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Background: Low-grade glioma (LGG) is considered a fatal disease for young adults, with
overall survival widely ranging from 1 to 15 years depending on histopathologic and
molecular subtypes. As a novel type of programmed cell death, ferroptosis was reported to
be involved in tumorigenesis and development, which has been intensively studied in
recent years.

Methods: For the discovery cohort, data from The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) were used to identify the differentially expressed and
prognostic ferroptosis-related genes (FRGs). The least absolute shrinkage and selection
operator (LASSO) and multivariate Cox were used to establish a prognostic signature with
the above-selected FRGs. Then, the signature was developed and validated in TCGA and
Chinese Glioma Genome Atlas (CGGA) databases. By combining clinicopathological
features and the FRG signature, a nomogram was established to predict individuals’
one-, three-, and five-year survival probability, and its predictive performance was
evaluated by Harrell’s concordance index (C-index) and calibration curves. Enrichment
analysis was performed to explore the signaling pathways regulated by the signature.

Results: A novel risk signature contains seven FRGs that were constructed andwere used
to divide patients into two groups. Kaplan–Meier (K−M) survival curve and receiver-
operating characteristic (ROC) curve analyses confirmed the prognostic performance
of the risk model, followed by external validation based on data from the CGGA. The
nomogram based on the risk signature and clinical traits was validated to perform well for
predicting the survival rate of LGG. Finally, functional analysis revealed that the immune
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statuses were different between the two risk groups, which might help explain the
underlying mechanisms of ferroptosis in LGG.

Conclusion: In conclusion, this study constructed a novel and robust seven-FRG
signature and established a prognostic nomogram for LGG survival prediction.

Keywords: ferroptosis, lower-grade glioma, prognostic signature, TCGA, CGGA, immune statuses

BACKGROUND

Lower-grade glioma (LGG) comprises of World Health
Organization (WHO) grade II (diffuse lower-grade) and III
(intermediate-grade) glioma tumors. Despite relatively more
favorable clinical outcomes for LGG than the grade IV
tumors, the survival of LGG patients widely varies from 1 to
15 years, and 70% of patients from the lower grade progress to
high grade within 10 years (van den Bent, 2014). In the past
decades, the histological classification has been the standard
clinical approach for LGG, but it lacks the prediction of
grades due to the wide range of clinical heterogeneities of
LGG (Louis et al., 2016). Although some molecular markers,
such as the presence or absence of mutation in isocitrate
dehydrogenase (IDH) genes, have been integrated in the WHO
classification for LGG, to identify novel prognostic biomarkers
remains imperative.

Ferroptosis is a kind of programmed non-apoptotic cell death
caused by an iron-dependent lethal accumulation of lipid
peroxidation. As a promising therapeutic alternative,
ferroptosis was reported to be closely related to multiple
diseases such as neurodegenerative diseases (Do Van et al.,
2016) and cancer (Shen et al., 2018). Aberrant expressions of
ferroptosis-related genes (FRGs), such as tumor protein p53
(TP53) (Junttila and Evan, 2009), Fanconi anemia
complementation group D2 (FANCD2) (Han et al., 2017),
glutathione peroxidase 4 (GPX4) (Liu H. et al., 2018), heat
shock protein beta 1 (HSPB1) (Arrigo and Gibert, 2012), and
dipeptidyl-peptidase-4 (DPP4) (Enz et al., 2019), were reported to
be correlated with tumor genesis and progression. A ferroptosis
inducer, named erastin, could inhibit the tumor growth and
enhance the sensitivity of chemotherapeutic drugs (Chen et al.,
2015; Yu et al., 2015). Meanwhile, the induction of ferroptosis
synergistically enhanced the antitumor activity of immune

FIGURE 1 | Flow chart of data collection and analysis.
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checkpoint inhibitors (ICIs), even in ICI-resistant tumors
(Badgley et al., 2020). Pseudolaric acid B (PAB) triggered the
ferroptosis and inhibited the viabilities of glioma cells (Wang Z.
et al., 2018). These studies indicated the activation or inhibition of
ferroptosis has potential clinical value, and better understanding
of ferroptosis might provide prognostic value and therapeutic
candidates for management of LGG.

