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Speranskia yunnanensis S. M. Hwang is an endangered shrub narrowly distributed in tropical
regions, and its populations are gradually shrinking. We assembled and annotated the genome of S.
yunnanensis at the chromosome level by combining Nanopore sequencing, Illumina HiSeq
sequencing and Hi-C technology. The final genome assembly was ~417.65 Mb, with a contig
N50 value of 12.52 Mb, and 408.62 Mb (97.84%) of which could be grouped into seven
pseudochromosomes. Approximately 69.11% of the assembly was identified as repetitive
elements, and 25,467 protein-coding genes were annotated. Based on the 1,517 single-copy
orthologous genes, and 751 expanded and 1,645 contracted gene families among the 16,389 gene
families in S. yunnanensis, a phylogenetic tree was further built. The high-quality, annotated, and
chromosome-level genome of S. yunnanensis will present an important source of data for future
research on the evolution of Euphorbiaceae genomes, and provide genomic resources toward studies
on speciation, local adaptation, as well as conservation genomics of the ecologically important genus
Speranskia.

INTRODUCTION

Speranskia Baill., a small genus within the tribe Ricineae subfamily Acalyphoideae of
Euphorbiaceae, is endemic in China (Hwang, 1989; Webster, 2014). Three members are
recognized in Speranskia, namely S. cantonensis (Hance) Pax et Hoffm, S. tuberculata (Bunge)
Baill., and S. yunnanensisHwang. Of them, S. cantonensis and S. tuberculata are widely distributed
from southwestern to northern China, whereas S. yunnanensismaintains a narrow distribution in
tropical Yunnan and is found only in three small and fragmented natural populations (Hwang,
1989). As a member of the castor tribe (Ricineae) and a sister taxon to the castor bean (Ricinus)
(Webster, 2014), Speranskia is important for us to infer the origin and evolution of castor bean as
well as the evolution of ricin proteins. However, its genome composition and phylogenetic position
within Ricineae are largely unknown. Here, we conducted a series of genomic analyses on S.
yunnanensis (2n � 14), including chromosome-level assembly, annotations, phylogenetic
reconstructions, gene family expansion and contraction analyses, divergence time estimation,
and Ks analysis. The genome assembly and resources produced in this study will provide important
insights as well as resource for future study in S. yunnanensis to facilitate conservation and in the
genus Speranskia in general.
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RESULTS AND DISCUSSION

Library Preparation and Whole-Genome
Sequencing
We sequenced the genome of S. yunnanensis S. M. Hwang using a
combination of Illumina short-read sequencing, Oxford
Nanopore Technologies, and Hi-C sequencing technologies.
The short-insert library of 400 bp was constructed, and a total
of 20.57 Gb of raw data was generated using HiSeq X ten of the
Illumina platform. Low-quality reads were removed, and
duplication reads were filtered to obtain 18.73 Gb of clean data
(91.05%). Additionally, we obtained 31.35 Gb of pass reads from
one flow cell of the PromethION sequencer for genome assembly.
Furthermore, the Hi-C library was constructed and sequenced
with paired-end (PE) 150 bp reads for chromosome-level
scaffolding. Finally, approximately 65.16 Gb of Hi-C data was
generated.

Estimating S. yunnanensis Genome Size
Before genome assembly, a genome survey was performed to
assess the genome size based on 18.73 Gb of Illumina clean
data. Using a 21-mer analysis method, the major peak was
located around a k-mer depth of 25, and the other clear peak
was located at half of the expected depth inferred to be a
heterozygous peak. The final predicted genome size of S.
yunnanensis was ∼452.54 Mb with a heterozygosity rate of
∼0.62% and a repeat ratio of 53.4% (Supplementary
Figure S1).

