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Inattention is one of the most significant clinical symptoms for evaluating attention deficit 
hyperactivity disorder (ADHD). Previous inattention estimations were performed using 
clinical scales. Recently, predictive models for inattention have been established for brain-
behavior estimation using neuroimaging features. However, the performance of inattention 
estimation could be  improved for conventional brain-behavior models with additional 
feature selection, machine learning algorithms, and validation procedures. This paper 
aimed to propose a unified framework for inattention estimation from resting state fMRI 
to improve the classical brain-behavior models. Phase synchrony was derived as raw 
features, which were selected with minimum-redundancy maximum-relevancy (mRMR) 
method. Six machine learning algorithms were applied as regression methods. 100 runs 
of 10-fold cross-validations were performed on the ADHD-200 datasets. The relevance 
vector machines (RVMs) based on the mRMR features for the brain-behavior models 
significantly improve the performance of inattention estimation. The mRMR-RVM models 
could achieve a total accuracy of 0.53. Furthermore, predictive patterns for inattention 
were discovered by the mRMR technique. We  found that the bilateral subcortical-
cerebellum networks exhibited the most predictive phase synchrony patterns for inattention. 
Together, an optimized strategy named mRMR-RVM for brain-behavior models was found 
for inattention estimation. The predictive patterns might help better understand the phase 
synchrony mechanisms for inattention.

Keywords: predictive models, inattention, feature selection, regression algorithms, phase synchrony

INTRODUCTION

Estimating personalized cognitive or behavioral scores from neuroimaging is an interesting 
yet challenging topic nowadays (Rosenberg et  al., 2016; Shen et  al., 2017; Yoo et  al., 
2017; Rosenberg et  al., 2018; Sui et  al., 2020). The individual brain-age, Intelligence 
Quotient (IQ), attention, as well as personality can be  estimated either from structural 
or functional MRI using machine learning (Zhao et  al., 2019; Cai et  al., 2020; Lin et  al., 
2020; Munsell et al., 2020; Niu et al., 2020). Among those brain-behavior models, predicting 
individual attention from neuroimaging has drawn a significant amount of research interests 
(Rosenberg et  al., 2016, 2018; Yoo et  al., 2017). Attention is a key function in psychology. 
Attention is also  a significant feature for diagnosis of ADHD (Xiao et  al., 2016;  
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Zhao et  al., 2018; Wang et  al., 2018a,b). Inattention can 
lead to dysfunction of memory, learning, and other important 
cognitive tasks (Brown et  al., 2009; Fassbender et  al., 2011; 
Vaidya et al., 2020). Before the present time, the inattention 
scores were always estimated using clinical scales, which 
were subjective measures reported by participants (Zhang 
et  al., 2005). Furthermore, the neural mechanisms of 
inattention are still unclear to date. Therefore, it is of great 
interest to build predictive models for inattention using 
resting state fMRI.

The predictive models for inattention estimations contain 
three parts. One important component of a predictive model 
is the input features. Currently, most of the raw features 
for inattention estimations were based on linear functional 
connectivity (Rosenberg et  al., 2016; Yoo et  al., 2017). The 
nonlinear complexity (i.e., phase synchrony) remained 
unknown (Wang et al., 2017). Another important component 
is the regression algorithms. The well-established connectome-
based predictive modeling (CPM) for inattention estimation 
was based on multi-linear regression (Shen et  al., 2017). 
The comparisons of performance of different regression 
algorithms remain largely unexplored (Yoo et  al., 2017; Sui 
et  al., 2020). The third component is the model validation 
procedure. So far, most of the predictive models were evaluated 
using leave-one-out cross validation. Although several studies 
validated their models using two independent datasets, the 
N-fold cross validations might also be beneficial for inattention 
estimation (Scheinost et  al., 2019).

In addition, different preprocessing steps (i.e., global signal 
regression (GSR), data scrubbing) might have impacts on the 
brain connectivity (Li et  al., 2019a). Although the benefits of 
GSR for resting fMRI are still under debate, previous studies 
found that GSR might enhance the brain-behavior relationships 
(Murphy et  al., 2009; Wong et  al., 2012; Li et  al., 2019a). The 
data scrubbing or volume censoring methods also have impacts 
on functional connectivity features (Yan et  al., 2013; Parkes 
et  al., 2018; Li et  al., 2019b; Lindquist et  al., 2019). Therefore, 
different preprocessing steps should be considered in the brain-
behavior regression tasks. So far, the effects of different 
preprocessing procedures on estimation of inattention using 
phase synchrony remain unclear.

