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Dimensionality reduction of high-dimensional data is crucial for single-cell RNA
sequencing (scRNA-seq) visualization and clustering. One prominent challenge in
scRNA-seq studies comes from the dropout events, which lead to zero-inflated data.
To address this issue, in this paper, we propose a scRNA-seq data dimensionality
reduction algorithm based on a hierarchical autoencoder, termed SCDRHA. The
proposed SCDRHA consists of two core modules, where the first module is a deep
count autoencoder (DCA) that is used to denoise data, and the second module is a
graph autoencoder that projects the data into a low-dimensional space. Experimental
results demonstrate that SCDRHA has better performance than existing state-of-the-art
algorithms on dimension reduction and noise reduction in five real scRNA-seq datasets.
Besides, SCDRHA can also dramatically improve the performance of data visualization
and cell clustering.
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INTRODUCTION

With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, the research
of transcriptomics has changed dramatically (Tang et al., 2013; Xi et al., 2018, 2020). On the one
hand, the cell is the unit of an organism, mining data at the single-cell level can help researchers
probe the essence and laws of living activities. On the other hand, the scale of scRNA-seq data
obtained by researchers is growing, which brings enormous challenges in analysis and computation
(Kiselev et al., 2019; Yu et al., 2021). How to transform a high-dimension data into low-dimension
embedding while preserving the topological structure of raw data plays an indispensable role in
scRNA-seq analysis. Besides, the high noise in scRNA-seq data will make it far too difficult to reduce
dimension. One of the most challenging noises is the dropout events, which caused zero inflation in
scRNA-seq data (Zhang and Zhang, 2018). The low RNA capture rate leads to the detection failure
of an expressed gene resulting in a “false” zero count observation, which is defined as a dropout
event. The zero counts consist of “false” zero counts and “true” zero counts, where the true counts
represent the lack of expression of a gene in a specific cell, and the false zero counts are dropout
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events. A large number of false zero counts will lead to unreliable
results of visualization, clustering, and pseudotime inference.
Thus, noise reduction is integral for scRNA-seq data analysis as
well as dimension reduction.

The new challenges of scRNA-seq data bring new
opportunities, these data have spurred the millions of algorithms
to derive novel biological insights (Hie et al., 2020; Wang et al.,
2021a,b). Because of the high-dimensionality of scRNA-seq,
many dimension reduction methods have been proposed for
scRNA-seq data. Some of these methods fail to consider zero
inflation (dropout) of the scRNA-seq data, including uniform
manifold approximation and projection (UMAP) (Becht
et al., 2019) and single-cell graph autoencoder (scGAE) (Luo
et al., 2021). UMAP is a non-linear dimensionality reduction
technique, which is a universal method in high-dimensional gene
expression analysis. scGAE is a dimensionality reduction method
based on graph autoencoder, which can preserve topological
structure in scRNA-seq data. Nevertheless, these methods ignore
the impact of dropout events on the output.

On the contrary, many single-cell analysis algorithms take
dropout events into account, including zero-inflated factor
analysis (ZIFA) (Pierson and Yau, 2015), zero-inflated negative
binomial (NB)-based wanted variation Extraction (ZINB-WaVE)
(Risso et al., 2018), deep count autoencoder (DCA) (Eraslan et al.,
2019), and single-cell model-based deep embedded clustering
(scDeepCluster) (Tian et al., 2019). ZIFA focuses on dropout
events and assumes the dropout rate for a gene depends on
the expression level. However, such a strong assumption lacks
flexibility, and it is not quite suitable for real datasets. To solve
this challenge, ZINB-WaVE has been proposed, which is general
and flexible and uses a zero-inflated negative binomial (ZINB)
(Risso et al., 2018) model. Nonetheless, ZIFA and ZINB-WaVE
have large computation cost; hence, these methods are not fit
for large-scale data. DCA is a deep learning method based on
autoencoder in an unsupervised manner, which can be applied to
datasets of millions of cells. Different from regular autoencoder,
the DCA proposes a ZINB model-based loss function substitute
for the conventional mean square error loss function to depict
scRNA-seq data better. Based on the framework of DCA,
scDeepCluster adds the random Gaussian noise into the encoder
to improve the embedded feature representation and executes
clustering tasks using deep embedded clustering on latent space.
However, both DCA and scDeepCluster are not taking the
cell–cell relationships into account.

