.0054 (0.0027) −0.96728 1.31326
Northern Luzon 10 2 0.556 (0.075) 0.0005 (0.0005) — —

OVERALL 178 46 0.968 (0.004) 0.0091 (0.0046) −0.5564* −16.3625**
D2 49 16 0.884 (0.024) 0.0044 (0.0024) −1.1142* −2.3181*
D7 103 20 0.784 (0.035) 0.0029 (0.0017) −0.6570* −5.9658**

n � number of samples; h � number of haplotypes; *p < 0.05; **p < 0.01 as tested by randomization (1,023 permutations) using Arlequin.
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FIGURE 3 | Bayesian tree inference with HKY + G + I as the best-fitted model using MrBayes 3.2 with Warthog (Phacochoerus africanus) as the outgroup. All
Philippine pig haplotypes (PHL1-49) were combined with the downloaded sequences from GenBank classified as domestic and wild Sus scrofa corresponding to their
geographic origin. Macro-clades (MC) A and E represent Asian and European pigs, respectively, forming further subclades. The MC D was designated for Philippine pig
haplotypes that were outside the Sus scrofa lineages.
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recognition in porcine mtDNA (Larson et al., 2005; Wu et al.,
2007). The Philippine pig haplotypes in this haplogroup harbored
two unique mutational derivatives at positions G24A and A893G
that were not detected in other sequences from wild boars and
domestic pigs worldwide, except for the three haplotypes from
Thailand. In addition, it matched the 510 bp resolution of Tanaka
et al. (2008) only at position G25A. Most haplotypes were only
one or two mutation steps apart suggesting recent lineages. We
also discovered a specific mutation site (A47G) that was
exclusively found in 38 Philippine pigs and was absent in all
samples examined, including GenBank samples. Interestingly,
three samples clustered under this haplogroup were our samples
from F1 hybrids of an endemic Palawan bearded pig (Sus
ahoenobarbus) from Palawan that was crossed with domestic
pigs in captivity under the government breeding and
conservation program. The widespread sharing of haplotypes
in this haplogroup provided genetic signals that the D7 ancestral
lineage covers a wide geographic proximity in different Philippine
islands (Figure 1). Here, all samples from the Eastern Visayas
region and 11/19 from Palawan were assigned to D7 haplogroup,
which may indicate that this haplogroup is associated with
Sundaland.

Here we designated European Clade as MC E, forming
haplogroups D1 and D4. This result is consistent with
previous studies that, unlike MC A, which descended from
multiple Asian ancestors, the European wild and commercial
breeds descended from a common ancestor, thus forming a
monophyletic clade. Haplogroup D1 included all exotic pig
breeds together with Northeast Asian domestic and wild boars,
which included our two newly sequenced Philippine pig
haplotypes (PHL17 and 19). Meanwhile, one haplotype
possessed an mtDNA sequence that derived only three
mutational distances from wild boar belonging to D6
haplogroup or known as Pacific Clade.

The Lanyu, a unique domestic pig from Taiwan islands,
formed an independent clade and was distant from all other
pig breeds, but perhaps still belonged to the Asian pig type. Six
haplotypes (n � 18/184; 9.78%) from our dataset formed a
subclade with Lanyu with a significant posterior probability of
97%, which we refer to here as Philippine Lanyu subclade. The
presence of three rare, repeated “ACACAAACC” diagnostic
motifs in the multiple alignments, a motif possessed by type I
Lanyu, and likewise the mutation signatures at positions G90A,
C278T, A301G, G534A, A541G, G574A, A657G, and A740T,
which correspond to 90, 279, 302, 535, 575, 657, and a
transversion at 741 in Li et al. (2017) and 542 in Wu et al.
(2007), differed from Asian and European Sus progenitors.
Although our analysis revealed that the Philippine Lanyu
subclade continues to be characterized by a transversion at
A143T. It could be speculated that some degree of population
subdivision may have occurred due to isolation that is sufficient
to warrant recognition of the Philippine Lanyu subclade.

