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Advances in next-generation sequencing (NGS) have revolutionized microbial studies in
many fields, especially in clinical investigation. As the second human genome, microbiota
has been recognized as a new approach and perspective to understand the biological and
pathologic basis of various diseases. However, massive amounts of sequencing data
remain a huge challenge to researchers, especially those who are unfamiliar with microbial
data analysis. The mathematic algorithm and approaches introduced from another
scientific field will bring a bewildering array of computational tools and acquire higher
quality of script experience. Moreover, a large cohort research together with extensive
meta-data including age, body mass index (BMI), gender, medical results, and others
related to subjects also aggravate this situation. Thus, it is necessary to develop an efficient
and convenient software for clinical microbiome data analysis. EasyMicroPlot (EMP)
package aims to provide an easy-to-use microbial analysis tool based on R platform
that accomplishes the core tasks of metagenomic downstream analysis, specially
designed by incorporation of popular microbial analysis and visualization used in
clinical microbial studies. To illustrate how EMP works, 694 bio-samples from
Guangdong Gut Microbiome Project (GGMP) were selected and analyzed with EMP
package. Our analysis demonstrated the influence of dietary style on gut microbiota and
proved EMP package’s powerful ability and excellent convenience to address problems
for this field.
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INTRODUCTION

The in-depth understanding of human microbiome has dramatically reshaped our understanding of
the relationship between human health and microbiome (Marchesi et al., 2016; Fan and Pedersen,
2021). A tremendous number of studies have demonstrated that microbiomes residing in the human
body are key contributors in modulating host physiology and metabolism (Van Treuren and Dodd,
2020). As the second genome of the human being, the microbiomes are thought to be responsible for
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the complex pathophysiology nature of various diseases, e.g.,
neurological, metabolic, and immunity disorders (Oleskin and
Shenderov, 2016; Cryan et al., 2019). Undeniably, the revolution
in DNA sequencing technologies has enabled us to generate
massive amounts of microbial data and accelerate the
progression of studies and researches to explore the
relationship between microbiomes and human health. Thus, a
growing number of hospitals and medical centers endeavored
largely to recruit volunteers and collect bio-samples associated
with microbiomes (Claesson et al., 2017). For example, the
Human Microbiome Project (HMP) in 2007 expanded our
understanding of the microbiome across different body sites of
a healthy person and its physiological roles in human genetic and
metabolic landscapes (Peterson et al., 2009). Furthermore,
emerging evidence indicate that microbiomes could be used as
a non-invasive approach serving as novel diagnostic biomarkers
and therapeutic targets. For example, 30 bacterial taxa identified
from a cohort study could distinguish patients with early
hepatocellular carcinoma with area under the curve (AUC) of
80.64% (Ren et al., 2018), and Bacteroides vulgatus may alter bile
acid metabolism to improve the risk of polycystic ovary syndrome
(Qi et al., 2019). In this regard, there is an urgent necessity to
integrate microbial data into clinical practice for evidence-based
medicine.

With the advancement of next-generation sequencing (NGS)
and bioinformatics in basic and clinical biomedicine
investigation, mathematics and statistical approaches in
microbial downstream analysis are able to provide us
comprehensive information of the relationship between
microbiomes and human health and diseases (Knight et al.,
2018). For example, diversity metric was introduced from
ecology to access microbiota richness (Faith, 1992), while
machine learning technology was popularly used for bacterial
biomarkers screening (Vangay et al., 2019). In order to perform
such measurements, clinical researchers usually have to take
additional bioinformatics courses, which significantly obstruct
the progression and frustrate amateurs without computational
and coding experience (Knight et al., 2018). Here are three aspects
of problems that clinical investigators face if they want to perform
microbiome-related studies: First, clinical meta-data generally
consist of a wide range of information including but not limited to
age, body mass index (BMI), gender, and medical diagnostics,
which brings about giant challenges for researchers to estimate
and select proper features to determine inclusion criteria (He
et al., 2018b). Moreover, in many retrospective studies, due to the
complexity of subjects in hospitals, clinicians are not able to
clearly determine grouping information based on meta-data,
which challenges clinical researchers, especially various
missing value in meta-data. Second, a large scale of microbial
data always contains various information bias. For example, low
abundance and occurrence taxa are often observed in microbial
data analysis, which may be due to experimental contamination,
sequence alignment error, and other factors. Normally, these taxa
are filtered in downstream analysis according to study design and
researchers’ experience due to the lack of a well-recognized
protocol, which may lead to biased and poorly reproducible
results. Particularly, due to poor coding abilities, clinical

