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Motivation: A protein complex is the combination of proteins which interact with each
other. Protein–protein interaction (PPI) networks are composed of multiple protein
complexes. It is very difficult to recognize protein complexes from PPI data due to the
noise of PPI.

Results: We proposed a new method, called Topology and Semantic Similarity Network
(TSSN), based on topological structure characteristics and biological characteristics to
construct the PPI. Experiments show that the TSSN can filter the noise of PPI data. We
proposed a new algorithm, called Neighbor Nodes of Proteins (NNP), for recognizing
protein complexes by considering their topology information. Experiments show that the
algorithm can identify more protein complexes and more accurately. The recognition of
protein complexes is vital in research on evolution analysis.

Availability and implementation: https://github.com/bioinformatical-code/NNP.
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INTRODUCTION

The recognition for protein complexes based on the PPI network has become one of the most
important channels in current research. Detection of protein complexes from PPI networks is an
important work in the understanding of biological processes. It is also of great significance for
researching mechanisms and developing new drugs. Researchers have put forward a variety of
effective methods to recognize protein complexes. The MCODE algorithm chooses a vertex with the
maximum weight as the initial cluster, and then recursively searches for the vertices that meet a
threshold value to add to the cluster (Bader and Hogue, 2003). The DPClus is a modified algorithm
that chooses the vertices with high connectivity with the present cluster iteratively (Altaf-Ul-Amin
et al., 2006). Jerarca uses the hierarchical cluster to partition the complexes based on the distance
among proteins (Aldecoa andMarín, 2010). RNSC divides the complexes by means of a cost function
(King et al., 2004). MCL (Enright et al., 2002) simulates network flow by constructing a similarity
matrix, alternately performs expansion and inflation operations, and achieves clustering effect after
multiple iterations. But the method is difficult to identify the complexes with little overlap. After that,
an improvedmethod was proposed whichmeasured the reliability of PPI based on the annotations of
protein function (Cho et al., 2007). SCI-BN and ClusterM combine topology of PPI and biological
information of sequences to identify complexes (Qi et al., 2008; Wang et al., 2020).

Although these methods can effectively identify functional modules of proteins, they all ignore the
internal structure of the modules. The basic structure of a protein complex is composed of the
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nucleus of a protein complex and all its subordinate proteins
(Gavin et al., 2006). So, a protein complex can be regarded as a
subgraph with a nucleus and its subordinate proteins for assisting
the nucleus to play a specific role. COACH (Wu et al., 2009) and
CORE (Leung et al., 2009) are proposed based on the idea. The
F-MCL algorithm combines firefly algorithm and MCL (Lei et al.,
2016). ClusterONE is a clustering algorithm guided by cohesion
which can identify subgraphs of dense substructure (Nepusz et al.,
2012). However, the cohesion formula may lead to deviation in
the clustering process. EA (Halim et al., 2015) uses multi-
population evolutionary algorithm to cluster the probability
map. MNC is a novel clustering model based on multi
networks which combines the shared clustering structure in
PPI and domain–domain interaction (DDI) networks in order
to improve the accuracy of identification (Ou-Yang et al., 2017).
IdenPC-CAP recognizes protein complexes from the interaction
networks consisting of RNA–RNA interactions, RNA–protein
interactions, and PPIs (Wu et al., 2021). CSC uses both topological
and biological characteristics to identify protein complexes (Liu et al.,
2018; Sharma et al., 2018). DPCMNE detects protein complexes via
multilevel network embedding (Meng et al., 2021). PC2P formalizes
protein complexes as biclique spanned subgraphs and converts the
problem of detecting protein complex to coherent partition
(Omranian et al., 2021). A semi-supervised model based on non-
negative matrix tri-factorization is also used to detect protein complex

(Liu et al., 2021). In the FCAN-PCI, the semantic similarity of proteins
and the topology of PPI network are integrated into a fuzzy clustering
model (Pan et al., 2021). GECA proposes a model based on the gene
expression and core-attachment (Noori et al., 2021). The idenPC-
MIIP method modifies the weights of original network by defining
mutually important neighbors on the weighted network and then
identifies protein complexes using a greedy algorithm (Wu et al.,
2021)

METHODS

For a PPI network N, TSSN computes the edge aggregation
coefficient as the topology characteristics of N, makes use of
the GO annotation as the biological characteristics of N, and then
constructs a weighted network. NNP identifies protein complexes
based on this weighted network.