To draw further conclusions about the phylogeny of the
Philippine wild pigs that fell out of the S. scrofa lineage, we
analyzed these animals together with the wild pig sequences
available in the GenBank database. We found a clear
phylogenetic resolution of the relationships between the

Philippine wild pigs and the downloaded sequences
(Figure 4). For the first time, this study detected an
inconsistency in the maternal distribution of the numerous
endemic Philippine wild pigs. Haplotype PHL45-46, consisting
of wild pigs from Mari-it Wildlife Conservation Park (MWCP),
Iloilo and VSU, Leyte, respectively, showed close genetic
relationship with S. cebifrons. Haplotype PHL47-48, consisting
of wild pigs from Palawan and MWCP, showed genetic
relatedness to Sus barbatus, a subclade of S. ahoenobarbus
endemic to the Palawan Faunal Region.

The MJ network analyses consistently revealed the
independent phylogenetic clusters and clear separation of
European pigs from Asian pigs, as well as the Lanyu Clade
lineage at least 10 steps away from the macro-Asian group
(Figure 5A). Both the phylogenetic networks of the complete
(Figure 5A) and partial (Figure 5B) mtDNAD-loop sequences of
the Philippine pig together with the global domestic and wild
boars showed that they contain founder sources from five
different geographic origins, except for the endemic Philippine
wild pigs. However, although we identified several Philippine pig
lineages, we did not detect D3, D4, and D5 haplotypes in our
dataset. The complete mtDNA D-loop sequences showed a
concordance of haplotypes clustered together and consistent
with their geographic region of origin. Negative
correspondence between geographic origin and breeds is
shown among individuals from different breeds with shared
diverged haplotypes. This was particularly evident in the D2
haplogroup, where the majority of haplotypes were shared
transregionally and the observed genetic variation in MJ
networks was enormous. This supported the theory of
multiple origins of pigs that included present-day China and
MSEA (Chittavichai et al., 2021). Compared to Chinese pigs, the
degree of European (D1) maternal introgression in Philippine
pigs was minimal at 2.86%, although our sampling areas were
aggregates of lowland and upland areas. Finally, the overall
exponential population growth pattern was evident in the D7
haplogroup, and the high frequency of sequences in D7h1*
(potential founder) formed a central node from which the
other Philippine pig haplotypes, including the Thai samples,
radiated with only one mutational step, consistent with recent
population expansion. The clear delineation of the separation of
eight Philippine haplotypes by one mutation step (A47G) is also
evident.

Population Expansion and Demographic
History
To understand more about the historical background of these
populations, we performed a neutrality test to distinguish
between neutrally evolving sequences and sequences that
evolve under directional selection. Simulations of the
neutrality test for the entire dataset yielded high negative
values and a significant Fu’s FS test indicated possible
population expansion in the past (Table 2). This supported
the MJ network, as several haplotypes appeared to harbor an
excess of rare singletons beyond that expected under neutrality.
Similarly, the twomajor haplogroups D2 and D7 showed negative
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and highly significant (p < 0.01) Tajima’s D and Fu’s FS test
values.

We also evaluated the changes in effective maternal
population sizes with BSP based on coalescent theory for the
overall dataset (Figure 6A) and the predominant haplogroups D2
(Figure 6B) and D7 (Figure 6C). Consistent with the population
expansion hypothesis, BSP projected an increase in effective
population size for the D7 haplogroup, with an imminent
population increase occurring around the interglacial periods
of the Late Pleistocene. The D2 haplogroup showed a slight
increase in effective population size at about 25,000 YBP.
Overall, the statistics of the neutrality test and the past
population dynamics of Philippine pigs suggest a possible
population expansion of domestic pigs in the Philippines prior
to the possible initial domestication of the wild boar S. scrofa.

DISCUSSION

This study is the first comprehensive screening of the complete
mtDNA D-loop variation of Philippine pigs to clarify their past
dispersal history by performing phylogenetic analysis together
with domestic pigs and wild boars representing Asian and
European pigs. Due to limited molecular studies and lack of

archaeological evidence supporting the domestication of pigs in
the Philippines, there has long been a controversy over the
absolute conclusion that Philippine pigs descended from
Philippine wild boar ancestors. In this study, the context of
genetic diversity, phylogeography, population dynamics, and
extent of genetic introgression of Philippine pigs were inferred
together with the domestic pigs and wild boars that roughly
corresponded to their geographic origin. Based on the patterns of
mtDNA D-loop variation in Philippine pigs, our results were
consistent with a clear phylogenetic pattern showing two core
lineages of S. scrofa, both of Asian and European phylogeographic
origin, occurring in the Philippine pig population. The enormous
genetic variation in Asian pigs and the frequent overlap of
haplotypes among Asian pigs were also noted, especially
among the Chinese and MSEA domestic and wild boars in the
Philippine pigs, accounting for 93.48% of the studied populations.
Therefore, this wide distribution of haplotypes derived from the
Eurasian continent present across the Philippine islands may
indicate a genetic signal that could corroborate a gene flow that
may have resulted from human migration and trade. Recently,
there have been reports of at least five waves of human migration
into the Philippines (Larena et al., 2021). This phenomenon may
have paved the way for the introduction of domestic pigs into the
Philippines with multiple lineages, including domestic animals