De Novo Genome Assembly and
Pseudochromosome Construction
Following self-error correction, Nanopore long reads were
initially assembled into contigs with NextDenovo, which
produced a preliminary assembly length of 414.61 Mb and a
contig N50 size of 12.42 Mb (Supplementary Table S1). To
further optimize the assembly, the preliminary assembly was
polished using NextPolish. The final assembly of 417.65 Mb
(92.29% of the predicted genome size) was obtained with a
contig N50 size of 12.52 Mb (Supplementary Table S1). Based
on 65.16 Gb of Hi-C data (∼163 × coverage), we obtained seven
pseudochromosomes using JUICER and 3D-DNA programs. In
total, 97.85% (408.62 Mb) of the assembly was anchored and
oriented on pseudochromosomes with a scaffold N50 of
61.04 Mb, ranging from 45.31 to 68.49 Mb in length
(Supplementary Figure S2 and Supplementary Table S2).

To evaluate our assembly, we first used the Benchmarking
Universal Single-Copy Orthologs (BUSCO) to assess assembly
completeness, and 98.3% Embryophyta-conserved genes could be
completely predicted in our assembly (Supplementary Table S3).
We then estimated the base accuracy of the assembly by mapping
Illumina reads. In total, 94.24% of Illumina data could be mapped
to the genome and 94.01 and 91.33% of the assembled genome
sequence could be covered by at least 4- and 10-fold, respectively
(Supplementary Table S4). Furthermore, GC content Poisson
distributions presented a complete and high-quality genome
assembly (Supplementary Figure S3).

Repeat Annotation of the Genome
Assembly
A total of ∼288.65Mb repetitive elements (accounting for
approximately 69.11% of the genome) were identified via two
methods on the basis of de novo and homology-based predictions.
Among these repetitive sequences, tandem and interspersed
repeats were approximately 49.43Mb (11.84% of the genome)
and 212.22Mb (50.81% of the genome), respectively. Additionally,
retrotransposons andDNA transposons were primary components
of the interspersed repeats accounting for 43.80 and 7.02% of the
genome, respectively. The dominant type of retrotransposons was
Long Terminal Retrotransposons (LTRs), which accounted for
approximately 42.19% of the genome (35.00% LTR/Gypsy and
6.70% LTR/Copia retrotransposons) (Supplementary Table S5).

Gene Prediction and Noncoding RNA
Annotation
We applied multiple gene model prediction methods to accurately
predict gene sets in the S. yunnanensis genome, including de novo,
homology-based, and transcriptome-based methods. Analyses
showed that a total of 25,467 protein-coding genes were
predicted with an average gene length of 2,849.31 bp, an
average coding DNA sequence (CDS) size of 1,194.81 bp, and
average exons per gene of 5.24 (Table 1 and Supplementary Table
S6). Moreover, 1,375 (96.1%) BUSCO genes were completely
matched to our predicted S. yunnanensis gene sets, suggesting
high completeness and accuracy of protein-coding genes
(Supplementary Table S7). Overall, a total of 23,078 (90.62%)
genes could be assigned to functional annotation within the public
protein databases: TrEMBL (90.28%), Swiss-Prot (71.37%), NR
(90.52%), EggNOG (42.55%), Gene Ontology (GO) (64.37%),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (25.24%),
and InterPro (55.14%) (Supplementary Table S8). Additionally,
noncoding RNAs were also identified, including 469 transfer RNAs
(tRNAs), 617 ribosomal RNAs (rRNAs), 117 microRNAs
(miRNAs), and 718 small nuclear RNAs (snRNAs)
(Supplementary Table S9).

Gene Families and Phylogenetic Analysis
For phylogenetic analysis and discerning quantities of potential
orthologous gene families, genes from 11 species, including
Arabidopsis thaliana, Hevea brasiliensis, Jatropha curcas,
Manihot esculenta, Medicago truncatula, Oryza sativa, Prunus
persica, Populus trichocarpa, Ricinus communis, and Vitis

TABLE 1 | Assembly and annotation summary of Speranskia yunnanensis
genome.