TSSN
A PPI network can be seen as an undirected graph G� (V, E), and
each protein is a node in V. Two proteins interact with each other
if and only if there is an edge between the two nodes representing
two proteins. In order to describe the structural similarity among
proteins in the PPI network, Jaccard coefficient between two
nodes u and v in G� (V, E) is defined as follows:

J(u, v) � |N(u) ∩ N(v)|
|N(u) ∪ N(v)|, (1)

where N(u) [or N(v)] represents the set of all neighbor nodes of
protein u (or v) in the network.

We adopted the simGIC method (Tian and Guo, 2017), which
is an improved method from the GIC (Pesquita et al., 2007) to
calculate semantic similarity between proteins. Assuming that
proteins u and v are annotated by term setsA�{T1, T2,/, Tm} and
B�{S1, S2, /, Sn} respectively, the semantic similarity between u
and v is defined as follows:

se(u, v) � ∑Ti∈A ∩ B − logp(Ti)
max{IC(A), IC(B)}, (2)

FIGURE 1 | Workflow of the NNP.

TABLE 1 |Results of methods are used in the unweighted networks and weighted
networks computed by the TSSN.

Metrics
Method

R P F1

ClusterOne-u 0.32 0.415 0.361
ClusterOne-T 0.34 0.43 0.38
MCODE-u 0.21 0.49 0.294
MCODE-T 0.23 0.51 0.317
MCL-u 0.58 0.21 0.308
MCL-T 0.605 0.228 0.331

Bold values represents the experimental results on ClusterOne, MCode and MCL
weighted by the TSSN method.
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Where IC(A) is the set of {−log(T1), −log(T2),. . ., −log(Tm)}, and
p(Ti) represents the times that GO terms or single function of
protein appear in the specified term data.

Here, the similarity between two proteins u and v is defined as
the average between their topological similarity and semantic
similarity, that is,

s(u, v) �
∑

u1∈N(u),v1∈N(v)
(J(u1, v1) + se(u1, v1))

2
, (3)

where the value of s(u,v) is [0,1].

NNP
Given a weighted network G� (V, E, W), where V � {v1, v2,/, vm},
E � {e1, e2,/, en},W � {w(e1), w(e2),/, w(en)}, and w(ei) represents
the weight of the edge ei. The distance between the nodes vi and vj is
the minimum among all lengths of paths. Vj is denoted as the set
of nodes with the distance 2 between vj, which is referred to as
the set of second-order neighbor nodes between vj. The network
Gj� (Vj, Ej, Wj) is derived by Vj. The weighed degree of vj in G is
defined as follows:

WD(vj, G) � ∑n
i�1

w(vj, vi), (4)

where (vj, vi)∈E and w(vj, vi) indicates the weight of the edge
between node j and node i. The average weighted degree of vj in G
is computed by the following equation:

AWD(vj, G) � ∑n
i�1

w(vj, vi)/∣∣∣∣V∣∣∣∣. (5)

The weighted neighbor ratio is defined as follows:

WN(vj, G) � WD(vj, G)
WD(vj, G) +WD(vj, Gj). (6)

In order to assess complexes, we compute the tightness degree
of a complex G� (V, E, W) as follows:

WDt(G) � 2∑n
i�1

w(ei)/(|V| × (|V| − 1)). (7)

For two complexes C1 and C2, the overlap ratio (OL) between
them is defined as follows:

OL(C1, C2) � |C1 ∩ C2|2
|C1| · |C2| . (8)

NNP identifies complexes by four main steps. First, the NNP uses
the TSSN method to compute the similarity among proteins, and
then builds a PPI weighted network and neighbor networks. Second,
it calculates a conditional threshold in order to reduce the noise, and
then the network is transformed into a matrix, which is arranged in
descending order according to the average weighted degree (AWD)
of nodes to form a seed list. Third, it selects nodes from the seed list
iteratively as the initial complex to cluster, and then removes or
retains the node according to the weighted neighbor ratio (WN) until
all nodes list are solved. Finally, it calculates the OL among protein
complexes and judges whether the complexes are retained or
discarded through the network tightness (WDt). Finally, the
complex set was obtained. Figure 1 shows the workflow of NNP.
The pseudo code can be seen in the Algorithm.

