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It is well recognized that batch effect in single-cell RNA sequencing (scRNA-seq)
data remains a big challenge when integrating different datasets. Here, we proposed
deepMNN, a novel deep learning-based method to correct batch effect in scRNA-seq
data. We first searched mutual nearest neighbor (MNN) pairs across different batches
in a principal component analysis (PCA) subspace. Subsequently, a batch correction
network was constructed by stacking two residual blocks and further applied for the
removal of batch effects. The loss function of deepMNN was defined as the sum of a
batch loss and a weighted regularization loss. The batch loss was used to compute the
distance between cells in MNN pairs in the PCA subspace, while the regularization
loss was to make the output of the network similar to the input. The experiment
results showed that deepMNN can successfully remove batch effects across datasets
with identical cell types, datasets with non-identical cell types, datasets with multiple
batches, and large-scale datasets as well. We compared the performance of deepMNN
with state-of-the-art batch correction methods, including the widely used methods of
Harmony, Scanorama, and Seurat V4 as well as the recently developed deep learning-
based methods of MMD-ResNet and scGen. The results demonstrated that deepMNN
achieved a better or comparable performance in terms of both qualitative analysis using
uniform manifold approximation and projection (UMAP) plots and quantitative metrics
such as batch and cell entropies, ARI F1 score, and ASW F1 score under various
scenarios. Additionally, deepMNN allowed for integrating scRNA-seq datasets with
multiple batches in one step. Furthermore, deepMNN ran much faster than the other
methods for large-scale datasets. These characteristics of deepMNN made it have the
potential to be a new choice for large-scale single-cell gene expression data analysis.

Keywords: scRNA-seq data integration, batch effect correction, residual network, mutual nearest neighbor, deep
learning

Abbreviations: MNN, mutual nearest neighbor; ARI, adjusted rand index; ASW, average silhouette width; PCA, principal
component analysis; UMAP, uniform manifold approximation and projection; RAM, random access memory; GPU, graphics
processing unit.
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INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) has
enabled the gene expression profiling of a large number of
individual cells at a single-cell resolution, offering unprecedented
insights into the transcriptomic characterization of cell
heterogeneity and dynamics (Stegle et al., 2015; Consortium,
2018; Han et al., 2018; Svensson et al., 2018). Considerable efforts
have been made over the past decade to promote the rapid
development of this technology, leading to massive single-cell
gene expression data compiled from different experiments at
different times and even with various sequencing platforms.
However, like other sequencing technologies, these differences
inevitably cause an unexpected batch effect due to the technical
or biologically irrelevant variations across batches (Goh et al.,
2017; Tran et al., 2020). The batch effect in the scRNA-seq data
has been plaguing downstream analysis as it may interrupt the
gene expression patterns. Consequently, the issue of batch effect
may lead to a spurious conclusion when jointly investigating
the comprehensive biological process of cells on the basis of
integrating multiple datasets. Hence, batch effect correction is
crucial for analyzing scRNA-seq data, allowing investigators to
capture the intrinsically biological features across batches.

Currently, a myriad of batch effect correction algorithms
has been proposed to tackle the problem (Tran et al., 2020).
MNNCorrect (Haghverdi et al., 2018) assumed the orthogonality
of batch effect to the biological manifold and corrected batch
effect by calculating average difference in the high-dimensional
gene expression space between similar cells across batch pairs
(called mutual nearest neighbors, MNNs). Yet due to its high
consumption of memory usage and CPU runtime, a number of
methods were further developed to enhance the performance,
for example, fastMNN (Haghverdi et al., 2018) and Seurat
Integration (Seurat V3) (Stuart et al., 2019) followed the MNN
scheme to carry out MNN search in a subspace by applying
principal component analysis (PCA) and canonical correlation
analysis (CCA), respectively. Scanorama (Hie et al., 2019)
performed a faster approximate nearest neighbor search in the
low-dimensional space computed by the randomized singular
value decomposition. BBKNN (Polański et al., 2020) found
MNNs in a low-dimensional, reduced space by computing k
nearest neighbors and transformed the neighbor information
into connectivity to construct a graph that linked all cells
across batches. Harmony (Korsunsky et al., 2019) projected
cells across different batches into a PCA space, followed by
iteratively grouping similar cells into multiple clustering while
simultaneously maximizing the diversity of batches within each
cluster. LIGER (Welch et al., 2019) employed integrative non-
negative matrix factorization to reduce the dimension and
identified shared and batch-specific features across datasets. It
then detected joint clusters and normalized the factor loading
quantiles to perform batch correction. scMerge (Lin et al., 2019)
constructed a graph connecting mutual nearest clusters between
batches to remove batch effects.

