AUTHOR=Xu Zhixiao , Chen Chengshui
TITLE=The Downregulation of PTGS2 Mediated by ncRNAs is Tightly Correlated with Systemic Sclerosis-Interstitial Lung Disease
JOURNAL=Frontiers in Genetics
VOLUME=12
YEAR=2022
URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.795034
DOI=10.3389/fgene.2021.795034
ISSN=1664-8021
ABSTRACT=
Background: Interstitial lung disease in systemic sclerosis (SSc-ILD) is one of the most severe complications of systemic sclerosis (SSc) and is the main cause of mortality. In this study, we aimed to explore the key genes in SSc-ILD and analyze the relationship between key genes and immune cell infiltration as well as the key genes relevant to the hallmarks of cancer.
Methods: Weighted gene co-expression network analysis (WGCNA) algorithm was implemented to explore hub genes in SSc-ILD samples from the Gene Expression Omnibus (GEO) database. Logistic regression analysis was performed to screen and verify the key gene related to SSc-ILD. CIBERSORT algorithms were utilized to analyze immune cell infiltration. Moreover, the correlation between the key genes and genes relevant to cancer was also evaluated. Furthermore, non-coding RNAs (ncRNAs) linking to PTGS2 were also explored.
Results: In this study, we first performed WGCNA analysis for three GEO databases to find the potential hub genes in SSc-ILD. Subsequently, we determined PTGS2 was the key gene in SSC-ILD. Furthermore, in CIBERSORT analyses, PTGS2 were tightly correlated with immune cells such as regulatory T cells (Tregs) and was negatively correlated with CD20 expression. Moreover, PTGS2 was associated with tumor growth. Then, MALAT1, NEAT1, NORAD, XIST identified might be the most potential upstream lncRNAs, and LIMS1 and RANBP2 might be the two most potential upstream circRNAs.
Conclusion: Collectively, our findings elucidated that ncRNAs-mediated downregulation of PTGS2, as a key gene in SSc-ILD, was positively related to the occurrence of SSc-ILD and abnormal immunocyte infiltration. It could be a promising factor for SSc-ILD progression to malignancy.