researchers may find unexpected difficulties without enough
knowledge in the data filtering step. Third, although many
existing software (Caporaso et al., 2010) and R packages (Liu
et al., 2021; Zhao et al., 2021) have been developed and integrated
multiple methods from various fields, none of them are specially
designed for clinical studies and could not address problems such
as missing data, data filtering, and sample regrouping easily and
efficiently. Moreover, due to large and comprehensive function
and workflow, clinical researchers may spend additional time to
learn and modify clinical data. The manual step to select the most
appropriate parameters is still puzzling and tedious, and
inconsistent application of such tools may reduce the
reproducibility of the results. Thus, an efficient and convenient
tool to meet the fast-developed clinical microbial studies is
necessary.

Here, EasyMicroPlot (EMP) incorporates packages used in
basic and clinical microbial studies for data analysis and
visualization. In this package, regular downstream analysis
covering core tasks of metagenomic analysis could be
performed efficiently and conveniently in this field.

MATERIALS AND METHODS

Package Description
EMP is developed based on R language 3.6 version and contains
three main modules, which include EMP_META, EMP_MICRO,
and EMP_COR. Compared to existing microbial analysis
software in this filed, EMP extremely simplifies the whole
process to the best and focuses on core microbiota and meta-
data analysis in clinical studies. Each function in the EMP
package is standalone and flexible, which enables users to
design their own pipeline and utilize necessary functions
without tedious parameterization and scripts. The overall
design and workflow of EMP package is illustrated in Figure 1.

EMP_META module includes two functional units: the
meta_summary and meta_regroup. The meta_summary
function could enable users to easily visualize the distribution
of missing value in meta-data, summarize basic information, and
generate bivariate tables. The other function, meta_regroup, is
designed to utilize various cluster analyses and 26 evaluation
algorithms to determine the best regroup strategy based on
different kinds of clinical information containing categorical
and continuous variables.

EMP_MICRO module consists of data_filter, beta_plot,
cooc_plot, structure_plot, tax_plot, RFCV, and RFCV_roc
functions and mainly aims to provide investigators a fast and
simple approach to accomplish the core tasks of data filter, such
as α-diversity analysis, β-diversity analysis, co-occurrence
network analysis, taxonomic stack bar plot, and random forest
models for key taxa screening. The function EMP_MICRO could
automatically identify data directly from R workspace and
transform these into core microbial data at six levels (phylum,
class, order, family, genus, and species). The feature allows users
to activate a complete workflow with default parameters and
generate results in workspace by applying function EMP_MICRO
with only microbial abundance files and mapping file in user’s R
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workspace. Most analysis functions including α-diversity,
β-diversity, and taxonomy boxplot not only provide Student
t-test and one-way analysis of variance (ANOVA) comparison
methods but also offer an interactive plot in html format, which
means users could easily identify outliers and recognize abnormal
samples. Moreover, most of the existing microbial analysis
software suggest investigators to provide well-matched
microbial abundance files and mapping files. In this case,
investigators have to modify all the files if they want to
perform sub-group analysis or regroup analysis. To avoid such
problem, EMP is designed in a way that users only need to edit
their mapping file without modifying microbial abundance data.

EMP_COR module is designed to integrate metagenomic and
clinical data. Investigators can explore links between meta-data
and microbial abundance using Pearson index and Spearman and
Kendall index, and we have developed two artistic styles for data
visualization in this module.

Data Preparation
To test our package, we selected a part of 16S rDNA sequencing data
from Guangdong Gut Microbiome Project (GGMP) (He et al.,
2018b). This dataset is composed of samples from a population in
Shenzhen, China, of GGMP. A total of 618 16S rDNA sequencing
data with meta-data including diets, districts, defecation, and
metabolic syndrome (MetS) status in Shenzhen province was
included in this analysis. Microbial relative abundance was
generated at phylum, class, order, family, genus, and species levels
using a standard QIIME 1.91 pipeline. All meta-data and microbial
abundance were deposited in the Supplementary material.