The recently proposed graph attention network (GAT)
(Veličković et al., 2018) is a novel neural network architecture
that operates on graph-structured data, which preserves the
topological structure in a latent space. In this work, we
build the graph autoencoder based on GAT to project the
data into a low-dimensional latent expression and maintain
the topological structure among cells as possible. Considering
the input of the graph autoencoder is single-cell graphs of
node matrices and adjacency matrix, the adjacency matrix
among cells built by the K-nearest-neighbor (KNN) algorithm
is quite considerable for graph autoencoder. Nevertheless,
the adjacency matrix will be distorted by the impact of the
high sparsity of scRNA-seq data on the KNN algorithm.

Therefore, we focus on the impact of dropout events on
the output of the KNN algorithm and utilize a scalable
denoising method DCA to mitigate zero inflation caused by
dropout events. Because the raw data and reconstructed data
by DCA have the same dimension, we implement initial
dimensionality reduction for the reconstructed data by using
principal component analysis (PCA). Based on the latent
space constructed by PCA, we build a graph autoencoder to
reduce the dimension and get a low dimensional embedding
for visualization and clustering. These are the motivations
behind our new method SCDRHA. We extensively evaluate
our approach with competing methods using five real datasets;
the experimental results demonstrate that SCDRHA has better
performance than the existing state-of-the-art algorithms on
dimension reduction and noise reduction. Besides, SCDRHA can
also dramatically improve the performance of data visualization
and cell clustering.

MATERIALS AND METHODS

The SCDRHA pipeline for scRNA-seq data analysis consists
of two core modules (Figure 1). The first model is DCA to
alleviate dropout events, which is learned by the ZINB model-
based autoencoder. The second model is a graph autoencoder
based on GAT, which maps the denoised data by DCA to a
low-dimensional latent representation.

Data Preprocessing
To begin, suppose that we have a raw scRNA-seq count matrix
C, which is filtered out genes with no count in any cell. C can be
represented as a P-by-N dimensional matrix, where P is defined
as the total number of genes, N is defined as the total number of
cells, and cij represents the expression value of gene i in cell j.

In this work, we first preprocess the raw scRNA-seq count
data, including log transformation and z-score normalization.
We have a normalized output X, which is given by

X
′

= log2(1+ diag(sj)−1C), (1)

X = zscore(X
′

), (2)

where sj is the size factor for every cell j. The advantage of data
preprocessing is to preserve the impact of library size differences
and transform discrete values to become continuous, allowing for
greater flexibility for the subsequent modeling.

Deep Count Autoencoder
To denoise the data after preprocessing and capture the
characters of scRNA-seq data, we employ DCA based on the
ZINB model, so that we can obtain denoised data, which is
beneficial to the stability and accuracy of the subsequent KNN
algorithm. Taking the count distribution, overdispersion, and
high sparsity of scRNA-seq data into account, DCA applies a
ZINB model based on autoencoder to depict the characters of the
data, and the loss function of the autoencoder is the likelihood of
ZINB distribution.
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FIGURE 1 | The model architecture of SCDRHA. First, we normalize the raw data. Then, we use deep count autoencoder (DCA) to denoise the data. Ultimately, we
use the compressed matrix by PCA and adjacency matrix as the input of graph autoencoder based on graph attention network (GAT) and get a low-dimensional
embedding.

The ZINB distribution is a mixture model that consists of two
components: a point mass at zero and a negative binomial (NB)
component.