In the present study, we analyzed the aberrant expression of
FRGs by analyzing the LGG samples from The Cancer Genome
Atlas (TCGA) and normal brain tissue from the Genotype-Tissue
Expression (GTEx) database. The overall process is shown in
Figure 1. To be specific, a prognostic signature was established
based on seven FRGs’ expression levels which dissected the
patients with LGG into two risk groups. Meanwhile, its
predictive performance was elucidated by Kaplan–Meier
(K–M) survival and receiver-operating characteristic (ROC)
curves and further validated by two external cohorts consisting
of LGG patients from the Chinese Glioma Genome Atlas
(CGGA) database (Zhao et al., 2017). Furthermore, a survival
nomogram was developed by integrating the risk signature with
other four clinicopathological factors, and its predicted accuracy
in LGG patients was assessed. Finally, enrichment analyses were
performed to investigate the underlying mechanisms between the
signature and tumor immunology. Overall, our data suggested
that FRGs play pivotal roles in glioma progression and could be
prognostic markers and therapeutic targets for glioma. The FRG
signature constructed in this study might enhance the ability to
predict the prognosis of LGG patients and provide potential
explanations on the underlying mechanisms of ferroptosis in
LGG progression.

METHODS

Dataset and Source
MRNA expression data, DNA methylation 450K data, and
corresponding clinical information of 529 LGG patients were
obtained from TCGA data portal (https://gdc-portal.nci.nih.gov/
). For differentially expressed gene analysis, gene expression data
in normal tissue of Genotype-Tissue Expression (GTEx) were
downloaded from the UCSC Xena browser (Goldman et al., 2014;
Gentles et al., 2015). RNA-seq data and clinical information of
other LGG sets were obtained from the Chinese Glioma Genome
Atlas (CGGA) (http://www.cgga.org.cn/) (Bao et al., 2014; Wang
et al., 2015; Zhao et al., 2017; Liu X. et al., 2018). Gene expression
values of fragments per kilobase of exon per million reads
mapped (FPKM) were normalized and subjected to the
following analyses. A comprehensive list of ferroptosis-related
genes (FRGs) was chosen and is provided in Supplementary
Table S1.

Development and Evaluation of the
Ferroptosis-Related Prognostic Signature
To identify differentially expressed FRGs (DE-FRGs) between
TCGA and GTEx databases, the absolute value of the log2-
transformed fold change (log2FC) > 2 and the false discovery

rate (FDR) < 0.05 was considered to be statistically significant
(Zhang et al., 2018). To investigate the mechanisms of
dysregulation for FRGs in LGG, Pearson’s correlation between
FRGs’ transcriptional expression levels and promotor
methylation levels was calculated, and those with |R| > 0.3 and
p < 0.05 were considered significantly correlated (Xu et al., 2019).

To screen genes for constructing a risk signature, univariate
Cox regression models (p < 0.05) were performed to select genes
that are associated with the overall survival of LGG patients in
TCGA. The overlapped candidate prognostic DE-FRGs were
visualized in a Venn diagram. A protein–protein interaction
(PPI) network for the prognostic DE-FRGs was generated by
the STRING database (version 11.0) (Szklarczyk et al., 2010).

Subsequently, the least absolute shrinkage and selection
operator (LASSO) Cox regression was performed by using the
“glmnet” R package to shrink the scope of gene screening. The
multivariate Cox regression analysis was carried out to identify
highly correlated genes and construct the survival risk score
model. The risk score was calculated as follows:

Risk score � ∑
n

i�1 expi × βi,

where n, expi, and βi represent the number of genes, the
expression level, and the coefficient of the gene i, respectively.
According to the median value of the risk scores, the LGG
patients were classified into low- and high-risk groups.
Principal component analysis (PCA) was carried out to
explore the distribution of different groups using the
“prcomp” function in R. The Kaplan–Meier (K–M) curves
were used to evaluate the statistical significance of the survival
rates between different risk groups. The receiver-operating
characteristic (ROC) curve analyses were executed to calculate
the area under the curve (AUC) and to determine the predictive
ability of the risk score signature. We calculated the false negative
rate (FNR) of the survival prognosis by our FRG model.

In order to study whether the FRG-based prognostic signature
could be used as an independent predictor for LGG patients,
univariate and multivariate Cox regression analyses were
conducted in TCGA and CGGA datasets. The risk score, age,
gender, grade, and IDH status were used as covariates.