RESULTS AND DISCUSSION

In order to assess the TSSN method, we compare the protein
complexes identified by three classical methods, that is,
ClusterONE, MCODE, and MCL, respectively, based on the
PPI networks with the weight computed by TSSN and the PPI
networks without weight. We compare the results of protein
complexes predicted by CFinder, ClusterONE, MCODE, MCL,
EA, and NNP methods.

Datasets
In all experiments, we use the PPI data of yeast downloaded from
the DIP database (https://dip.doe-mbi.ucla.edu/dip/Download.
cgi?SM�7&TX�4932), version 20170205. In order to reduce
the noise of data, we delete the repeated interactions and the

TABLE 2 | F1 values of NNP on different thresholds of WNT.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
F1 0.4 0.41 0.42 0.41 0.4 0.39 0.395 0.37 0.3 0.2 0.13

Bold values shows that when the threshold t is 0.2, the value of F1 reaches a maximum of 0.42.

TABLE 3 | Precision values of NNP on different thresholds of WNT.

t 0.2 0.21 0.22 0.23 0.24 0.25
Precision 0.491 0.492 0.5 0.495 0.493 0.493

Bold values shows that when the threshold t is 0.5, the precision value reaches the
maximum 0.5.

TABLE 4 | Each algorithm identifies the cluster information.

No. Algorithm Number Average Coverage

1 CYC2008 408 4.71 1,628
2 CFinder 178 11.31 2,147
3 ClusterONE 413 5 1898
4 MCODE 110 6.5 1,299
5 NNP 538 4.54 1937
6 MCL 623 6.57 4096
7 EA 398 13.5 2,661
8 PC2P 434 4.50 1953
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circle of a node to itself. Then the PPI network contains 5,115
nodes and 22,552 edges. GO annotations and ontology data of
yeast are downloaded from the website (http://www.
geneontology.org/).

Reference Sets
Here, two standard sets, namely, CYC2008 (Pu et al., 2009) and
NewMIPS (Friedel et al., 2008), are used in the experiments,
where CYC2008 is downloaded from (http://wodaklab.org/
cyc2008/downloads). These data are predicted by biological

methods, including 408 complexes and 1,628 proteins. The
NewMIPS is a set of protein complexes, including 428
complexes and 1,171 proteins.

Metrics
For a prediction algorithm, its effectiveness is measured by four
indexes: recall, precision, F1, and overlap ratio. The recall value R is
the ratio of the number of complexes which are identified by
methods and matched with the complexes in the standard set to
the number of complexes in the standard set; the precision value P is
the ratio of the number of complexes which are identified by
methods and matched with the complexes in the standard set to
the number of all complexes identified by the algorithm. F1 is the
harmonic average of P and R, that is,

F1 � 2 × R × P

R + P
. (9)

To judge the biological significance of complexes, a functional
enrichment analysis is used to analyze the gene annotation
information in the GO database, that is, p-value. The
calculation method is given as follows:

p − value � 1 − ∑m−1

i�0

( |F|
i
)( |V| − |F|

|C| − i
)

( |V|
|C|)

, (10)

wherem is the number of identified complexes that are the same as
those in the standard data set, F the complexes in the standard data
set, V the number of proteins contained in the PPI network, and C
the number of identified complexes. Here, if p-value is less than 0.01,
the complex is regarded with biological significance.

RESULTS

In all recorded experimental results, we use CYC2008 as the
standard set and set the threshold of OL as 0.2. OL represents the
overlap rate between the two complexes. The value of OL being
0.2 indicates that the identified complex is considered correct
when the OL with the standard complex reaches 0.2.

Table 1 shows the results. For each method in Table 1, u
represents the methods that are used to identify the complexes
from the unweighted networks and T represents the methods that
are used to identify the complexes from the weighted
networks computed by the TSSN. From Table 1, we can
see that the precision values for the weighted networks

TABLE 5 | Three complexes identified by methods were analyzed from the DIP.