In this paper, we  aimed to apply a unified framework 
to estimate the personalized inattention from resting state 
phase synchrony. First, a cohort of participants with both 
inattention scores and resting state fMRI datasets were 
obtained from the ADHD-200 database. Then, the resting 
state fMRI datasets were preprocessed using different 
strategies that were with or without GSR or scrubbing. 
Third, the regional signals were obtained from the normalized 
images. Fourth, phase synchrony was derived as input for 
the regression tasks. Fifth, the inattention scores were 
estimated using different regression algorithms. Finally, the 
regression models were analyzed using 100 runs of 10-fold 
cross validations. The impacts of different preprocessing 
strategies on the regression tasks are compared in the results 
section. The predictive patterns are discussed in the 
discussion section.

MATERIALS AND METHODS

Participants and MRI Protocols
Participants in this study were obtained from the ADHD-200 
database. To be  consistent with previous studies, the samples 
from the Peking University were selected as subjects. There 
were 95 ADHD and 126 healthy controls. Each participant 
signed the consent form that was approved by the ethics 
committee of Peking University. The inattention scores were 
measured using the ADHD rating scales. For each participant, 
a high-resolution T-1 weighted anatomical MRI and a sequence 
of resting state fMRI datasets (TR = 2 s, 235 volumes) were 
acquired using a Siemens 3 T MRI scanner. The detailed 
information of MRI parameters could be  found at the website 
of ADHD-200.1

Data Preprocessing
The anatomical MRI were skull-stripped, segmented, and 
nonlinearly deformed to standard space. The resting state 
fMRI was normalized using the following procedures: dropped 
the first five volumes, slice-timing, motion correction, skull-
stripped, nuisance signal regression, temporal filtering 
(0.01–0.1 Hz), scrubbing, spatial normalization. Specially, an 
artifactual volume was marked with frame-wise displacement 
>0.5 mm or DVARS value =1. The forward volume and 
backward volume were also marked as artifactual scan points. 
The detailed information of data preprocessing could be found 
in previous works (Wang et  al., 2017, 2018b). After 
preprocessing, the regional time-courses were extracted using 
a previously well-established brain atlas that consisted of 
268 functional nodes (Shen et  al., 2013).

Phase Synchrony
The phase synchrony is a bivariate complexity measure with 
nonlinear properties. The phase synchrony has been widely 
applied in neuroscience as an alternative feature for 
conventional functional connectivity. One advantage of phase 
synchrony was the nonnegative property. Another advantage 
was the nonlinear property. The phase synchrony could 
be obtained using the following steps: (1) get the instantaneous 
phases of each time-signal using Hilbert transform;  
(2) unwarp the instantaneous phases; (3) get the instantaneous 
phase differences between each pair of time-signals;  
(4) discard the artifactual instantaneous phase differences 
if scrubbing was applied on preprocessing steps; and  
(5) compute the mean phase coherence as phase synchrony 
index (Sun and Small, 2009; Sun et  al., 2012).

Regression Models
The minimum-redundancy maximum-relevancy (mRMR) 
features (Ding and Peng, 2005) were selected using the 
praznik package.2 A number of features were detected based 
on significant correlations with inattention (p < 0.05). First, 

1 http://fcon_1000.projects.nitrc.org/indi/adhd200
2 https://cran.r-project.org/web/packages/praznik
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the number of significant inattention-correlated features 
(p < 0.05) was obtained in each cross-validation. Second, 
the numbers of features were obtained after 100 runs of 
10-fold cross-validations. Finally, the mean value of numbers 
of features was calculated for the mRMR procedure. In 
addition, the classical correlation coefficients method was 
also applied to select features (p < 0.05). The predictive 
power of inattention-correlated features with p < 0.05 and 
r > 0 was analyzed additionally. The features selected by 
the covariance between inattention and phase synchrony 
were analyzed with the number of features the same as 
that of the mRMR. The regression models were solved 
using six algorithms: the support vector regression (SVR), 
the partial least squares (PLS), the relevance vector machine 
(RVM), the ridge regression (RR), the elastic net (ENET), 
and the least absolute shrinkage and selection operator 
(LASSO). In this study, the SVR algorithm was carried out 
using the svm() function in e1071 package.3 The PLS 
algorithm was carried out using the pls () function in the 
texir package.4 The RVM algorithm was carried out using 
the rvm() function in kernlab package,5 which automatically 
solved the sigma parameter. The RR, ENET and LASSO 
algorithms were carried out using the glmnet() function 
in the glmnet package6 with alpha = 0, 0.5, and 1, respectively. 
The six algorithms used their default parameters in the R 
packages for comparisons of cross-validations. The CPM 
algorithm was carried out additionally using the MATLAB 
toolbox.7 Furthermore, the parameters were fine-tuned for 
the regression algorithms using the caret package.8 The 
RR, lasso, and ENET were analyzed using the glmnet model, 
which fine-tuned the alpha and lambda parameters. The 
PLS algorithm was analyzed using the pls model, which 
fine-tuned the number of component parameter. The support 
vector machine algorithm was analyzed using the svmLinear 
model, which fine-tuned the cost parameter.