Deep learning-based methods for single-cell analysis have
experienced a tremendous progress in recent years and were
already applied to remove batch effects in scRNA-seq data, for

instance, MMD-ResNet (Shaham et al., 2017) has attempted
to remove batch effect by minimizing the maximum mean
discrepancy (MMD) using residual neural networks. BERMUDA
(Wang et al., 2019) sought to remove batch effect locally based
on MMD loss between similar cell clusters using an autoencoder
structure. scGen (Lotfollahi et al., 2019) corrected batch effect
based on the distributions of the cells that were inferenced
from a reference dataset using a variational autoencoder model.
However, scGen was a supervised method that required cell types
in advance. scGAN (Bahrami et al., 2020) labeled multiple batches
of the input cells that were represented in latent embedding space
using a generative adversarial network model.

Although several batch correction methods are available,
most of them struggle with excessive running time or resource
requirements, which are likely to be further exacerbated as the
cell numbers of scRNA-seq experiments continue growing. In
this study, we propose deepMNN, a deep learning-based scRNA-
seq batch correction model using MNN. We first identified
MNN pairs among batches in a PCA subspace. A residual-based
batch correction network was then constructed and employed
to remove batch effects based on these MNN pairs. The overall
loss of deepMNN was designed as the sum of a batch loss and a
weighted regularization loss. The batch loss was used to compute
the distance between cells in MNN pairs in the PCA subspace,
while the regularization loss was to make the output of the
network similar to the input. We compared the performance
of deepMNN with state-of-the-art batch correction methods,
including the widely used methods of Harmony, Scanorama,
and Seurat V4, as well as the recently developed deep learning-
based methods of MMD-ResNet and scGen. To comprehensively
investigate the performance of these methods, we employed
different scRNA-seq datasets under various scenarios, such as
datasets with non-identical cell types, datasets with multiple
batches, and large-scale datasets. In addition to qualitative
analysis using uniform manifold approximation and projection
(UMAP) plots, we calculated three metrics to quantitatively
compare their performance on batch correction, including batch
and cell type entropies, adjusted rand index (ARI) F1 score,
and average silhouette width (ASW) F1 score. The experiment
results showed that, in comparison to other correction methods,
deepMNN not only reached a better or comparable performance
in terms of the quantitative metrics and running time but
also allowed for integrating scRNA-seq datasets with multiple
batches in one step.

MATERIALS AND METHODS

Architecture of deepMNN
The deepMNN encompassed two main steps: pre-processing and
batch correction (Figure 1A). The pre-processing step followed
the standard workflow for scRNA-seq data analysis in Scanpy
(Wolf et al., 2018), such as quality control (QC), filtering,
normalization, identification of highly variable genes, scaling,
and linear dimensional reduction using PCA. The dimensional-
reduced data Xpca was used to find MNN pairs among the
different batches. In the batch correction step, the scaled data
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was fed into the batch correction network, and the output was
further transformed into the PCA subspace. Here, the batch
correction network was formed by the stack of two residual
blocks. Each residual block received an input x and computed
output y = x + δ(x), where δ(x) was the output of the
residual block (Figure 1B). The batch loss measured the distance
between cells in MNN pairs in the PCA subspace. We also used
a regularization loss to make the output of batch correction
network resemble the input.