Algorithm
Protein complex

CFinder (%) Cluster
-ONE

MCODE (%) NNP (%) MCL (%) EA (%) PC2P (%)

CFI 100 100% 100 100 100 100 83.3
NEC 83.3 64.1% 91.7 100 100 91.7 83.3
DRC 56.3 100% 61.4 91.7 67.5 83.3 53.3

TABLE 6 | Results of protein complexes recognized by algorithms.

Metrics method R P F1

CFinder 0.3408 0.2698 0.3012
ClusterONE 0.4068 0.3554 0.3794
MCODE 0.2293 0.501 0.3146
NNP 0.3515 0.5107 0.4164
MCL 0.3326 0.4093 0.367
EA 0.34 0.383 0.3602
PC2P 0.4340 0.1935 0.2677

Bold values show that the experimental results of the NNP method are optimal.

TABLE 7 |Numbers of protein complexes perfectly matched by each algorithm for
DIP data set.

Algorithm Perfect matching

CFinder 11
ClusterONE 10
MCODE 6
NNP 17
MCL 15
EA 14
PC2P 0

Bold values show that the experimental results of the NNP method are optimal.

TABLE 8 | Protein complexes with lower p-value identified by the algorithm on
the DIP.

GO term OL (%) p-value

mRNA processing 96 1.54E-36
Small nuclear ribonucleo protein complex 86.1 2.73E-58
mRNA splicing, via spliceosome 95.7 4.48E-38
Transferase activity, transferring glycosyl groups 89.59 1.81E-76
Ribosomal small subunit biogenesis 88.2 2.45E-48
Transporter activity 94.38 6.84E-100
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computed by the TSSN method are higher than those for the
unweighted networks. So the TSSN method is efficient for
computing the weigh values of networks.

The precision results of the NNP algorithm depend on the
thresholds of weighted neighbor ratio (WNT). Table 2 shows that
F1 values gradually increase with the increase in t values if the
thresholds of WNT is (0,0.2), and F1 gradually decreases as a
whole if the t values of WNT continue to increase from 0.2. So F1
can reach themaximum 0.42 if values ofWNT are (0.2, 0.25).Table 3
shows the precision values of NNP on different thresholds of WNT.
When the WNT value is 0.22, the precision is 0.5, which is slightly
higher than the other five values. Therefore, it is reasonable for the
NNP algorithm to set the threshold of the WNT as 0.22.

Table 4 lists the comparison of the cluster information
identified by the six algorithms compared with CYC2008.
CYC2008 is selected as the benchmark, and its average size

is 4.71; the closer the average size of the cluster identified by a
method is to 4.71, the more accurate the method is. Among
the six algorithms, the average size of clusters identified by the
NNP is 4.54, which is closest to the size of clusters in the
standard data. So the recognition result of NNP has high
theoretical reliability.

Table 5 shows the results identified by the CFinder,
ClusterONE, MCODE, MCL, EA, NNP, and PC2P methods
for three complexes randomly selected from DIP. CFI is the
mRNA cleavage factor complex with size 5; NEC is the nuclear
exosome complex with size 12, and DRC is the DNA-directed
RNA polymerase II complex. The table shows that six
methods recognize the same proteins as the CYC2008 for
the CFI, that is, OL 100%, OL of NNP, and MCL is both 100%
for NEC. The OL of PC2P is 83.3%. The OL of EA and that of
MCODE are the same, which is 91.7%, ranking second. There
is one missed protein: YHR081W. CFinder has two missed
proteins and the OL is 84%. The OL of PC2P is 83.3%. So, the
accuracy of ClusterONE is low. For DRC, the performance of
NNP and ClusterONE is better, while the OL value of EA is
83.3%. There are many omissive and wrong proteins detected
by CFinder, MCODE, MCL, and PC2P. The OL of CFinder is
56.3%. The OL of PC2P is only 53.3%.

Table 6 shows the results of six methods. In terms of precision,
the value of CFinder is lowest, which is only 26.98%, and the value
of NNP is largest compared with other algorithms, reaching
51.07%. The precision of MCODE lists second, reaching
50.1%. Although the precision of MCODE is high, the recall is
low, which leads to the low F1 value. From the table, it is obvious
that the F1 of NNP is max among all other methods. So NNP has
better accuracy in identifying protein complexes than other
methods.