Evaluations
In this paper, 100 runs of 10-fold cross-validations were 
applied on the regression tasks. For each run, the original 
samples were divided into 10 folds. For each fold, nine 
folds of training samples and a fold of testing samples 
were applied to build predictive models. The outputs of 
10 folds were joined together to match with the original 
inattention scores. The performance of the regression models 
was evaluated by correlation coefficients, which were 
computed using the 1,000 times of permutations test. The 
values of p were analyzed using the RVAideMemoire package.9 
The pipeline for the feature selection, regression, and 
validation procedures could be  found in Figure  1.

3 https://cran.r-project.org/web/packages/e1071/index.html
4 https://CRAN.R-project.org/package=textir
5 https://www.rdocumentation.org/packages/kernlab/versions/0.9-29
6 https://cran.r-project.org/web/packages/glmnet/index.html
7 https://github.com/YaleMRRC/CPM
8 https://topepo.github.io/caret/index.html
9 https://cran.r-project.org/package=RVAideMemoire

RESULTS

Performance of Predictive Models
Different feature selection methods and regression algorithms 
have impacts on the performance of the predictive models. 
Figure 2 shows the performance of the predictive models based 
on classical feature selection (p < 0.05). Figure  3 shows the 
performance of the predictive models based on classical feature 
selection (p < 0.05, r > 0). Figure  4 shows the performance of 
the predictive models based on covariance feature selection. 
Figure 5 shows the performance of the predictive models based 
on fine-tuning of the regression algorithms. Figure  6 shows 
the performance of the predictive models based on mRMR 
feature selection. Table 1 shows the performances of predictive 
models based on classical feature selection with GSR and 
scrubbing. Table 2 shows the performances of predictive models 
based on mRMR with GSR and scrubbing. The CPM-based 
models with GSR and scrubbing can achieve a mean accuracy 
of 0.31. The best predictive models can achieve a total accuracy 
of 0.56 based on mRMR and RVM. The PLS also exhibits 
predictive powers. The PLS based on mRMR can achieve a 
total accuracy of 0.34.

The predictive models with GSR outperform that without 
GSR. Figures 2A,B, Figures 3A,B, Figures 4A,B, Figures 5A,B 
as well as Figures 6A,B show the performance of the predictive 
models with GSR. Figures 2C,D, Figures 3C,D, Figures 4C,D, 
Figures  5C,D, as well as Figures  6C,D show the performance 
of the predictive models without GSR. The performance of 
the predictive models with GSR is significantly higher than 
that without GSR.

The predictive models without scrubbing outperform those 
with scrubbing. Figures  2A,C, Figures  3A,C, Figures  4A,C, 
Figures  5A,C as well as Figures  6A,C show the performance 
of the predictive models with scrubbing. Figures  2B,D, 
Figures  3B,D, Figures  4B,D, Figures  5B,D, as well as 
Figures  6B,D show the performance of the predictive models 
without scrubbing. The performance of predictive models with 
scrubbing is a little lower than that without scrubbing.

In addition, the predictive models without fine-tuning 
(Figure  6) outperform that with fine-tuning (Figure  5). The 
positive weighted features significantly improve the performance 
of the regression models with GSR, but remarkably reduce 
the performance of the regression models without GSR, as 
indicated in Figure  3.

Predictive Patterns Related to Inattention
Figure  7 shows the predictive patterns related to inattention 
based on the mRMR feature selection with GSR and scrubbing. 
The 268 nodes are divided into 8 functional systems according 
to a previous study (Finn et al., 2015). The 8 functional systems 
are named as the medial frontal (MF) network, frontoparietal 
(FP) network, default mode (DM) network, subcortical-
cerebellum (SC) network, motor cortex (MC) network, visual 
I  (V1) network, visual II (V2) network, and visual association 
(VA) network. With 100 runs of 10-fold feature selection 
procedures, 1,000 arrays of most predictive features are selected 
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FIGURE 1 | Pipelines for the predictive models. The raw features of phase synchrony are firstly selected by two feature selection methods. Then, the selected 
features are trained and tested using several regression algorithms. Finally, the predictive models are validated using 100 runs of 10-fold cross-validations.