NB (x;µ, θ) =
Γ (x+ θ)

Γ (θ)Γ (x+ 1)
(

θ

θ + µ
)θ (

µ

θ + µ
)x, (3)

ZINB (x;π,µ, θ) = πδ0 (x)+ (1− π) NB (x;µ, θ). (4)

where π, µ, and θ are the parameters of ZINB distribution,
which represent the probability of dropout events, mean,
and dispersion, respectively. DCA estimates three parameters
by using an autoencoder framework; the formulation of the
architecture is given below:

E = ReLU(XWE),

B = ReLU(EWB),

D = ReLU(BWµ),

M = diag(sj) exp(DWµ), (5)

5 = sigmoid(DWπ),

2 = exp(DWθ),

where E, B, and D represent the encoder, bottleneck, and decoder
layers, respectively. The loss function of DCA is the negative log
of the ZINB likelihood:

5̂, M̂, 2̂ = argmin5,M,2NLLZINB(X;5,M,2)+ λ||5||2F.
(6)

where the NLLZINB function represents the negative
log-likelihood of ZINB distribution.

Graph Autoencoder Based on GATs
Graph autoencoder is a very powerful neural network
architecture for unsupervised representation learning on
graph-structured data. Compared with regular autoencoder,
graph autoencoder applies graph neural networks in the encoder,
which can better map the graph-structured data. In this work,
we construct a graph autoencoder based on GAT to project the
high-dimensional data to a low-dimensional latent space. GAT is
a novel neural network architecture that extracts the features of
the graph and preserves topological structure among cells.

Because the denoised data by DCA have the same dimension
as the raw count, we select PCA to embed the gene expression
matrix into an intermediate dimension. We select the first F
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principal components as the output matrix H of PCA. In this way,
it can not only shorten the run time of the subsequent modeling
but also enhance the performance of the KNN algorithm to build
a more stable and accurate graph.

GAT aims to obtain a power expressive to transform the
input feature H = {

−→
h 1,
−→
h 2,...,

−→
h N} into higher-level feature

H
′

= {
−→
h
′

1,
−→
h
′

2,...,
−→
h
′

N},
−→
h i ∈ RF , and

−→
h
′

i ∈ RF
′

. GAT learns the
final output features of each node by using the information of
their neighbor nodes:

−→
h
′

i =
∑

j∈Ni
αijW
−→
h j, (7)

where αij represents the importance of node j’s features to node i,
W is a shared weight matrix, and j ∈ Ni, Ni is some neighbor of
node i in the KNN graph. The formula of αij is given below:

αij = softmaxj(eij) =
exp (eij)∑

k∈Ni
exp (eik)

, (8)

where eij is the attention coefficient, it is defined as:

eij = a(W
−→
h i,W

−→
h j), (9)

where the attention mechanism a is a single-layer feedforward
neural network. To make coefficients eij (9) easily compare across
different nodes, GAT applies softmax function to normalize
them; we can obtain αij (8). GAT applies the LeakyReLU
function as the activation function. After fully expanding out, the
coefficients αij can be expressed as:

αij =
exp (LeakyReLU(−→a T

[W
−→
h i||W

−→
h j]))∑

k∈Ni
exp (LeakyReLU(−→a T

[W
−→
h i||W

−→
h k]))

, (10)

where Ea ∈ R2F
′

is a weight vector, and || is the
concatenation operation.

Our graph autoencoder has two inputs: compressed
expression matrices H by PCA and adjacency matrices A.
We apply GAT in the encoder. In our experiments, we encoder
the inputs into two latent expressions, and then decode them into
the reconstruct expression matrices H

′

and adjacency matrices
A
′

. The objective of the learning process is to minimize the
reconstruction loss:

L = γ||H −H
′

||
2
2 + (1− γ)||A− A

′

||
2
2. (11)

TABLE 1 | Basic information about five real single-cell RNA sequencing
(scRNA-seq) datasets.

Dataset Cells Genes Clusters Dropout rate (%)

10X PBMC 4,271 16,499 8 92.24

Mouse ES cell 2,717 24,046 4 65.76

Mouse bladder cell 2,746 19,079 16 94.87

Worm neuron cell 4,186 11,955 10 98.62

Zeisel 3,005 19,972 9 81.21

where γ is a hyperparameter; we set it to be 0.6 in our
experiments. It is a hyperparameter, which is used to balance
the reconstruction loss of expression matrix and adjacent matrix.
Since we mainly use the low-dimensional representation of
adjacency matrix for subsequent dimensionality reduction and
visualization, we pay more attention to the reconstruction
loss of adjacency matrix, and then give more weight to the
reconstruction loss of adjacency matrix.