Construction and Evaluation of a Predictive
Nomogram
To establish a clinically applicable method for predicting the
prognosis of LGG patients, we formulated a prognostic
nomogram to predict the survival probability at 1, 3, and
5 years based on TCGA dataset. Five independent prognostic
parameters, including age, gender, grade, IDH1 status, and risk
score, were used to establish the nomogram for predicting one-,
three-, and five-year survival rates of LGG patients in the “rms,”
“foreign,” and “survival” R packages. Bootstraps with 1,000
resamples were used for these activities. The performance of
the prognostic nomogram was assessed by calculating Harrell’s
concordance index (C-index) (Harrell et al., 1996), and
calibration curves of the nomogram for one-, three-, and five-
year overall survival were carried out to estimate the accuracy of
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actual observed rates with the predicted survival probability.
During the external validation of the nomogram, the total
points of each patient in the CGGA cohort were calculated
according to the established nomogram, and then the C-index
was calculated and calibration curves were derived.

Functional Annotation and Enrichment
Analysis
The “clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” and “ggplot2”
packages in R were used to perform Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation
enrichment analyses based on the differentially expressed genes (|
log2FC| ≥ 2, FDR <0.05) between the low- and high-risk groups.
The top 30 GO terms and KEGG pathways were identified with a
cutoff of p < 0.05 and FDR < 0.05.

The single-sample gene set enrichment analysis (ssGSEA) was
conducted using the “GSVA” package in R to evaluate the
enrichment score (ES) of immune parameters, including 15
immune cells and 13 immune-related pathways (Goldman et al.,
2014). The annotated gene set file is provided in Supplementary
Table S2. Pearson’s correlation coefficients were calculated to test
the correlation between the ES and the risk score.

Statistical Analysis
All statistical analyses were performed using R (version 4.0.3).
Differences between two sample groups were tested by the
Wilcoxon test. Univariate and multivariate Cox regression
analyses were performed to determine risk factors for low and
high risk scores of the signature in LGG. The Venn diagrams,
heatmaps, boxplots, forest plots, nomograms, and calibration plots
were drawn using R language. The K–Mcurve used the log-rank test
to evaluate the statistical difference of survival rates between different
risk groups. The significance of survival time differences was
calculated using the log-rank test with a threshold of p < 0.05.

RESULTS

Characteristics of LGG Patients
The workflow of this study is shown in Figure 1. A total of 508 LGG
patients from TCGA-LGG cohort and 171 LGG patients from the
CGGA cohort were finally enrolled. The clinical characteristics of
patients from two databases are summarized in Table 1.

Aberrant Expression of FRGs in LGG
32 FRG expressions were identified to have a significant
difference between LGG samples from TCGA and normal
samples from GTEx (Figure 2A). Fifteen genes were
upregulated in LGG, whereas another seventeen genes were
downregulated in tumor. Since methylation of promotor plays
a critical role in regulating gene expression, the effect of promotor
DNA methylation on the gene expression of DE-FRGs was
evaluated. As shown in Figures 2A,B, a significant negative
correlation was found between gene expression and DNA
methylation in five genes, including FTH1, ACSL3, SLC1A5,
HSPB1, and STEAP3, whereas significant positive correlations
were found in CRYAB and ZEB1. These results demonstrated that
promoter DNA methylation might regulate the expression of
FRGs in LGG with complexly regulative patterns.