RESULTS

Subjects Enrollment
After data preparation, the function meta_summary in
EMP_META could map the distribution of missing data

and generate a general summary of meta-data based on
MetS status (Figure 2A and Supplementary material).
There are more than 20 missing information in features of
“salt,” “plant oil,” “soy sauce,” and “sugar” intake. A three-line
table also showed detailed dietary structure information
among groups (Supplementary Table S1). Consider that
gastrointestinal disorder, antibiotic therapy, and probiotics
are closely linked to the dysbiosis of gut microbiota. Finally,
only 394 samples were qualified and included into
downstream analysis, and those who have experience of
diarrhea, astriction, antibiotics, and synbiotics were
excluded. In order to explore the microbial difference
without bias of dietary pattern, the function of
meta_regroup incorporated 26 indexes to estimate the
cluster for dietary structure to determine the best
regrouping design utilizing “Kmeans” and “Euclidean”
parameter (Figure 2B). After calculation for continuous
and categorical variables, 394 samples were included into
downstream analysis and divided into four groups based on
dietary structure and MetS status (Control_1: subjects
without Mets whose dietary structure belong to type 1;
Control_2: subjects without Mets whose dietary structure
belong to type 2; Cases_1: subjects with MetS whose
dietary structure belong to type 1; Cases_2: subjects with
MetS whose dietary structure belong to type 2). Those who
have experience of diarrhea, astriction, antibiotics, and
synbiotics were excluded.

Diets Are Associated With Significant
Structural Changes of Gut Microbiota
To avoid interference of rare taxa, species data whose relative
abundance was below 1‰ or prevalence rate was not more than
70% in any group was excluded using function of data_filter.
Function structure_plot provided a general composition picture
for these core data at species level (Figure 2F and Supplementary

FIGURE 1 | Overall design and workflow of EasyMicroPlot package.
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FIGURE 2 | Diets are associated with significantly structural changes of gut microbiota. (A) The distribution of missing value in the meta data. (B) Twenty-six
estimate indices vote for the best cluster number based on dietary structure. (C) α-Diversity on Pielou, Shannon, Simpson, and InvSimpson index among different
subgroups. (D, E) β-Diversity on Bray–Curtis index and permutational MANOVA test among different subgroups with consideration of dietary structure. (F) The structure
plot for top 10 gut bacterial taxa.
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Material). With this core microbiota in hand, rarefaction
measurement of Pielou, Shannon, Simpson, and InvSimpson
index showed α-diversity difference was not significant with
each other (p > 0.05) (Figure 2C). β-Diversity calculated with
Bray–Curtis distance showed samples in Cases_1 group was far
away from the other three groups in two-dimensional space
(Figure 2D), which indicated these microbiota structures for
MetS subjects with type A diet were significantly different from
others (least significant difference p < 0.05). Particularly, when
only two groups including Cases_1 and Control_2 were
performed in PCoA analysis, permutational multivariate
analysis of variance (MANOVA) test was almost statistically
significant (r2 � 0.01, p � 0.083) (Figure 2E). In contrast, we
also performed β-diversity with the same parameter and could

not observe significant change, which suggested diets indeed
disturb the structure of the microbiota (Supplementary
Figure S1).

Diets Perturb the Ecology and Network of
Gut Microbiota
In order to explore whether diet may influence the gut microbiota
community network, EMP provides an easy function to perform
co-occurrence analysis and generate network plot for each group.
Co-occurrence analysis at species level with parameter of
Spearman confident index [abs(r) > 0.3, p < 0.05] showed each
group has almost the same vertices but presented totally different
cross-talk among core gut bacterial taxa (Figure 3). For example,

FIGURE 3 | Co-occurrence analysis of bacterial interaction under different dietary pattern and MetS status.
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FIGURE 4 | Identification of the signature gut microbiota by random forest. (A, B) To explore the signature biomarkers, a fivefold cross validation together with
random forest was performed. (C, D) Based on key bacterial taxa generated by EMP package, receiver operating characteristic curves (ROC) were performed to test
prediction models.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8036276