Convergence Analysis
SCDRHA consists of two core modules: DCA and graph
autoencoder. How to train these two core modules is also a
very important issue, and we give the setting of epochs when
training them. Because we refer to the DCA in the process of
noise reduction, we use the default value to train the DCA. For
graph autoencoder, we first do pretraining, then global training;
their epochs are set to 120 and 40, respectively. Because we find
that when the number of epochs reaches this number, the value
of the loss function of the graph autoencoder changes very little
and tends to a more stable state; so, we have reason to think that
the optimization objective tends to converge at this time.

TABLE 2 | Average silhouette value under different datasets.

Dataset PCA t-SNE scGAE SCDRHA

10X PBMC 0.066 0.129 0.112 0.469

Mouse ES cell 0.019 0.346 0.337 0.411

Mouse bladder cell 0.019 0.251 0.032 0.193

Worm neuron cell −0.143 0.042 −0.026 0.315

Zeisel −0.112 0.113 0.193 0.317

Bold values indicate the highest score in the row and the corresponding method
has the best performance.

TABLE 3 | Normalized Mutual Information (NMI) score under different datasets.

Dataset PCA t-SNE DCA scGAE SCDRHA

10X PBMC 0.320 0.536 0.735 0.650 0.793

Mouse ES cell 0.518 0.594 0.856 0.787 0.951

Mouse bladder cell 0.522 0.673 0.648 0.664 0.732

Worm neuron cell 0.197 0.426 0.467 0.532 0.752

Zeisel 0.255 0.469 0.452 0.636 0.727

Bold values indicate the highest score in the row and the corresponding method
has the best performance.

TABLE 4 | ARI score under different datasets.

Dataset PCA t-SNE DCA scGAE SCDRHA

10X PBMC 0.180 0.356 0.723 0.434 0.781

Mouse ES cell 0.224 0.594 0.852 0.771 0.971

Mouse bladder cell 0.226 0.413 0.529 0.442 0.550

Worm neuron cell 0.032 0.290 0.280 0.246 0.674

Zeisel 0.129 0.326 0.313 0.502 0.627

Bold values indicate the highest score in the row and the corresponding method
has the best performance.
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FIGURE 2 | Cell visualization results for all single-cell RNA sequencing (scRNA-seq) datasets. The columns, from left to right, represent the raw data and the data
visualization after noise reduction by SCDRHA, DCA, PRIME, and DrImpute. The rows, from left to right, represent visualizations of 10X PBMC, Mouse ES cell,
Mouse bladder cell, Worm neuron cell, and Zeisel datasets.

RESULTS

Datasets
To assess the performance of SCDRHA, we focus on relatively
large datasets; five real scRNA-seq datasets with known cell types
are selected. The basic information about five real datasets is
summarized in Table 1, and below, we describe these datasets.

(i) The 10X PBMC (Zheng et al., 2017) dataset is provided by
the 10X scRNA-seq platform, which is from a healthy human.1

(ii) The Mouse ES cell (Klein et al., 2015) dataset profiles the
transcriptome of the heterogeneous onset of differentiation of
mouse embryonic stem cells after Leukemia Inhibitory Factor
(LIF) (Klein et al., 2015) withdrawal GSE65525. (iii) The Mouse

1https://support.10xgenomics.com/single-cell-gene-expression/

TABLE 5 | NMI score under different datasets.

Dataset Raw data DrImpute PRIME DCA SCDRHA

10X PBMC 0.320 0.716 0.682 0.735 0.793

Mouse ES cell 0.518 0.609 0.643 0.856 0.951

Mouse bladder cell 0.522 0.721 0.693 0.648 0.732

Worm neuron cell 0.197 0.665 0.376 0.467 0.752

Zeisel 0.255 0.605 0.574 0.452 0.727

Bold values indicate the highest score in the row and the corresponding method
has the best performance.

bladder cell (Han et al., 2018) dataset is from the Mouse Cell Atlas
project GSE108097. From the raw count matrix, we select about
∼2,700 cells from bladder tissue. (iv) The Worm neuron cell
(Cao et al., 2017) dataset is profiled by single-cell combinatorial
indexing RNA sequencing (sci-RNA-seq), which is from the
nematode Caenorhabditis elegans at the L2 larval stage.2 (v) The
Zeisel et al. (2015) dataset contains 3,005 cells, which are collected
from the mouse cortex and hippocampus GSE60361.

