AUTHOR=Jiu Songtao , Zhang Yanping , Han Peng , Han Yubo , Xu Yan , Liu Gengsen , Leng Xiangpeng TITLE=Genome-Wide Identification and Expression Analysis of VviYABs Family Reveal Its Potential Functions in the Developmental Switch and Stresses Response During Grapevine Development JOURNAL=Frontiers in Genetics VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.762221 DOI=10.3389/fgene.2021.762221 ISSN=1664-8021 ABSTRACT=

Plant-specific YABBY (YAB) transcription factors play multiple roles in plant growth and development process. However, no comprehensive study has been performed in grapevines, especially to determine their roles in berry development and abiotic stress response. A total of seven VviYABs allocated to six chromosomal positions in grapevines were identified and classified into five subfamilies based on phylogenetic and structural analysis. Promoter element analysis and tissue-specific transcriptional response of VviYABs suggested that VviYABs might play vital roles in plant growth and development. VviYAB1, 2, 3, and 5 showed significantly higher expression levels in vegetative/green organs than in mature/woody tissues, implying that VviYABs might be involved in the regulatory switch from immature to mature developmental phases. The expression of VviYAB1, 2, 3, and VviFAS were gradually downregulated during berry developmental and ripening, which can be considered as putative molecular biomarkers between vegetative/green and mature/woody samples, and were used to identify key developmental and metabolic processes in grapevines. Furthermore, VviYAB1 expression was not markedly increased by gibberellic acid (GA3) treatment alone, but displayed significant upregulation when GA3 in combination with N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) were applied, suggesting an involvement of VviYAB1 in fruit expansion by mediating cytokinin signaling pathway. Additionally, microarray and RNA-seq data suggested that VviYABs showed transcriptional regulation in response to various abiotic and biotic stresses, including salt, drought, Bois Noir, Erysiphe necator, and GLRaV-3 infection. Overall, our results provide a better understanding of the classification and functions of VviYABs during berry development and in response to abiotic and biotic stresses in grapevines.