Liu et al. R Package for Microbial Analysis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Control_1 group has unique V745 (Veillonellaceae
Phascolarctobacterium) and V1060 (Alcaligenaceae Sutterella)
in its network, while Cases_1 has V328 (Prevotella copri) and
V1225 (Aeromonadales Succinivibrionaceae) in its network.
Another comparison demonstrated that other than the
common species between Control_2 and Cases_2, Control_2
group has V1225 (Aeromonadales Succinivibrionaceae), while
case_2 includes additional three species, that is, V654
(Clostridiaceae Clostridium), V745 (Veillonellaceae
Phascolarctobacterium), and V1060 (Alcaligenaceae Sutterella).
Particularly, Cases_1 group with high network complexity
(transitivity � 0.6315789, centralization degree � 0.3006536,
graph density � 0.3464052) was obviously higher than others
(Supplementary material), which suggested different dietary
structures may change the systemic ecology of gut bacteria.

Diets Significantly Interfere With the
Accuracy of Random Forest Prediction for
Patients With MetS
Emerging evidence proved microbiota could be characterized as
markers for clinical auxiliary approach. As the most popular
machine learning, random forest together with cross validation
could robustly select key bacteria as biomarkers to build
prediction model. In our MicroEasyPlot, RFCV function
allows users to utilize relative abundance data to generate
random forest prediction model and select potential maker
taxa according to mean and standard deviation at a series of
random number. With this, we constructed random forest model
together with cross validation and explored microbial biomarkers
to distinguish individuals with MetS from healthy ones
(Figure 4B, Supplementary Figure S2, and Supplementary
material). Fifteen bacterial taxa at species level were
considered to be the most important biomarkers by a union of
10 random processes, while V647 (Clostridia Clostridiales), V671
(Clostridiales Lachnospiraceae), V725 (Faecalibacterium
prausnitzii), V726 (Ruminococcaceae Oscillospira), and V718
(Clostridiales Ruminococcaceae) changed between groups
significantly (p � 0.0088, 0.095, 0.018, 0.04, 0.088)
(Supplementary Figure S3). RFCV_roc function also could be
used to test this prediction model, through which we established
receiver operating characteristic curve with AUC area 0.63
(Figure 4D). As a control, random forest model with the same
parameters was performed to test the relative abundance data
directly without subgroup analysis; AUC area only achieved 0.51,
which indicated dietary style affected gut microbiota composition
indeed and should be included into downstream microbial
analysis in clinical studies (Figures 4A, C).

Identification of the Relationship Between
Dietary Structure and Microbial Abundance
To explore the detailed relationship of diets and core microbiota,
function cor_plot_heat and cor_plot_detail module provides two
kinds of visualization using “pearson,” “spearman,” and “kendall”
measurement. Correlation analysis showed 17 species of 23 core
taxa generated from data_fiter function were strongly associated

with dietary changes. Especially for several key taxa identified by
random forest model below, V647 (Clostridia Clostridiales) was
positively correlated with red wine intake (r � 0.121, p � 0.017),
V726 (Ruminococcaceae Oscillospira) was positively correlated
with sugar (r � 0.136, p � 0.007), V671 (Clostridiales
Lachnospiraceae) was highly correlated with salt consumption
(r � −0.163, p � 0.001), and V718 (Clostridiales
Ruminococcaceae) was highly correlated with fruits
(r � −0.107, p � 0.034) and plant oil (r � −0.113, p � 0.025)
(Figures 5A, B and Supplementary material). On the other
hand, vegetarian diet including fruits, vegetables, and fruit juice
influenced nine core gut bacterial taxa, which was considered to
be the most influencing factor. High- and low-degree alcohol
affected three taxa core gut bacteria, while red and rice wine
disturbed four taxa. Seasoning including salt, sugar, soy sauce,
and plant and animal oil also presented close relationships with
various gut bacteria.

DISCUSSION

Due to the advent of bioinformatics and high-throughput
sequencing technology, bioinformatics has become a well-
qualified tool in establishing auxiliary diagnostic measurement
in clinical practice (Kordahi et al., 2021). Notably, microbiome
has gained more attention in fields investigating the biological
and pathological nature of various diseases (Claesson et al., 2017).
However, clinical researchers often encountered several
difficulties in data analysis and visualization. In order to fill
the gap between clinical researchers and microbiome data
mining, we collected 16S rDNA sequencing data set from
GGMP and performed data analysis with EMP to present the
convenience and professional practice of our tool. With this
dataset, we proved dietary pattern is an important contributor
to different gut microbiota patterns.