Assembly feature

Genome size (bp) 417,645,011
Longest contig (bp) 42,011,156
N50 of contig (bp) 12,521,520
GC ratio (%) 32.95
BUSCO score of assembly (%) 98.3
Number of genes 25,467
Percentage of repetitive sequence 69.11
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vinifera, were clustered into gene families. In total, 20,851 S.
yunnanensis genes (81.87%) were clustered into 16,389 gene
families, of which 524 were unique to S. yunnanensis
(Supplementary Table S10). Furthermore, S. yunnanensis
shared 12,300 gene families with four other species (H.
brasiliensis, M. esculenta, J. curcas and R. communis) and
contained 635 unique gene families (Supplementary Figure
S4). We identified and selected a total of 1,517 single-copy
orthologous gene families for phylogenetic analyses and
divergence time estimation. It was showed that S. yunnanensis
and R. communis were closely related species in the
Euphorbiaceae that diverged approximately 26.43 million years
ago (Mya) (Figure 1 and Supplementary Figure S5).

We further discovered 751 expanded and 1,646 contracted
gene families in S. yunnanensis. Among them, 85 gene families
exhibited remarkable expansion and 30 gene families showed
dramatic contraction (Supplementary Table S11). The
enrichment results showed that the expanded genes were
mainly related to GO terms in ion binding, such as zinc and
iron (GO:0008270, GO:0046872, GO:0043169, GO:0005506, and
GO:0043167), nuclease activity (GO:0004521, GO:0016891, and
GO:0004540), the terpenoid synthesis process (GO:0046246 and
GO:0016114) (Supplementary Table S12), and KEGG maps of
metabolic synthesis of terpenoids (K09109, K00909, K00902, and
K00904) (Supplementary Table S13). However, the contracted
genes were mainly related to the ribosomal composition process
(GO:0003735, GO:0022625, GO:0044391, GO:0015934, GO:
0022626, GO:0005840, GO:0042788, and GO:0005844).

Whole-Genome Duplication Analysis
To investigate polyploidization events within S. yunnanensis, we
performed a comparative analysis of the genome sequences from
S. yunnanensis and the other three species (J. curcas, R. communis
and V. vinifera). By measuring the Ks rate of orthologous gene
pairs, we found S. yunnanensis shared similar Ks distributions
(with a peak Ks value of 1.52) with J. curcas and R. communis,
indicating a shared, ancient polyploidy event (γ) of S.

yunnanensis with V. vinifera whereas no additional, recent
species-specific WGD event in the species (Supplementary
Figure S6).

MATERIALS AND METHODS

Sample Processing and Whole-Genome
Sequencing
The natural plants of S. yunnanensis were collected from Zhenkang
County, Yunnan Province, China. Genomic DNA was extracted
from fresh young leaves using the QIAGEN Genomic reagent kit,
according to the manufacturer’s protocols. On the basis of adequate
quality sample, a paired-end library with short-insert sizes of 400 bp
was prepared for sequencing on the HiSeq X Ten PE150 platform
using standard Illumina instructions. Following the Nanopore
library construction protocol, a Nanopore library was
constructed and the long-read data was generated using the
PromethION sequencer (Oxford Nanopore Technologies,
United Kingdom). Sequencing adapters were removed, and reads
of low quality and short length were filtered out. Freshly harvested
leaves were used to construct the Hi-C libraries. First, the
intranuclear chromatin was fixed with formaldehyde to facilitate
covalent bond formation. Subsequently, MboI, a restriction
endonuclease, was used to digest cross-linked DNA, after which
stickyDNA ends were repaired with biotin-marked nucleotides and
the resulting blunt ends were ligated together with DNA ligase.
Proteins were then removed with proteases. To release DNA
molecules from cross-links, purified DNA was randomly
interrupted to fragments with an average size of 300 bp using
ultrasound and attached to adapters. Biotin-labeledDNA fragments
were ultimately captured and enriched using streptavidin beads to
construct paired-end sequencing libraries, which were then
sequenced on the Illumina HiSeq platform to obtain 2 × 150 bp
Hi-C raw reads. Finally, to aid gene annotation, we performed RNA
sequencing for fresh tissues of the leaf, root, seed and stem from the
same plant using an Illumina HiSeq 2500 platform.