Table 7 lists the number of protein complexes identified by
CFinder, ClusterONE,MCODE,MCL, EA, NNP, and PC2P fromDIP
data set, matched with CYC2008. As shown in Table 7, the protein
complexes identified by NNP based on the DIP data set are
perfectly matched with 17 protein complexes. The MCODE
only has six complexes perfectly matched with the standard
set. The PC2P has no perfectly matched complex with the
standard set. Therefore, compared with other algorithms, the
NNP algorithm can accurately and perfectly match more
protein complexes on the DIP data set.

Table 8 lists some protein complexes with low p-values
identified by the NNP algorithm on the DIP, which can show
that the protein complexes identified by the NNP algorithm
have significant biological significance. Table 9 lists three
protein complexes perfectly matched with DIP and NewMIPS
identified by the NNP method.

TABLE 9 | Algorithm perfectly matches the protein complex on the DIP.

GO term OL (%) p-value

mRNA metabolic process 100 7.37E-27
Anaphase-promoting complex–dependent catabolic process 100 4.68E-24
Polyadenylation-dependent snoRNA 3′-end processing 100 1.45E-32

Algorithm | detecting protein complexes.
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CONCLUSION

Considering the topological structure of the PPI network, it introduces
the gene ontology in biological information. We propose the methods
for computing weight of protein interaction network and the
recognizing of protein complexes on the weighted network. By
comparing with other algorithms, the TSSN method based on
topological features and GO term similarity can filter the noise,
which can reduce the impact of noise data. The NNP algorithm
can identify the protein complexes. The experimental results show that
the NNP is superior to other classical algorithms.

In the future, we will adopt new technologies to detect false-
positive edges and predict false-negative edges in the PPI
network, thus improving the quality of the PPI network.
Machine learning methods will be used to detect protein
complexes based on their biological characteristics. Finally,
since static PPI networks only contain the interaction between
proteins and cannot reflect the dynamic characteristics of proteins
interactions over time, we will study how to build a dynamic PPI
network and identify protein complexes in the dynamic network.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

XW, NZ, and JW proposed and designed the method. XW and
NZ performed the experiments. All authors wrote the
manuscript.

FUNDING

This work has been supported by the National Natural Science
Foundations of China (62002181, 62061035) and the Self-topic/
Open Project of Ecological Big Data Engineering Research Center
of the Ministry of Education.

REFERENCES

Aldecoa, R., and Marín, I. (2010). Jerarca: Efficient Analysis of Complex Networks
Using Hierarchical Clustering. PLoS ONE 5 (7), e11585. doi:10.1371/
journal.pone.0011585

Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., and Kanaya, S. (2006).
Development and Implementation of an Algorithm for Detection of Protein
Complexes in Large Interaction Networks. BMC bioinformatics 7 (1), 1–13.
doi:10.1186/1471-2105-7-207

Bader, G. D., and Hogue, C. W. (2003). An Automated Method for Finding
Molecular Complexes in Large Protein Interaction Networks. BMC
bioinformatics 4 (1), 2–27. doi:10.1186/1471-2105-4-2

Cho, Y.-R., Hwang, W., Ramanathan, M., and Zhang, A. (2007). Semantic
Integration to Identify Overlapping Functional Modules in Protein
Interaction Networks. BMC bioinformatics 8 (1), 1–13. doi:10.1186/1471-
2105-8-265

Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An Efficient Algorithm
for Large-Scale Detection of Protein Families. Nucleic Acids Res. 30 (7),
1575–1584. doi:10.1093/nar/30.7.1575

Friedel, C. C., Krumsiek, J., and Zimmer, R. (2009). “Bootstrapping the
Interactome: Unsupervised Identification of Protein Complexes in Yeast,” in
Annual International Conference on Research in Computational Molecular
Biology, 16, 971–987. doi:10.1089/cmb.2009.0023J. Comput. Biol.

Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M.,
et al. (2006). Proteome Survey Reveals Modularity of the Yeast
Cell Machinery. Nature 440 (7084), 631–636. doi:10.1038/
nature04532

Halim, Z., Waqas, M., and Hussain, S. F. (2015). Clustering Large Probabilistic
Graphs Using Multi-Population Evolutionary Algorithm. Inf. Sci. 317, 78–95.
doi:10.1016/j.ins.2015.04.043

King, A. D., Przulj, N., and Jurisica, I. (2004). Protein Complex Prediction via Cost-
Based Clustering. Bioinformatics 20 (17), 3013–3020. doi:10.1093/
bioinformatics/bth351

Lei, X., Wang, F., Wu, F.-X., Zhang, A., and Pedrycz, W. (2016). Protein Complex
Identification through Markov Clustering with Firefly Algorithm on Dynamic
Protein-Protein Interaction Networks. Inf. Sci. 329, 303–316. doi:10.1016/
j.ins.2015.09.028

Leung, H. C. M., Xiang, Q., Yiu, S. M., and Chin, F. Y. L. (2009). Predicting Protein
Complexes from Ppi Data: a Core-Attachment Approach. J. Comput. Biol. 16
(2), 133–144. doi:10.1089/cmb.2008.01TT

Liu, G., Liu, B., Li, A., Wang, X., Yu, J., and Zhou, X. (2021). Identifying
Protein Complexes with Clear Module Structure Using Pairwise
Constraints in Protein Interaction Networks. Front. Genet. 12, 786.
doi:10.3389/fgene.2021.664786

Liu, W., Ma, L., Jeon, B., Chen, L., and Chen, B. (2018). A Network
Hierarchy-Based Method for Functional Module Detection in Protein-
Protein Interaction Networks. J. Theor. Biol. 455, 26–38. doi:10.1016/
j.jtbi.2018.06.026

Meng, X., Xiang, J., Zheng, R., Wu, F., and Li, M. (2021). DPCMNE: Detecting
Protein Complexes from Protein-Protein Interaction Networks via Multi-Level
Network Embedding. Ieee/acm Trans. Comput. Biol. Bioinf., 1. doi:10.1109/
TCBB.2021.3050102

Nepusz, T., Yu, H., and Paccanaro, A. (2012). Detecting Overlapping Protein
Complexes in Protein-Protein Interaction Networks. Nat. Methods 9 (5),
471–472. doi:10.1038/nmeth.1938

Noori, S., Al-A’Araji, N., and Al-Shamery, E. (2021). Identifying
Protein Complexes from Protein-Protein Interaction Networks
Based on the Gene Expression Profile and Core-Attachment
Approach. J. Bioinform. Comput. Biol. 19 (3), 2150009. doi:10.1142/
S0219720021500098

Omranian, S., Angeleska, A., and Nikoloski, Z. (2021). PC2P: Parameter-free
Network-Based Prediction of Protein Complexes. Bioinformatics 37 (1), 73–81.
doi:10.1093/bioinformatics/btaa1089

Ou-Yang, L., Yan, H., and Zhang, X.-F. (2017). A Multi-Network Clustering
Method for Detecting Protein Complexes from Multiple Heterogeneous
Networks. BMC bioinformatics 18 (13), 23–34. doi:10.1186/s12859-017-
1877-4

Pan, X., Hu, L., Hu, P., and You, Z.-H. (2021). Identifying Protein Complexes from
Protein-Protein Interaction Networks Based on Fuzzy Clustering and GO
Semantic Information. Ieee/acm Trans. Comput. Biol. Bioinf. 14 (8), 1.
doi:10.1109/TCBB.2021.3095947

Pesquita, C., Faria, D., Bastos, H., Falcao, A., and Couto, F. (2007). July)Evaluating
Go-Based Semantic Similarity Measures. Proc. 10th Annu. Bio-Ontologies Meet.
37 (40), 38.