Notably, huge meta-data analysis with detailed participants’
information usually brings tremendous problems. Employing
inappropriate strategy to estimate the features including
continuous and categorical variables may lead to unexpected
bias and errors. For example, dietary pattern could dramatically
change or in the long term reshape the composition of gut
microbiota (Singh et al., 2017). However, in previous studies,
researchers may ether ignore the effects of diets in downstream
microbial analysis or divide subjects into different groups
according to dietary classification such as Western diet,
Mediterranean diet, Vegetarian diet, etc. (Bian et al., 2017;
Garcia-Mantrana et al., 2018). In the present study, 394
qualified subjects were selected from 618 volunteers in
Shenzhen, Guangdong province of China. However, in the
process of 26 estimating votes under different algorithms,
“Kmeans” successfully divided them into two groups based on
“Euclidean” distance, which indicated those 394 subjects from the
same districts had two different dietary structures. Among the
regrouped subjects only based on MetS status, the present study
observed more changes of microbial structure and diversity under
different dietary status indeed. Regrouping based on diet also
improved the robustness of random forest prediction and
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increased AUC area in receiver operating characteristic curves
(ROC) model. Additionally, correlation analysis further
confirmed dietary components including fruits, vegetables,
alcohol, sugar, oil, and salt significantly alter the core bacterial
taxa. Animal studies have revealed that additional salt
supplement could significantly deplete genera Clostridia, which
was consistent with our observation (Wilck et al., 2017).
Furthermore, in two large cohort studies (1,879 middle-aged
elderly Chinese adults from Guangzhou Nutrition and Health
Study and 6,626 subjects from GGMP), dietary fruit and
vegetables were also proved to reshape gut microbiota (Jiang
et al., 2020). Altogether, these results confirmed the importance of
regrouping based on diet, suggesting microbiome-related clinical
studies should take the dietary factor into consideration for
participants’ regrouping. Moreover, factors including smoking,
education, life style, and others could also exert a great influence
on the structure and diversity of gut microbiota (He et al., 2018a).
A big cohort study demonstrated prolonged sedentary lifestyle
may increase the prevalence of MetS through modulation of gut
microbiota (He et al., 2018a). Other studies also suggested various
sports and exercise could reshape human microbiota. Of note,
elite athletes harbor several special taxa in the gut, which were
proven to be able to catalyze lactate into propionate to extend
running time (Scheiman et al., 2019). Thus, multiple factors
should be taken into consideration and estimate their
influence carefully in microbiota-related studies.

Secondly, low abundance and prevalent bacterial taxa may
affect reliability and reproducibility of microbial-related studies
and analysis and were thus considered to be contaminants
(Claesson et al., 2017). Researchers have reached a consensus
that it was hard for bacteria with low abundance to exert
significant effects on the host, and taxa with low prevalence

were likely to lead to false positive and negative results in
classification and prediction models (Knight et al., 2018). For
example, in our previous study, random forest model based on
species data observed several markers in mathematics to
distinguish patients with insomnia from healthy control, while
many taxa determined by classification model without
decontamination were actually outliers and lack biological
significance between groups (Liu et al., 2019). Another cohort
study has also set a strict decontamination standard with >0.5%
of relative abundance and >30% of prevalence in downstream
analysis to avoid potential bias (Biagi et al., 2016). Thus, an
appropriate threshold for data filter is extremely necessary.
Though the concept of filtering microbial data is well accepted
in microbial studies, there is no professional tool in this area. Data
analysts always filter data by self-developed script, while others
even modified data in excel format manually. EMP package
provides a convenient function, data_filter, to address this
problem. Bacteria could be excluded by two thresholds
including minimum abundance and prevalence, which means
users could easily customize the filter according to study design
and generate core bacterial taxa in one step. Before the
application of data filter function, a total of 1,503 species
annotated from 394 feces samples were generated, and a
handful of taxa only presented in few samples with low
abundance. In terms of biologic aspect, these taxa were
believed to originate from contamination and annotation error
and may have an adverse effect on downstream computation.
Utilizing data filter function in EMP package with 0.001
minimum relative abundance and 0.7 minimum prevalence
threshold, only 23 core species were qualified for the following
analysis, which dramatically economized the computational
resources and reduced the bias and errors. Among these core

FIGURE 5 | Correlation analysis between relative abundance of core bacterial taxa and meta data in clinical study.
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species, 17 taxa were proven to be highly correlated with diet,
which further confirmed the value of data filter function. For the
first time, clinical researchers could easily decontaminate
microbial data sets and generate core bacteria for downstream
analysis with a well-recognized process.