A B

C D

FIGURE 2 | Performance of the predictive models with classical feature selection (p < 0.05). (A) denotes performance of the predictive models with GSR and 
scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and 
with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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as important attributes. Only features that appeared more than 
900 times are displayed in Figure 7. The most predictive brain 
regions are located in the bilateral SC network. The second 
predictive brain regions are located in the bilateral MC network. 
The right MF network is more predictive than the left MF 
network. The DM network and visual networks are less predictive 
than other networks. Both intra- and inter-hemisphere 
connections are found for inattention estimation.

DISCUSSION

In this paper, we  applied several feature selection methods 
and six regression algorithms to build predictive models for 
inattention estimation using phase synchrony. The effects of 

different preprocessing steps (i.e., GSR, scrubbing) were 
considered in computing phase synchrony. We  found that the 
RVMs based on mRMR features significantly improve the 
performance of inattention estimation from resting state phase 
synchrony. In addition, we  also found that GSR significantly 
enhanced the relationships between phase synchrony and 
inattention. Furthermore, the predictive patterns were discovered 
using mRMR methods. In summary, we  proposed a novel 
framework for inattention estimation from phase synchrony, 
which could be supplementary biomarkers for predictive models.

The performance of regression models was related to several 
procedures in inattention estimation. First, the feature selection 
methods might affect the accuracy of prediction. The features 
selected by conventional correlation coefficients were univariate 
attributes, which did not consider the relationships among 

A B

C D

FIGURE 3 | Performance of the predictive models with classical feature selection (p < 0.05 and r > 0). (A) denotes performance of the predictive models with GSR 
and scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR 
and with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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the raw features. The significant inattention-correlated features 
with positive weights (p < 0.05 and r > 0) can improve the 
performance of regression models but were dependent on GSR 
procedures. The performance of covariance-based feature 
selection was lower than that of conventional correlation-based 
models, since the covariance-based features might not be  the 
significantly inattention-correlated. To overcome this limitation, 
mRMR was proposed to select multivariate features (Ding 
and Peng, 2005). The selected features significantly improved 
the performance of inattention estimation. Second, the regression 
algorithms also affect the performance of predictive models. 
We found that in addition to RVM, the PLS was an alternative 
algorithm for inattention estimation, which was consistent 
with previous findings (Yoo et  al., 2017). Specially, we  found 
RVMs based on mRMR features outperformed the other 

methods. The results indicated that the fine-tuning procedure 
does not improve the performance of the regression models. 
The poor performance of the fine-tuning might be  caused by 
the 10-fold cross-validation procedures, since the training 
samples were different among the cross-validations. Of note, 
the RVM exhibited the best performance using automatic 
fine-tuning, implying that the sigma parameter for RVM was 
robust for different datasets. Third, the different preprocessing 
steps significantly affect the prediction. GSR significantly 
enhanced the relationships between phase synchrony and 
inattention. Scrubbing had little effect on the final results. 
The results suggested that GSR should be considered in brain-
behavioral prediction task (Li et al., 2019a). Fourth, the cross-
validations might have effect on the performance of prediction 
tasks. Here, 100 runs of 10-fold cross-validations were performed 

A B

C D

FIGURE 4 | Performance of the predictive models with covariance-based feature selection. (A) denotes performance of the predictive models with GSR and 
scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and 
with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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to evaluate the predictive models. The correlation coefficients 
were reliable and the MAE values were also stable, suggesting 
the robustness of the predictive models. In this paper, we applied 
different algorithms to build predictive models for inattention. 
After comparing with different methods, we  found that the 
mRMR-RVM strategy might be  beneficial for inattention 
estimation from neuroimaging features.