Pu, S., Wong, J., Turner, B., Cho, E., and Wodak, S. J. (2009). Up-to-date
Catalogues of Yeast Protein Complexes. Nucleic Acids Res. 37 (3), 825–831.
doi:10.1093/nar/gkn1005

Qi, Y., Balem, F., Faloutsos, C., Klein-Seetharaman, J., and Bar-Joseph, Z.
(2008). Protein Complex Identification by Supervised Graph Local
Clustering. Bioinformatics 24 (13), i250–i268. doi:10.1093/
bioinformatics/btn164

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7922656

Wang et al. NNP

https://doi.org/10.1371/journal.pone.0011585
https://doi.org/10.1371/journal.pone.0011585
https://doi.org/10.1186/1471-2105-7-207
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/1471-2105-8-265
https://doi.org/10.1186/1471-2105-8-265
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1089/cmb.2009.0023
https://doi.org/10.1038/nature04532
https://doi.org/10.1038/nature04532
https://doi.org/10.1016/j.ins.2015.04.043
https://doi.org/10.1093/bioinformatics/bth351
https://doi.org/10.1093/bioinformatics/bth351
https://doi.org/10.1016/j.ins.2015.09.028
https://doi.org/10.1016/j.ins.2015.09.028
https://doi.org/10.1089/cmb.2008.01TT
https://doi.org/10.3389/fgene.2021.664786
https://doi.org/10.1016/j.jtbi.2018.06.026
https://doi.org/10.1016/j.jtbi.2018.06.026
https://doi.org/10.1109/TCBB.2021.3050102
https://doi.org/10.1109/TCBB.2021.3050102
https://doi.org/10.1038/nmeth.1938
https://doi.org/10.1142/S0219720021500098
https://doi.org/10.1142/S0219720021500098
https://doi.org/10.1093/bioinformatics/btaa1089
https://doi.org/10.1186/s12859-017-1877-4
https://doi.org/10.1186/s12859-017-1877-4
https://doi.org/10.1109/TCBB.2021.3095947
https://doi.org/10.1093/nar/gkn1005
https://doi.org/10.1093/bioinformatics/btn164
https://doi.org/10.1093/bioinformatics/btn164
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sharma, P., Bhattacharyya, D. K., and Kalita, J. K. (2018). Detecting
Protein Complexes Based on a Combination of Topological
and Biological Properties in Protein-Protein Interaction
Network. J. Genet. Eng. Biotechnol. 16 (1), 217–226. doi:10.1016/
j.jgeb.2017.11.005

Tian, Z., and Guo, M. Z. (2017). An Improved Method for Measuring the
Functional Similarity of Genes. Intell. Comp. Appl. 7 (5), 123–126.
doi:10.3969/j.issn.2095-2163.2017.05.034

Wang, Y., Jeong, H., Yoon, B.-J., and Qian, X. (2020). ClusterM: a Scalable Algorithm for
Computational Prediction of Conserved Protein Complexes across Multiple Protein
InteractionNetworks. BMC genomics 21 (10), 1–14. doi:10.1186/s12864-020-07010-1

Wu, M., Li, X., Kwoh, C.-K., and Ng, S.-K. (2009). A Core-Attachment Based
Method to Detect Protein Complexes in Ppi Networks. BMC bioinformatics 10
(1), 1–16. doi:10.1186/1471-2105-10-169

Wu, Z., Liao, Q., Fan, S., and Liu, B. (2021). idenPC-CAP: Identify Protein
Complexes from Weighted RNA-Protein Heterogeneous Interaction
Networks Using Co-assemble Partner Relation. Brief. Bioinform. 22 (4),
bbaa372. doi:10.1093/bib/bbaa372

Wu, Z., Liao, Q., and Liu, B. (2021). idenPC-MIIP: Identify Protein
Complexes from Weighted PPI Networks Using Mutual Important

Interacting Partner Relation. Brief. Bioinformatics 22 (2), 1972–1983.
doi:10.1093/bib/bbaa016

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang, Zhang, Zhao and Wang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7922657

Wang et al. NNP

https://doi.org/10.1016/j.jgeb.2017.11.005
https://doi.org/10.1016/j.jgeb.2017.11.005
https://doi.org/10.3969/j.issn.2095-2163.2017.05.034
https://doi.org/10.1186/s12864-020-07010-1
https://doi.org/10.1186/1471-2105-10-169
https://doi.org/10.1093/bib/bbaa372
https://doi.org/10.1093/bib/bbaa016
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A New Method for Recognizing Protein Complexes Based on Protein Interaction Networks and GO Terms
	Introduction
	Methods
	TSSN
	NNP

	Results and Discussion
	Datasets
	Reference Sets
	Metrics

	Results
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