Third, solid and meaningful results were normally generated
under standardized and scientific approaches in data analysis.
Although tremendous tools and online platforms were developed
in the past decade, clinical researchers without coding experience
were not satisfied with the complicated instruction or limited
functions. Particularly, certain tutorials in written books or online
websites about microbial data analysis only offer sets of scripts
containing the usage of many independent software, and
following such tutorials is time consuming. Even worse, it is
common to see codes shared by publishers containing kinds of
errors without peer review, including but not limited to the
inappropriate usage of certain software and tools. Additionally,
most of the researchers did not provide detailed script pipeline,
and editors merely require researchers to upload key codes and
scripts in Supplementary material or open-source platform due
to the complexity of script. Without confirmation of the
correctness of the self-written codes, it is hard to realize the
unexpected false positive and false negative conclusion, and this
makes it impossible to reproduce the computational results. On
the other hand, researchers also need an easy way to design their
own pipeline to continue attempting and computing results many
times. Given a lot of independent software were integrated into
code text by hand, collaborators may find it different to read and
use, which may largely increase the risk of error and bugs. Thus,
after collecting and screening popular analysis strategy, EMP
package divides the whole analyzing process into three modules,
and each module could be utilized separately, which provides
enormous convenience in research work. In the present study,
EMP package helped to estimate missing data and classify 394
samples into four groups according to dietary structure. After
receiving group information, Microplot module could simply
analyze microbial data in one script covering α-diversity,
β-diversity, co-occurrence, structure plot, and random forest
models. At last, correlation analysis revealed the influence of
dietary structure on gut microbiota.

There are three main advantages of the current EMP package:
First of all, packages integrated into EMP package are well
accepted by users in this field and documented on the
Comprehensive R Archive Network (CRAN). All of these
packages are widely utilized to perform microbial data analysis
and visualization. Moreover, EMP package is an open-source
tool, and users are welcome to report any bugs. Second, the
existing tools and R packages made great effort to incorporate a
wide range of microbial analysis approaches and statistics
method, while EMP package focuses on clinical studies, and
the whole process is divided into three parts for the core
microbial data analysis. Given many retrospective studies
cannot determine groups for samples, EMP provides scientific
method to help clinical scientists screen and regroup samples.
Besides, EMP package does not need well-matched relative
abundance files and mapping file and could automatically
identify bacterial level and perform data analysis according to

mapping file containing samples identifiers and group
information in text format or data frame generated from R
script without modifying bacterial data, which may
significantly reduce mistakes in many attempts. Third, in
order to maximally simplify the operating procedure, EMP
package allows users to perform the whole workflow with only
one step and generate all results in the workspace. Each core
analysis in workflow also could be performed by applying one
function, which means researchers could design their own
pipeline in a few lines of script with modules they are
interested in for the study. In this case, EMP simplified
clinical users’ self-developed codes, allowing peer reviewers
and readers to also test and reproduce specific results with few
codes. Thus, with EMP package, clinical investigators could
explore a huge scale of clinical data together with microbial
abundance information and publish their result easily and
reliably.

CONCLUSION

EMP package incorporates widely used microbial data analysis
and visualization tools deposited in CRAN and provides clinical
investigators with a convenient approach to perform downstream
data filtering, analysis, and visualization. From the demo data, we
demonstrated that researchers could simply utilize different
modules to identify missing data, classify patients into
different groups, and regroup them based on different
parameters. Most importantly, this package could help
clinicians robustly select key microbial biomarkers and
calculate the correlation index between core microbiota and
clinical parameters, such as BMI, age, and height, etc. Overall,
EMP package provides an efficient and convenient downstream
microbiome analysis pipeline, especially for clinical investigators
without additional script experience.
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