Predictive patterns related to inattention were discovered 
using mRMR feature selection. The visual networks, default 
mode networks, medial frontal network, frontoparietal network, 
subcortical-cerebellum network, as well as motor cortex exhibited 
altered phase synchrony in patients with ADHD. The predictive 
connections in visual network and motor cortex suggested that 
the sensorimotor functions might be  distinctive in ADHD 
(Zang et  al., 2007). The altered connectivity patterns in medial 

frontal network and frontoparietal network might reflect the 
inattention mechanisms in ADHD (Tao et  al., 2017). Previous 
studies found altered functional connectivity in default mode 
networks in ADHD, suggesting the abnormal resting state 
baseline activity in patients (Hoekzema et al., 2014). Decreased 
subcortical volumes were also found in ADHD compared to 
healthy controls (Lu et  al., 2019). In this study, we  found that 
the bilateral subcortical-cerebellum networks exhibited the most 
predictive phase synchrony patterns. We  also found that the 
motor cortex had the second predictive brain regions. Both 
inter- and intra-hemisphere synchrony patterns were found to 
be related to inattention. In addition, the altered phase synchrony 
exhibited asymmetry patterns. Those findings implied that the 
whole brain phase synchrony was predictive to inattention 
estimation. In summary, this study provided a new way to 

A B

C D

FIGURE 5 | Performance of the predictive models with fine-tuned parameters. (A) denotes performance of the predictive models with GSR and scrubbing. 
(B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and with 
scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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decode the inattention using phase synchrony and mRMR 
feature selection, which might be  beneficial for individual 
prediction of inattention.

This study has several limitations which should be  solved 
in future studies. First, the dynamic properties of functional 
connectivity remain unexplored for inattention. Novel feature 

A B

C D

FIGURE 6 | Performance of the predictive models with the mRMR feature selection. (A) denotes performance of the predictive models with GSR and scrubbing. 
(B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and with 
scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.

TABLE 1 | Performance of predictive models based on classical feature 
selection with GSR and scrubbing.

Algorithms r MAE RMSE

RR 0.3 ± 0.03 5.95 ± 0.06 6.9 ± 0.06
ENET 0.12 ± 0.05 6.5 ± 0.14 7.6 ± 0.15
LASSO 0.11 ± 0.05 6.57 ± 0.14 7.74 ± 0.16
PLS 0.33 ± 0.01 5.83 ± 0.05 6.91 ± 0.05
RVM 0.27 ± 0.02 6.01 ± 0.05 6.97 ± 0.05
SVR 0.32 ± 0.02 5.94 ± 0.04 6.85 ± 0.04

TABLE 2 | Performance of predictive models based on mRMR with GSR and 
scrubbing.

Algorithms r MAE RMSE

RR 0.31 ± 0.03 5.92 ± 0.07 6.87 ± 0.07
ENET 0.14 ± 0.05 6.52 ± 0.19 7.77 ± 0.2
LASSO 0.13 ± 0.05 6.6 ± 0.21 7.88 ± 0.22
PLS 0.32 ± 0.02 5.9 ± 0.06 6.98 ± 0.06
RVM 0.53 ± 0.01 5.42 ± 0.03 6.28 ± 0.04
SVR 0.28 ± 0.03 6.12 ± 0.03 6.98 ± 0.03
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extraction methods for dynamic phase synchrony should 
be  investigated for inattention estimation. Second, the 
performance of the inattention estimations should be improved 
with novel feature selection methods and regression algorithms. 
Third, the mRMR features could not reflect the positive or 
negative correlations between phase synchrony and inattention. 
Fourth, the regression models should be  tested using an 
independent dataset, although the regression models were 
well-validated using 100 runs of 10-fold cross-validations. 
Fifth, there were different MRI protocols for the samples, 
which should be  scanned with the same MRI scanner and 
parameters. In summary, the feature extraction models, feature 
selection methods, regression algorithms, and testing procedures 

should be  improved to enhance the performance and the 
generalization ability of the regression models for individual 
inattention estimation.

CONCLUSION

This paper applied different algorithms to build the predictive 
models for inattention from resting state fMRI. We also analyzed 
the impacts of different preprocessing steps on the predictive 
models. The RVMs based on mRMR features significantly 
improve the performance of inattention estimation from resting 
state phase synchrony. We  also found that PLS might be  an 

FIGURE 7 | Predictive patterns of phase synchrony for inattention. MF stands for the medial frontal network. FP represents the frontoparietal network. DM means 
the default mode network. SC denotes the subcortical-cerebellum network. MC represents the motor cortex network. V1 denotes the visual I network. V2 denotes 
the visual II network. VA stands for the visual association network.
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alternative method for brain-behavioral prediction tasks. In 
addition, the GSR strengthens the relationships between 
neuroimaging features and behavioral scores. In summary, 
we  proposed a unified framework for brain-behavioral models 
based on phase synchrony. We also found an optimized strategy 
named mRMR-RVM for inattention estimation.
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