Construction of a Prognostic FRG Signature
A total of 37 FRGs were found for potent prognostic value (p < 0.05)
through univariate Cox proportional hazard regression. 20 of them
were differentially expressed between LGG and normal tissue
(Figures 2C,D). The PPI network among these genes was
constructed using the STRING online database, with parameters
including a minimum required interaction score >0.4 (medium
confidence). As shown in Figure 2E, TP53, SLC7A11, and
HMOX1 were hub genes for ferroptosis in LGG (Figure 2E).
LASSO regression analysis was performed on the 20 overlapped
genes, and nine genes were retained according to the optimal lambda
value (Supplementary Figure S1). By using multivariate Cox
regression analysis, a prognostic model based on seven genes was
developed. The prognostic risk score was imputed as follows: Risk
score � (0.0086 × expression level of ACSL3) + (−0.0190 ×
expression level of CBS) + (0.0013 × expression level of CD44) +
(−0.0027 × expression level of FADS2) + (0.0017 × expression level
of HSPB1) + (0.0104 × expression level of PGD) + (0.0271 ×
expression level of STEAP3). The 509 patients were classified into
high- and low-risk groups according to the median value as cutoff
(Figure 3A and Supplementary Figures S2A,C). The PCA plot
showed the patients in two risk groups were distributed in discrete
directions (Figure 3B). Kaplan–Meier (K–M) plots indicated
patients with high risk scores had a significantly worse OS
probability (p � 9.178e-9) (Figure 3C). To verify the diagnostic
competence of the ferroptosis-related risk signature, the AUC for OS
prediction was calculated. The AUC of the ROC curve reached 0.855
at 1 year, 0.834 at 3 years, and 0.753 at 5 years, which indicated that
the risk score presented excellent performance on prognostic
prediction of TCGA-LGG (Figure 3D). The false negative rate
(FNR) of prognosis for OS at 1 , 3 , and 5 years was 0.077, 0.118,
and 0.169, respectively (Supplementary Table S3).

TABLE 1 | Summary of clinical characteristics of the lower-grade glioma datasets.

TCGA-LGG
dataset (508)

CGGA-LGG
dataset (n = 171)

Age (years)
<�40 251 95
>40 257 76

Gender
Male 282 105
Female 226 66

WHO grade
Grade Ⅱ 246 97
Grade Ⅲ 261 74
Unknown 1

IDH1 status
Wild-type 290 44
Mutation 127 127
Unknown 91

Vital status
Alive 399 81
Dead 109 90
Survival time (days,

mean ± SD)
859.5 ± 929.4 2,143.3 ± 1,542.6
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Validation of the Molecular Signature in
CGGA-LGG Dataset
The prognostic capability of the FRG risk signature was externally
validated by the CGGAdataset. The patients from the CGGA cohort
were also divided into low- or high-risk groups by the same cutoff
value as that in TCGA cohort (Figure 4A, Supplementary Figures
S2B,D, and Supplementary Figure S3). Consistent with the above
findings, PCA found that the patients in different risk groups were
distributed in two directions (Figure 4B). Additionally, the K–M
survival curves showed a significantly worse survival rate with high-
risk patients (Figure 4C and Supplementary Figure S3A). The
AUC for one-, three-, and five-year survival was 0.752, 0.795, and
0.794, respectively (Figure 4D). These results confirmed that the
seven-FRG prognostic model presented good performance in
prognostic prediction of LGG.

Identification of the FRG Signature as an
Independent Prognostic Factor
To evaluate the independent prognostic force of the signature, both
the univariate and multivariate Cox proportion hazard regression
models were applied. The risk score in univariate analysis was
significantly correlated with OS in both TCGA and CGGA cohorts
(HR � 3.814, 95% CI � 2.021–7.196, p < 0.001; HR � 4.250, 95% CI

� 2.719–6.644, p < 0.001, respectively) (Figures 5A,B). The results
from multivariate analysis found this signature was an independent
prognostic factor for OS in TCGA-LGG (HR � 2.352, 95% CI �
1.179–4.690, p � 0.015) and CGGA-LGG (HR � 2.758, 95% CI �
1.572–4.840, p < 0.001) cohorts. These results confirmed the
independent prognostic value of the seven-FRG–based
prognostic signature for patients with LGG (Figures 5C,D).

Construction and Verification of Nomogram
Next, by integrating the above risk signature with
clinicopathological factors, including age, gender, grade, and
IDH status, a nomogram was cautiously constructed for
prediction of one-, three-, and five-year survival rates of LGG.
As shown in Figure 6A, each level of factors was assigned one
point, and a total point was calculated by adding up the points in
each individual. Subsequently, the C-indexes of the nomogram
for predicting OS were 0.87 (95% CI, 0.83–0.91) and 0.68 (95%
CI, 0.63–0.73) in TCGA and CGGA cohorts, respectively.
Calibration curves also showed good agreement between
predictive and observational values at the probabilities of one-,
three-, and five-year survival in TCGA and CGGA cohorts
(Figures 6B,C). These results revealed that the nomogram
signified good accuracy in predicting the one-, three-, and
five-year survival of patients with LGG.