The Evaluation of SCDRHA in
Dimensionality Reduction
In our experiments, four popular dimension reduction
algorithms are used to compare with our algorithm SCDRHA

2http://atlas.gs.washington.edu/worm-rna/docs/

TABLE 6 | ARI score under different datasets.

Dataset Raw data DrImpute PRIME DCA SCDRHA

10X PBMC 0.180 0.654 0.583 0.732 0.781

Mouse ES cell 0.224 0.474 0.497 0.852 0.971

Mouse bladder cell 0.226 0.477 0.463 0.529 0.550

Worm neuron cell 0.032 0.396 0.215 0.280 0.674

Zeisel 0.129 0.465 0.460 0.313 0.627

Bold values indicate the highest score in the row and the corresponding method
has the best performance.
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in five real datasets. These four dimension reduction algorithms
include two traditional algorithms (PCA and tSNE) and two
novel algorithms for dimensionality reduction of scRNA-seq
data (DCA and scGAE).

Firstly, we compare SCDRHA with PCA, t-SNE, and scGAE
and use average silhouette value (Rousseeuw, 1987) to evaluate
the performance of these methods. It is worth noting that

we compress the data into 10 dimensions for comparison,
except t-SNE, and do not modify the default parameters in the
algorithm. Because the algorithm DCA compresses the data to 32
dimensions by default, it is not selected in this experiment.

As is shown in Table 2, only on the Mouse bladder cell dataset,
t-distributed stochastic neighbor embedding (t-SNE) performs
better than SCDRHA. On the other four datasets, the dimension

FIGURE 3 | The influence of hidden layer nodes on SCDRHA under Normalized Mutual Information (NMI).

FIGURE 4 | The influence of hidden layer nodes on SCDRHA under adjusted Rand index (ARI).
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reduction performance of SCDRHA is obviously better than
other methods. The t-SNE is a non-linear dimension reduction
algorithm widely used in single-cell dimension reduction and
visualization; it can directly project high-dimensional data into
two to three dimensions. The Mouse bladder cell dataset has 16
cell clusters; more clusters will distort the computation of average
silhouette value.

In order to further test the dimension reduction performance
of SCDRHA, we use the embedding expression of different
dimensionality reduction methods for clustering analysis.
Besides, Normalized Mutual Information (NMI) (Strehl and
Ghosh, 2002) and Adjusted Rand index (ARI) (Rand, 1971) are
used to evaluate the performance of clustering analysis. To make
the results easily comparable across different methods, we employ
K-means for clustering analysis and set the parameter K as the
real number of clusters in each dataset.

As shown in Tables 3, 4, our experiments illustrate that
SCDRHA is superior to other methods in all datasets. It is
worth noting that SCDRHA overtakes t-SNE on the Mouse
bladder cell dataset, which indicates that denoising single-cell
data before dimension reduction can improve the performance
of the subsequent analysis.

In a word, our experiments demonstrate that SCDRHA has
batter performance in dimension reduction than that other
existing methods.

The Evaluation of SCDRHA in Noise
Reduction
Since SCDRHA involves the module of noise reduction, we
compare SCDRHA with other denoising methods including
DCA, PRIME (Jeong and Liu, 2020), and DrImpute (Gong
et al., 2018). These methods aim to impute dropout events in
scRNA-seq data. At the same time, we also compare the denoised
data with the original data.

Visualizing complex, high-dimensional scRNA-seq data in
a way that is both easy to understand and faithful to the
data is a meaningful task. To further evaluate the SCDRHA
comprehensively, we employ UMAP to project the denoised data
and the original data into two dimensions for cell visualization.
Figure 2 shows the results of cell visualization for all five scRNA-
seq datasets.