FIGURE 1 | Phylogenetic tree of S. yunnanensis and 10 other species. Gene family expansions (+) and contractions (−) are indicated by red and blue, respectively.
Black numbers represent divergence time between species. The numbers of gene families, clustered genes, and all predicted genes are indicated next to each species.
Calibration point is marked by red star.
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Estimating of S. yunnanensis Genome Size
We first filtered Illumina reads using FASTP v0.20.0 (Chen et al.,
2018) with default parameters. Clean reads were analyzed by
KMC v3.1.1 (Marek et al., 2017) to generate the k-mer depth
distribution with a k-mer size of 21 bp, and the final result was
plotted in GenomeScope v2.0 (http://qb.cshl.edu/genomescope/
genomescope2.0/) (Ranallo-Benavidez et al., 2020).

Genome Assembly and
Pseudochromosome Construction
High-quality controlled Oxford Nanopore Technologies long
reads were capitalized on assembly using NextDenovo v2.4.0
(https://github.com/Nextomics/NextDenovo) with a read cutoff
length of 4 kb. A preliminary assembly was achieved using
NextGraph, a subprogram of NextDenovo. Then, iterative
polishing was performed repetitively using NextPolish v1.3.1
(Hu et al., 2019). At this stage, Oxford Nanopore
Technologies long reads and Illumina short-clean reads were
used repeatedly for 10 rounds of genome correction after
finalizing the preassembly. The completeness of genome
assembly was assessed by BUSCO v3.0.2 (Simão et al., 2016)
with the embryophyta_odb10 databases.

For Hi-C sequence data, we also initially filtered out low-
quality reads using FASTP with default parameters. Clean Hi-C
data were then analyzed using JUICER v1.6.2 (Durand et al.,
2016) with default parameters, including softlinking and
indexing the genome sequence in the references/folder,
creating restriction enzyme proposed cutting sites, and
initializing Hi-C reads. Subsequently, the resulting file was
utilized as input into the 3D-DNA program (Dudchenko
et al., 2017) with the parameters -r 2 -q 1 for further
analysis. We used 3D-DNA to elaborately optimize the
ordering and orientation of each clustered group, and
scaffold the genome to produce a chromosomal level
assembly. Finally, an interaction heatmap was corrected and
plotted using JuiceBox v1.11.9 (Durand et al., 2016).

Repeat Annotation
Repetitive elements, including tandem repeats and interspersed
repeats, were predicted in the S. yunnanensis genome. Tandem
Repeats Finder (TRF) v4.09 (Benson, 1999) was first applied to
annotate tandem repeats. For interspersed repeats, both
homology-based and de novo approaches were mainly used.
RepeatMasker v4.0.7 (Tarailo-Graovac and Chen, 2009) and
RepeatProteinMasker were used to identify interspersed
repeats on the basis of homology alignment of the input S.
yunnanensis genome sequence against Repbase v16.10 (Bao
et al., 2015). RepeatModeler v5.8.8 (Smit and Hubley, 2008)
was utilized to construct the repeat library, which comprised a
repeat consensus database with classification information.
Finally, RepeatMasker was employed to generate the de novo
predictions.

Gene Structure Annotation
Protein-coding annotations were predicted using a combination
of de novo, homology-based, and transcriptome-based

approaches based on the repeat masked genome. For de novo
prediction, AUGUSTUS v3.2.3 (Stanke et al., 2008), GENSCAN
(Burge and Karlin, 1998), and GlimmerHMM v3.0.4 (Majoros
et al., 2004) were applied on the basis of the models trained with
CDS data from A. thaliana. GeMoMa v1.7.1 (Keilwagen et al.,
2016) was used for homology prediction, with protein
sequences from A. thaliana, H. brasiliensis, J. curcas, M.
esculenta, P. persica, P. trichocarpa, R. communis, and V.
vinifera. For transcriptome-based prediction, after trimming
low-quality bases and adapter sequences with Trimmomatic
v0.39 (Bolger et al., 2014), nonredundant full-length
transcriptomes from the de novo assembly using TRINITY
v2.9.1 (Haas et al., 2013) were subsequently aligned to the
genome to resolve gene structure using PASA v2.3.3 (Haas
et al., 2003) with parameters -c RunPASA.config–
TRANSDECODER -C -r -R –ALIGNERS blat, gmap. In
addition, EvidenceModeler (EVM) v1.1.1 (Haas et al., 2008)
was used to generate the final consensus set of the gene model
using the previous three approaches. Ultimately, the
completeness of the genome assembly was further assessed
using BUSCO based on the embryophyta_odb10 databases.