FIGURE 2 | Dysregulation of ferroptosis-related genes (FRGs) and constructing a risk signature. (A) Heatmap of the differentially expressed FRGs between LGG
and normal tissue. (B) Pearson’s correlation of FRGs between transcriptional expression and promoter methylation. (C) Venn diagram showing the overlapped gene
number of differentially expressed FRGs and prognostic FRGs that correlated with OS. (D) Forest plot of hazard ratios demonstrating the prognostic value of overlapped
FRGs. (E) PPI network indicating the interactions among the overlapped FRGs.
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Functional Annotation and Enrichment
Analysis of the FRG Prognostic Signature
To further elucidate the biological functions and pathways associated
with the risk signature, we performed GO and KEGG pathway
enrichment analyses based on differentially expressed genes (DEGs)
between the high- and low-risk groups. As shown in Figures 7A,C,
GO analysis showed 13 clusters sets were enriched in both TCGA
and CGGA cohorts. For biological processes (BPs), DEGs were
mainly enriched into immune-related terms, including neutrophil
degranulation and neutrophil activation involved in immune
response. For cellular components (CCs), cell-substrate junction,
focal adhesion, cell leading edge, and secretory granule lumen were
found to be enriched. With respect to molecular function (MF),
differentially expressed genes were mainly enriched in actin binding,
integrin binding, cadherin binding, actin filament binding, and
growth factor binding. For the KEGG pathway, 10 out of top 30
pathways were enriched in both cohorts, and most of these enriched
pathways were related to infections of bacterial or viral (Figures
7B,D). Interestingly, the term of focal adhesion, which was also
reported closely related to the tumor immune microenvironment
(TME) (Murphy et al., 2020), was enriched in both GO and KEGG
analyses. These results revealed that the risk signature was correlated
with the infection and immune-related pathway.

Furthermore, we quantified the enrichment scores (ESs) of
diverse immune cell subtypes and related functions or pathways

with ssGSEA to confirm the correlation between the risk
signature and immune status. As shown by the boxplot in
Figure 8A, in TCGA-LGG cohort, 25 out of 28 immune-
related terms were significantly higher in the high-risk group
(p < 0.05, Figure 8A), except DCs (dendritic cells), neutrophils,
and NK cells (natural killer cells). Consistently, twenty-four
immune-related terms were validated by the ICGC cohort,
except Tfh cells (T follicular helper cells), while NK cells were
significantly higher in the high-risk group (p < 0.01, Figure 8C).

We further investigated the association between expressions of
the seven-gene signature and the immune status ES in detail by
calculating Pearson’s correlation. The results showed that most of
the seven genes were positively correlated with these immune
cells and functions, but CBS (cystathionine beta-synthase) and
FADS2 (fatty acid desaturase 2) were negatively correlated with
these immune terms in both cohorts (p < 0.05, Figures 8B,D).
However, inconsistent correlations of acyl-CoA synthetase long-
chain family member 3 (ACSL3) with immune characters were
observed between TCGA and CGGA cohorts (Figures 8B,D).

DISCUSSION

LGG, generally acknowledged as benign tumor and universally
prone to progressing into high-grade glioma, is the major

FIGURE 3 | Prognostic analysis of the seven-FRG signature model in TCGA cohort. (A) Distribution and median value of the risk scores. (B) PCA plot of TCGA
cohort. (C) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group. (D) The AUC of time-dependent ROC curves verified the prognostic
performance of the risk score.
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cause of mortality for young adults (Hottinger et al., 2016;
Picca et al., 2018). In recent years, some molecular
characteristics were found to be useful for LGG
classification, prognosis prediction, and treatment guidance
(Takano et al., 2016). However, demand for a novel prognostic
biomarker of LGG is still urgent.

As a newly defined form of programmed cell death,
ferroptosis and its role in oncology have attracted
increasing levels of attention from researchers. It is well
known that ferroptosis is involved in cancer pathology as
an inhibitor or promotor. But its effect is exerted depending
on the tumor type, stage, and microenvironment (Daher et al.,
2019; Dai et al., 2020). It was also demonstrated that FRGs
play roles in glioma cell death and drug resistance (Wang Z.
et al., 2018; Hu et al., 2020). A 19-FRG signature also showed
high correlation with clinical outcomes of glioma (Liu et al.,
2020). These studies indicated the potential role of FRGs in
glioma.