FIGURE 4 |Maximum Likelihood (ML) inference of Philippine wild pigs including the available mtDNA D-loop sequences of wild pigs from the GenBank with GTR +
G as the best-fitted model using PhyML ver.3.0 with Warthog (Phacochoerus africanus) as outgroup.
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such as chickens (Thomson et al., 2014), goats (Naderi et al.,
2007), cattle (Scott, 1990), and other species that have adapted to
local conditions and developed distinctive traits.

Based on the complete mtDNA D-loop sequences, we propose
that the pattern of current maternal haplotype distribution of
Philippine pigs is derived from populations descended from the
predominantly diverse domestic pigs and wild boars of the
Eurasian continent that entered the Philippine archipelago via
two routes (Figure 7). One is viaNEA through Taiwan, in parallel
with the Neolithic expansion into ISEA and Oceania, and the
other is via Southeast Asia, particularly from the Indochinese
Peninsula via the Sundaic Region (Sundaland) to Palawan and
Sulu Archipelago, which spread to the rest of the Philippine
islands since prehistoric times. The latter could be consistent with
the previously suggested north to south dispersal pattern
(Koenigswald, 1956; Arenas et al., 2020; Antoine et al., 2021),
while the former might agree the dispersal routes proposed by
(Porr et al., 2012; Mijares, 2014; Louys et al., 2018; Arenas et al.,
2020). Despite geographic barriers to migration, these animals
have been able to expand their range across the various islands of
the Philippines, and variation in morphological patterns has
evolved among these populations. These patterns of genetic
variation may also reflect the multifaceted history of rich trade
and barter between travelers and coastal communities, including
river movements in coastal settlements in the Philippines in
prehistoric and protohistoric times (Fox, 1967). For example,

the extent of trade networks around the South China Sea and the
Austronesian trade sphere, which included MSEA, Indonesia, the
Philippines, Taiwan and southern China, and India to the west
(Hung et al., 2007; Alam et al., 2021) is very complex, which could
likely be linked to the enormous movements of domestic animals
and other material cultures. This could include domestic pigs,
where episodic admixture of pig lineages from different
geographic regions may have occurred, as indicated by the
mtDNA signatures of present-day Philippine pig populations.
Although some suggest advanced navigation techniques would be
needed to connect distant islands (Arenas et al., 2020), archaic
fossil suggest that humans have started navigating around
60,000 years ago (Stringer, 2000; Balme, 2013; Malaspinas
et al., 2016; Norman et al., 2018; Arenas et al., 2020) that may
have indeed initiated these processes. This hypothesis was further
supported by contemporary mtDNA studies as earlier revealed
the expansion of modern humans that has occurred through
long-distance dispersal events (Arenas et al., 2020). Our result
also supports the hypothesis that even before the arrival of
Europeans in the Philippines, pigs were already introduced by
Chinese traders before the later importation of various exotic
European pig breeds (Bondoc, 2008). This hypothesis is evident
precisely in the close genetic relationship between Philippine and
Chinese pigs (referred herein as the D2 haplogroup), as evidenced
by the similarities in their morphology due to genetic
introgression (Figure 2), which also led to the myriad

FIGURE 5 | Median-joining network of Philippine pigs (A) with global reference sequences of Asian and European pig haplotypes based on complete mtDNA
D-loop sequences and a partial MJ network (B) using 510 bp to accommodate the major representative haplotypes through the partial mtDNA resolution used in the
previous studies for a thorough haplotype representation of the different geographical locations. The size of each circle is proportional to the haplotype frequency. The
color represents the regions from which the sequence originated.
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phenotypic differences between these native pig populations.
Rigorous inter-island transport was also well observed,
resulting in genetic admixture between these populations as
part of the valuable resource for economic trade and cultural

exchange in the Philippines. Although our samples were from
both lowland and upland areas, the extent of European maternal
introgression in Philippine pigs was minimal at 2.86% compared
to pigs of Asian ancestry. This could indicate that the exotic pig
breeds have not yet penetrated the remote areas of the country.
Likewise, this reflects that most farmers prefer indigenous pigs
over exotic sows because they are more vigorous and adaptable to
adverse environmental conditions, and resistant to pests and
diseases.