Gene Functional Annotation
Functional annotations of protein-coding genes were carried out
using BLASTP (e-value 1e−5) v2.2.26 (Altschul et al., 1997)
against publicly available databases including the Swiss-Prot
(Bairoch and Apweiler, 2000), TrEMBL (Bairoch and
Apweiler, 2000), NR (Pruitt et al., 2007) and eggNOG
(Huerta-Cepas et al., 2015). Protein motifs and domains were
annotated using InterProScan v5.30−69.0 (Jones et al., 2014) by
searching ProDom, SMART, SUPERFAMILY and PRINTS.
Potential pathways of each gene were found in the KEGG
Automatic Annotation Server (https://www.genome.jp/kegg/
kaas/) using the KEGG database.

Noncoding RNA Annotation
Noncoding RNA genes, including tRNA, rRNA, miRNA, and
snRNA, were predicted in the assembled genome. tRNA genes
were predicted using tRNAscan-SE v1.3.1 (Lowe and Eddy,
1997) with eukaryote parameters, and rRNA with high
conservation were predicted by aligning reads to the
Arabidopsis template rRNA sequences using BLASTN
(Altschul et al., 1997), with an e value of 1e−5. Additionally,
INFERNAL (Nawrocki and Eddy, 2013) was used to predict
miRNA and snRNA genes on the basis of the Rfam database
(Griffiths-Jones et al., 2005).

Gene Families and Phylogenetic Analysis
To reveal S. yunnanensis genome evolution, protein-coding
gene sequences from 11 species were selected for
phylogenetic analysis: A. thaliana, H. brasiliensis, J. curcas,
M. esculenta, M. truncatula, O. sativa, P. persica, P.
trichocarpa, R. communis, and V. vinifera. First, an all-vs-all
BLASTP (e-value 1e−5) was applied to calculate gene
similarities. And the paralogs and orthologs were respectively
clustered using OrthoMCL v2.0.9 (Li et al., 2003). Second,
single-copy orthologous genes were extracted from the
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OrthoMCL clustering results and aligned using MAFFT v7.453
(Katoh and Standley, 2013) with default parameters. The
protein sequence alignments were converted into CDS
alignments, which were then concatenated into a supergene
for phylogenetic analysis. IQ-TREE v1.6.12 (Lam-Tung et al.,
2015) was used to construct a maximum likelihood (ML) tree
with the MFP model and a bootstrap of 1000. Subsequently, the
ML tree was input into BaSeml v4.0 andMCMCTree v4.0 (Yang,
2007) to estimate the nucleotide substitution rates and the
divergence times, respectively. The approximate divergence
times between A. thaliana and O. sativa (115–308 Mya), as
well as between A. thaliana and V. vinifera (107–135 Mya;
http://www.timetree.org/) were used as calibrators in time
estimation. The MCMCTree parameters were set as follows:
model � 7, BDparas � 110, kappa_gamma � 62, alpha_gamma �
11, burnin � 500,000, sampfreq � 5,000, nsample � 20,000.
Based on the divergence times estimated and the gene families
identified via OrthoMCL, the expansion and contraction of gene
families were predicted using CAFÉ v3.1 (Han et al., 2013)
under a random birth-and-death model.

Whole-Genome Duplication Analysis
Protein-coding sequences within one genome or between two
different genomes were aligned using BLASTP with an e-value
cutoff of 1e−5. Syntenic blocks and synonymous nucleotide
substitutions (Ks) were determined from protein sequence
alignments based on the detected homologous gene pairs using
WGDI (https://github.com/SunPengChuan/wgdi). We further
filtered the tandem duplicated gene pairs. WGD and
speciation events were inferred from paralogous and
orthologous pairs of Ks distribution peaks, respectively.
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