In this study, we identified that there were 29 differentially
expressed FRGs in LGG, and seven of these genes were
significantly correlated with promotor methylation. We used
univariate Cox analysis to screen the relations between 29 DE-
FRGs and prognosis, and 20 genes were found to be related to the

survival of LGG. Followed by LASSO and multivariate Cox
regression analysis, we developed an efficient risk model which
consisted of seven FRGs and divided LGG patients into low- and
high-risk groups by the risk score. The predictive performance of
this risk model was validated by K–M and ROC curve analyses in
both TCGA and CGGA cohorts.

Some clinical characters, including age (≤40 years vs.
>40 years), tumor grade (II vs. III), and IDH status (wild-
type vs. mutation), have been well-practiced in prognostic
analysis for LGG patients (Nabors et al., 2020). Multivariate
Cox analysis showed that the risk group was an independent
prognostic indicator as well. Furthermore, we used the risk
score and other clinical characteristics to construct a
nomogram prognosis model. The nomogram performed
well in prediction of OS probability, which was validated by
time-dependent calibration plots and showed satisfactory
performance in both TCGA and CGGA cohorts. Therefore,
what we established is a clinically applicable prediction model
to assist individualized survival prediction of patients
with LGG.

Among the seven prognostic FRGs, only HSPB1 and CBS were
downregulated in LGG. Previous reports identified that they are
both negative regulators for ferroptosis (Sun et al., 2015; Wang L.

FIGURE 4 | External validation of the seven-FRG signaturemodel in the CGGA cohort (n � 170). (A)Distribution of the risk scores. (B) PCA plot of the CGGA cohort.
(C) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group. (D) The AUC of time-dependent ROC curves verified the prognostic
performance of the risk score.
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et al., 2018). Higher HSPB1 was found to contribute to glioma
development (Ye et al., 2016), while CBS expression, consistent
with our results, was reduced in glioma progression (Takano et al.,
2014). ACSL3, a key regulator of lipid metabolism, is required for

inducing ferroptosis resistance (Magtanong et al., 2019). The
previous studies indicate that ACSL3 overexpression was
associated with worse clinical outcomes in patients with NSCLC
andmelanoma (Chen et al., 2016; Padanad et al., 2016); in contrast,

FIGURE 5 | Cox proportion hazard regression for the OS of LGG. (A, B) Univariate Cox regression analysis in TCGA derivation cohort and the CGGA validation
cohort. (C, D) Multivariate Cox regression analysis in TCGA derivation cohort and the CGGA validation cohort.

FIGURE 6 | The nomogram can predict the survival probability in LGG. (A) A nomogram of TCGA cohort used to predict the OS. (B, C) Calibration curves used to
predict the one-, three-, and five-year survival in TCGA derivation cohort and the CGGA validation cohort. The x-axis and y-axis represent the predicted and actual
survival rates of the nomogram, respectively.
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high ACSL3 expression predicted a better prognosis in ovarian
cancer (Chen et al., 2016). CD44 expression suppressed ferroptosis
in cancer cells andmight exert its function as a glioma promoter by
increasing tumor cell invasion and proliferation, which therefore
could be a promising therapeutic target (Mooney et al., 2016; Liu
et al., 2019). FADS2 is upregulated in glioblastoma, and its
deficiency inhibited glioblastoma cell proliferation, which offers
a potential novel therapeutic target (Affronti and Wellen, 2019).
PGD has been reported to overexpress in a number of cancer types
and to be associated with poor prognosis. In addition, the
upregulated expression of PGD also performs a key role in
the development of radiochemotherapeutic resistance in cancer
(Yang et al., 2018; Sarfraz et al., 2020). Six-transmembrane
epithelial antigen of prostate 3 (STEAP3) is a ferrireductase,
which is vital for cellular iron uptake and homeostasis (Ohgami
et al., 2005). A recent investigation suggested that STEAP3
might exert its function as an oncogenic mediator in glioma
progression (Han et al., 2018). In our results, five of these seven
FRGs (ACSL3, CD44, HSPB1, PGD, and STEAP3) were
associated with poor prognosis, while the remaining two
genes (CBS and FADS2) were the opposite.