For the first time this study provides evidence for the presence
of the Philippine Lanyu subclade with a relatively high haplotype
frequency compared to previous records. This even surpasses the
haplotypes identified in Taiwan (Li et al., 2017), where these rare
pigs are thought to have originated. Demographic signals were
also indicative that genetic exchange of these rare pigs with other
domestic pigs in the Philippines may have been existed for some
time, in contrast to the reported scenario in Taiwan where
increasing inbreeding within the small Lanyu population has
become a conservation concern (Chang et al., 2009). The Lanyu
pig has only been documented at Lanyu Islet off the coast of
Taiwan (Cheng, 1986) and is generally absent from the Eurasian
continent and other neighboring islands. It is one of several
breeds whose domestication has been described as cryptic
(Larson et al., 2010) as they are morphologically distinct from
other Chinese pig breeds (Luetkemeier et al., 2010). Considering
the lack of a clear genetic source and its limited distribution, even
during periods of low sea level in the Pleistocene when land
bridges connected the islands of Japan, Ryukyus, Lanyu and
Taiwan (Larson et al., 2010), it could be assumed that rapid

FIGURE 6 |Bayesian skyline plots showing the effective population sizes
of the overall dataset (A), the predominant (B) D2 and (C) D7 haplogroups.
Median estimates of female effective population size (Ne) are shown as a solid
thick line (blue) and the light blue shaded area marks the 95% credibility
intervals. The abscissa is scaled in thousands of years before the present (BP).

FIGURE 7 | The map shows a terrain that may have been formed during
the Last Glacial Maximum about 21,000 years ago, when sea level was about
125 m below the present level (©atlas-v7x). We have proposed here two
dispersal routes of pigs to the Philippine Archipelago, one via NEA via
Taiwan in parallel with the Neolithic expansion in ISEA and Oceania, and the
other via Southeast Asia, especially from the Indochinese Peninsula via
Sundaic Region to Palawan and the Sulu Archipelago.
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dispersal did not occur resulting in a reduction in diversity. In
contrast to Philippine Lanyu subclade, and despite the geographic
location of the Philippines, pigs carrying these genetic signatures
have persisted on multiple islands and dispersed in the Northern
Luzon range toward the western and central regions of the
Philippines. We hypothesized that the rate of genetic
divergence may have been accelerated due to the smaller size
of the ancestral population, unlike other haplogroups with larger
population sizes and ranges, e.g., D2 and D7, which precluded
divergence into an independent evolutionary entity. Despite the
absence of historical records of geographic contact between the
Philippines and Taiwan, the migration of these pigs may have
been assisted by humans (Chittavichai et al., 2021), which may be
consistent with the presumed movements of Austronesians from
Taiwan to the Philippines about 3,000 years ago (Bellwood, 2005).
However, the absence of domestic pigs in Taiwan at a similarly
early date has led scholars to question the possible Neolithic
introduction of domestic pigs to the Philippines (Li et al., 2017).
Similarly, it contradicts the results of ancient DNA and
morphometric studies of modern and archaeological pigs from
ISEA (Dobney et al., 2008). Currently, the hypothesis of whether
domestic pigs existed in Neolithic Taiwan has not been resolved
(Chuang, 2021). Although various literature indicated that the
Neolithic expansion was associated with the movements of
domestic animals (Diamond and Bellwood, 2003; Piper, 2017),
a recent study suggest that this was unlikely for chickens as it
favored the translocation route from MSEA via Sundaland, and
subsequently followed by the southward diffusion from the
Philippines into the Pacific islands (Godinez et al., 2021).
Moreover, contrary to the prediction of the out-of-Taiwan
theory, there is recent evidence of gene flow of indigenous rice
from Northern Luzon to Taiwan that occurred ∼1,300 years ago
(Alam et al., 2021) favoring the hypothesis of south to north
expansion. Thus, this finding may stimulate scientific interest in
the complexity of the introduction and dispersal of domestic pigs,
particularly the Lanyu pig into the Philippines. To date, we have
found no clear genetic evidence that the Lanyu pig was likely first
domesticated in the Philippines and brought to Taiwan at some
point in the past, subjected to human-assisted dispersal or likely
experiencing vicariance from Taiwanese populations.

