AUTHOR=Zheng Jie , Xiao Xuan , Qiu Wang-Ren TITLE=iCDI-W2vCom: Identifying the Ion Channel–Drug Interaction in Cellular Networking Based on word2vec and node2vec JOURNAL=Frontiers in Genetics VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.738274 DOI=10.3389/fgene.2021.738274 ISSN=1664-8021 ABSTRACT=
Ion channels are the second largest drug target family. Ion channel dysfunction may lead to a number of diseases such as Alzheimer’s disease, epilepsy, cephalagra, and type II diabetes. In the research work for predicting ion channel–drug, computational approaches are effective and efficient compared with the costly, labor-intensive, and time-consuming experimental methods. Most of the existing methods can only be used to deal with the ion channels of knowing 3D structures; however, the 3D structures of most ion channels are still unknown. Many predictors based on protein sequence were developed to address the challenge, while most of their results need to be improved, or predicting web servers are missing. In this paper, a sequence-based classifier, called “iCDI-W2vCom,” was developed to identify the interactions between ion channels and drugs. In the predictor, the drug compound was formulated by SMILES-word2vec, FP2-word2vec, SMILES-node2vec, and ECFPs