Based on the DEGs between the two risk groups, we performed
GO and KEGG annotation and surprisingly found that the term of
focal adhesion was enriched in both GO and KEGG analyses.
Focal adhesion–related terms, such as “integrin and growth factor
binding,” were also enriched, which were considered closely
related to cancer cell metastasis and tumor microenvironment
(Murphy et al., 2020). A previous report that the expression of
focal adhesion kinase was affected by high intracellular iron oxide
nanoparticle concentrations (Soenen et al., 2010) may partially
explain the high correlation between focal adhesion and
ferroptosis catalyzed by iron. Additionally, some immune-
related biological processes and pathways such as neutrophil-
related terms in GO and infection pathways in KEGG were also
enriched. The previous study found the ferroptosis of immune
cells during infection is advantageous for infectious agents
(Matsushita et al., 2015), but the regulatory mechanism
between ferroptosis and infectious pathways in cancer is still
unknown. Emerging evidence suggests that ferroptosis is
associated with tumor immunity (Stockwell and Jiang, 2019;
Liu et al., 2020; Tang et al., 2020). Consistently, our results on
ssGSEA also indicated that the ferroptosis-related signature might

FIGURE 7 | Altered functional characteristics related to the seven-FRG signature. (A) Representative results of GO in TCGA cohort. (B) KEGG analyses in TCGA
cohort. (C) Representative results of GO in the CGGA cohort. (D) KEGG analyses in the CGGA cohort. The blue rectangles indicate the overlapped terms between the
two cohorts.
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positively regulate immune signaling pathways. High- and low-
risk score groups defined by our risk model exhibited distinct
immune landscapes. Specifically, we found that the ESs of
universal immune features were significantly higher in the
high-risk group. Pearson’s correlation test further revealed the
expressions of CD44, HSPB1, PGD, and STEAP3 were positively
correlated with the general 38 immune ESs, while the expression
of CBS and FADS2 had an inverse correlation. The coefficients of
CBS and FADS2 in the risk model were negative, and they,
together with other genes’ expression, contributed to the
positive correlations of risk scores with immune ESs. In the
CGGA cohort, it should be pointed out that ACSL3 expression
did not significantly correlate with immune feature ESs except the
B cell. Recent studies confirmed that CD8+ T cells are required for
glioma growth, and patients with higher abundance of CD8+
T cells in the TME were more likely to benefit from immune
checkpoint inhibitor treatment (Tumeh et al., 2014; Kane et al.,
2020). Taken together, a positive correlation between the risk
score of our FRGmodel and immune characteristics indicated that
the risk score could be a potential predictive biomarker for
immune checkpoint blockade and worthy of further
investigation. Understanding the role of immune checkpoint
inhibitors in combination with ferroptosis inducers for gliomas
is urgent to improve the efficacy of immunotherapy.

However, there were some limitations in our study. Firstly,
the data came from two datasets with limited sample size, and
additional robust analyses (Wu and Ma, 2015; Ren et al.,
2019) in large-scale independent cohorts are needed in the
future. Secondly, the prognostic factors in the nomogram
cannot include some important prognostic factors in surgical
resection, radiation treatment, or chemotherapy. The
collection of detailed clinical information from samples
might help to overcome these shortcomings and assess the
diagnostic efficiency of the nomogram in future studies.
Finally, the biological mechanisms and association with
immunotherapeutic effect of the prognostic signature are
still unknown. Further study is required to extend the
understanding of ferroptosis and promote novel
therapeutic strategies for LGG patients.

CONCLUSION

In summary, we developed a seven-FRG prognostic signature and
nomogram which have good performance in the prediction of
survival of LGG patients from TCGA and CGGA datasets. Our
preliminary observation on correlations between FRGs and tumor
immune features also suggested that further investigation of

FIGURE 8 | Correlation of the risk score with infiltrative immune cells. (A) Comparison of the ssGSEA scores between different risk groups in TCGA cohort. (B)
Correlations between ssGSEA scores and risk scores in TCGA cohort. (C) Comparison of the ssGSEA scores between different risk groups in the CGGA cohort. (D)
Correlations between ssGSEA scores and risk scores in the CGGA cohort. P values are shown as follows: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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underlying mechanisms between ferroptotic regulation and tumor
immunity in LGG is warranted.
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