We can discover that SCDRHA can clearly divide different
types of cells into different clusters. SCDRHA has a better

FIGURE 5 | The influence of hidden layer nodes on SCDRHA under Silhouette.

Frontiers in Genetics | www.frontiersin.org 7 August 2021 | Volume 12 | Article 733906

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-733906 August 23, 2021 Time: 14:52 # 8

Zhao et al. SCDRHA

performance on cell visualization than other methods.
Comparing raw data with denoised data, we can find that
SCDRHA remarkably improves the performance of data
visualization. The results demonstrate that SCDRHA has a good
ability for noise reduction.

To further evaluate the performance of noise reduction. We
also apply K-means for clustering and use the NMI and ARI
to assess their ability, thereby testing these methods indirectly.
Before clustering analysis, we project the raw data and denoised
data into the same dimensions by PCA.

The two metrics (NMI and ARI) of clustering performance are
presented in Tables 5, 6. We observe that the clustering results of
SCDRHA are better than other algorithms on the five selected
datasets. In addition, denoising can significantly enhance the
ability of clustering.

Parameter Sensitivity Analysis
The hidden layer nodes of the graph autoencoder are a
hyperparameter in SCDRHA, which directly determines the
dimension of the final latent expression. To analyze the influence
of the hidden layer nodes of graph autoencoder on SCDRHA,
we select two datasets (Mouse ES cell and 10X PBMC) as
the test datasets. The numbers of hidden layer nodes are set
to 5, 10, 15, and 20, respectively. We use the latent space of
different dimensions for clustering analysis. Three metrics are
applied for analysis. The experimental results are summarized in
Figure 3.

Figures 3, 4, 5 show that different values of hidden layer nodes
have a slight variation in the dimension reduction and clustering
analysis, and when we selected the total number of nodes is 10,
the performance under the three indexes is the best. Based on this
analysis, the default parameter of the hidden layer nodes in graph
autoencoder is set to 10.

Implementation
The SCDRHA is implemented on HP Z840 workstation
with 32GB RAM. SCDRHA consists of two portions: one
is DCA and the other is graph autoencoder. We refer to
the original code of DCA, which is constructed based on
TensorFlow 1.15.03 and implement DCA using SCANPY
1.7.1, a Python package. We refer to scGAE4 to build
a graph autoencoder that is based on TensorFlow 2.4.1
and Python package spektral 0.6.1. Code and data used
in this paper are available at https://github.com/WHY-17/
SCDRHA.

Software Package and Setting
When comparing with other methods, we followed the package
and instructions provided by the author of each method. We
basically use the default parameters of each package, and we used
the following packages: (i) PRIME,5 (ii) DrImpute,6 (iii) DCA (see
text footnote 3), and (iv) scGAE (see text footnote 4).

3https://github.com/theislab/dca
4https://github.com/ZixiangLuo1161/scGAE
5https://github.com/hyundoo/PRIME
6https://github.com/gongx030/DrImpute

CONCLUSION

Because of the high dimension of scRNA-seq, many dimension
reduction methods have been proposed for scRNA-seq data
in recent years. Nevertheless, these dimension reduction
methods have some limitations in solving dropout events
or maintaining local and global structure in the high-
dimensional data. In conclusion, we propose SCDRHA, a
scRNA-seq data dimensionality reduction algorithm based
on a hierarchical autoencoder. scDeepCluster can learn a
latent embedded representation that can denoise the data
and preserve the topological structure. SCDRHA denoises the
scRNA-seq data to obtain a more stable structure for the
subsequent process. To obtain a low-dimension expression
and retain the topological structure of single-cell data, we
build a graph autoencoder based on GAT. Experimental
results demonstrate that SCDRHA has better performance than
existing state-of-the-art algorithms on dimension reduction
and noise reduction in five real scRNA-seq datasets. Besides,
SCDRHA can also dramatically enhance the performance
of data visualization and cell clustering. With the rapid
development of scRNA-seq technology, the data structure we
get is more and more complex. Learning a more flexible
and universal distribution to fit the data may be our future
research direction.
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