Unlike other Sus lineages, very little is known about the
distribution of haplogroup D7, i.e., it is absent from the
Insular and NEA regions. Therefore, a sufficient and complete
description of the mtDNA D-loop fragments might be plausible
in formulating a robust hypothesis to explain distribution and
demography. In our results, we identified 20 unique haplotypes of
D7 that occurred in several major Philippine Islands (Palawan,
Cebu, Samar, Panay, Guimaras, and Bohol), were
morphologically variable (Figure 2), and had significantly
larger ancestral population sizes compared to all other
identified Sus lineages. These are the highest haplotypes that
represent the first complete mtDNA D-loop fragments reported
from this haplogroup to date. Although few molecular studies
have clarified the diversity and genetic characteristics of pigs from
the Sundaland and given the absence of a similar haplotype in
Northern Philippines, we propose that the ancestral population of
this haplogroup likely dispersed to the Philippines from MSEA

via the Sunda region (which was merged with the Asian continent
during the Pleistocene) through Sulu Archipelago off the coast of
Mindanao Islands and Palawan and spread throughout the
Philippine islands. Looking at the biological components of
these regions, the species diversity of mammals found in
Eastern Visayas is little different from that found in the same
habitat in Sulu Archipelago, Bohol, and the Mindanao
archipelago. This is probably because during the recent Ice
Age, Eastern Visayas, including Bohol Island was comprised
the “Greater Mindanao Faunal Region” connected by land
bridges during the Pleistocene (Oliver and Heaney, 2008)
allowing animals to translocate and disperse. While the fauna
of Palawan is more similar to that of Borneo (Heaney, 2002), this
route could be the main route (including Sulu Archipelago) for
the immigration of pigs from Borneo to the Philippines. Hence,
the presence of more than one lineage of porcine mtDNA has
been detected in Palawan alone, including the rare Lanyu pigs.
This dispersal scenario could also be consistent with the D6
haplotype found in Bohol Island. The ongoing debate over the
contradicting hypothesis of Larson et al. (2005) that ISEA (Yang
et al., 2011) rather than MSEA is the center of domestication of
the so-called Pacific Clade has resurfaced in recent years.
Although we acknowledge the possibility that this clade was
domesticated in eastern Indonesia (Yang et al., 2011) and
transported back to MSEA, we support the claim of Larson
and coworkers because the abundance of wild boars in MSEA,
and part of South China may strongly support the inference that
MSEA is the center of domestication of this haplogroup. We
speculated that the present-day D6 haplotypes in ISEA may
simply be a product of demographic expansion influenced by
human-mediated dispersal (i.e., the association of Neolithic
material culture between Vietnam and ISEA), as previously
highlighted by Gongora et al. (2004) as a major driving factor
that established the present-day geographic distribution of Sus
populations around the world. Due to long-term gene flow within
and between wild and native species, and subsequent intensive
breeding practices in recent centuries, modern populations that
bear ambiguous resemblance to their early ancestors have
emerged. Thus, such a phenomenon has resulted in a gene
flow pattern that often produces modern populations that
appear to have originated outside the region of original
domestication (Larson and Burger, 2013). Therefore, such an
episode could not be used to support the occurrence of major
domestication of this haplogroup, and careful consideration
should be taken to avoid similar circumstances in the future,
especially when limited genomic markers are involved.

The signature of population expansion was evident in the
neutrality test statistics (Table 2). The Fu’s FS test, based on
haplotype frequencies, and Tajima’s D test, based on the
difference between the number of polymorphic sites and the
mean number of pairwise nucleotide differences, indicate an
expanding population in two major haplogroups (D2 & D7)
and the entire datasets. This positive sign of population expansion
was evident in the star-like pattern in the MJ network, large
negative values and highly significant (p < 0.01) values of the
neutrality test (Table 2), a feature that is a signature of population
expansion. Based on the estimation of pairwise divergence of
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populations, the low genetic differentiation of populations from
Eastern to Central regions could precede Southern regions as the
likely origin of eastward expansion and dispersal into the Central
Regions of the Philippines. This could correlate with the
northwestward gene flow of Mamanwa Negritos into the
Philippines that occurred via Mindanao, probably via the Sulu
Archipelago (Larena et al., 2021).

Disparity Between Mitochondrial DNA and
the Distribution Range of Endemic
Philippine Wild Pigs, and Its Conservation
Initiatives
The results of the patterns of mtDNA variation showed that
Philippine pigs are not maternally descended from Philippine
wild pigs, contradicting the earlier information that they are
maternally descended from numerous endemic wild pigs in the
country (Eusebio, 1969). While our study only limits the evidence
of maternal inheritance, we cannot rule out the possibility of
paternal admixture of these wild pigs into the native pig
populations, as hybridization with a male wild pig is a
common practice among most farmers. Therefore, it is
imperative that studies using Y-specific markers be conducted
to clarify the extent of male-mediated introgression of Philippine
wild pigs into native pig populations. Unlike the wild boar S.
scrofa, which is ubiquitously distributed throughout the
Philippine archipelago, Philippine wild pigs are
biogeographically isolated from each other at different Faunal
Regions (Oliver, 1995; Ingicco et al., 2017) (see more on
Supplementary Table S3A). We believe that the extensive
domestication episode of these wild pigs has not progressed,
whereas this may have been the case for some other Southeast
Asian wild pigs such as S. celebensis (Oliver and Birsbin, 1993).
Due to an alarming population decline, it has recently been
classified as a Critically Endangered species by the
International Union for Conservation of Nature Red List
(IUCN, 2016), mainly due to intensive hunting and loss of
forest habitat. Therefore, the pressure to adopt conservation
measures has become challenging over the years such that the
government has taken initiatives like captive research and
development based on win-win conservation measures (Linkie
et al., 2015) to save these wild pigs from extinction. Currently,
protected areas (e.g., parks) as well as breeding centers are
strategically located in faunal regions where these wild pigs are
geographically distributed such as in Palawan, Negros, Panay,
Leyte, and Luzon. As part of these conservation initiatives, our
sample includes an F1 hybrid S. ahoenobarbus crossed with native
pigs from Palawan carrying a maternal lineage of S. scrofa of
haplogroup D7. Visual observations of these animals revealed
variations in morphology among the offspring (i.e., the color
pattern of bristles and hairs on the head) due to the different
breeding practices. These pronounced morphological variations
are due to the fact that mtDNA is maternally inherited and
breeding between a male wild pig and a female native pig is often
preferred by farmers for behavioral and physical reasons.

Hints of discrepancy between the molecular data, distribution,
and observedmorphological representation of these four endemic

wild pigs have been observed in this study. For example, for S.
cebifrons, which is reported only in the “Greater Panay-Negros
Faunal Region” (GPNFR - Panay, Negros, Guimaras, Cebu, and
Masbate Islands; Oliver and Heaney, 2008), the presence of
mtDNA footprints was detected in Palawan (Greater Palawan
Faunal Region; GPFR). Similarly, the GPNFR shows a genetic
presence of S. ahoenobarbus, which is endemic to the GPFR.
Thus, this is the first record of S. ahoenobarbus and S. cebifrons
in GPFR and GPNRF, respectively. Since its last documentation
(Oliver and Birsbin, 1993), their range is consistent with the
expected distribution pattern and there has been no evidence of
mixing of species in the past (Oliver, 1995). We suggest that an
altered distribution pattern already existed in these
contemporary Philippine wild pigs or that it was overlooked
by previous researchers. Our study therefore suggests that
contemporary morphology should be re-evaluated, including
the molecular aspect, to shed more light on the complexity of
the distribution pattern and variation of these interesting
animals.

CONCLUSION

Analysis of mtDNA D-loop sequences from Philippine pigs has
contributed significantly towards completing the sparse
molecular studies on the evolutionary history and
biogeography of pigs in the Philippines. We have uncovered
the close genetic linkage between continental wild boars and
domestic pigs originating from the MSEA and NEA regions
present in the Philippine pig genetic pool, which may have
resulted from several waves of human migration and trade in
the Philippines. Two possible routes of dispersal are suggested.
One leads through Northeast Asia regions that paralleled the
Neolithic expansion in ISEA and Oceania, and the other leads
from MSEA that may have passed through the Sundaic region to
Palawan and the Sulu Archipelago since prehistoric times. The
signals of inconsistency between the maternal pattern,
morphology, and range of the numerous wild pigs open a new
challenging approach to elucidate the complexity of these
interesting animals. Thus, conservation initiatives based on
win-win conservation measures should be a priority.
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