Data Pre-processing
The steps of data pre-processing for scRNA-seq data included (1)
QC and filtering, which was performed to remove the unwanted
cells based on user-defined criteria, (2) normalization, the gene
expression measurements for each cell were normalized by the
total expression, followed by multiplication of a scale factor of
10,000, and (3) log-transformation, the normalized data was
processed using log-transformation. Subsequently, 2,000 highly
variable genes (HVGs, i.e., genes exhibiting high cell-to-cell
variation in the dataset) were identified. We then scaled the data
by calculating the z-score for each gene expression to have zero
mean and unit variance. It should be noted that the z-score values
exceeding the standard deviation of 10 were clipped. Next, we
applied PCA on the scaled data and reduced the dimension using
the first 50 principal components (PCs) empirically. The resulting
matrix Xpca was further used to find MNN pairs across different
batches. In addition, the first 50 PCs were also used to reduce the
dimension of the outputs from the batch correction network as
well (Figure 1A).

Searching for MNN Pairs Among Batches
To find MNN pairs across batches, deepMNN searched 20
nearest neighbors for every cell in one batch from the remaining

other batches in the dimensional-reduced PCA subspace. After
repeating this process for all batches, we identified MNN pairs
where a cell in one batch is the nearest neighbor of a cell
in another batch and vice versa. Since the computational load
of nearest neighbor queries was exponential in the size of
the dataset, we improved the efficiency of our method using
an approximate nearest neighbor searching algorithm that was
implemented in the Annoy package1.

Batch Correction Network
Inspired by the well-known residual network, the batch
correction network was formed by the stack of two residual
blocks. A residual block received an input x (or the output of
the previous block) and computed output y = x + δ(x), where
δ(x) is a residual term resulting from two sequences of three
consecutive layers: weight layer, batch normalization layer, and
PReLU activation layer (Figure 1B). The first weight layer in a
residual block had 2 × d nodes, while the second weight layer
had d nodes, where d is the input dimension of the residual block.

In our work, the initial input into the batch correction network
was the scaled data with 2,000 selected HVGs. Consequently, the
number of nodes in the first and the second weight layers of the
first residual block was 4,000 and 2,000, respectively. The number
of nodes in the two weight layers of the second residual block
was correspondingly the same as that in the first residual block.
Therefore, the number of nodes in the output layer of the batch
correct network was 2,000.

Loss Function
There were two types of losses in this study: (1) the batch loss that
was the sum of the Euclidean distances between cells in the MNN

1https://github.com/spotify/annoy

FIGURE 1 | Overview of the deepMNN framework. (A) Illustration of the deepMNN workflow that was comprised of data pre-processing, principal component
analysis transformation, mutual nearest neighbor pair search, batch correction network with a stack of two residual blocks, and calculation of batch loss and
regularization loss. (B) Residual block comprised of two sequences of three consecutive layers, including the weight layer, batch normalization layer, and PReLU
activation layer.

Frontiers in Genetics | www.frontiersin.org 3 August 2021 | Volume 12 | Article 708981

https://github.com/spotify/annoy
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-708981 August 4, 2021 Time: 13:54 # 4

Zou et al. scRNA-seq Batch Correction by deepMNN

pairs and (2) the regularization loss aimed to make the output of
the network similar to the input.

To compute the batch loss, we first calculated the dimensional-
reduced vector Ypca

i for cell i as follows:

Ypca
i = Yi · PCs

where Yi is the output of the batch correction network for cell i;
PCs are the first 50 principal components as described in section
“Data Pre-processing.” Suppose two cells i and j were in the MNN
pair k and, thus, denoted as Ypca

ik and Ypca
jk , respectively. Then, the

batch loss Lb can be written as follows:

Lb =
∑
k

∣∣∣∣Ypca
ik − Ypca

jk

∣∣∣∣
2

where
∣∣∣∣Ypca

ik − Ypca
jk

∣∣∣∣
2

represents the Euclidian distance between
cells i and j in the MNN pair k, k = 1,2,3,. . ., K, and K is the total
number of MNN pairs.

We hypothesized that the cells in an MNN pair had the same
cell type, their distance should be small when no batch effect
existed, and hence the batch loss was used to remove the batch
effect between different batches. However, if the batch correction
network had a zero vector output, the batch loss should have been
zero, which was not our expectation. As such, we further utilized
a regularization loss to make the output of the network not far
away from the input.

The regularization loss Lr was defined as the sum of the
Euclidian distances between the output and the input of the batch
correction network.

Lr =
∑
i

∣∣∣∣Yi − Xi
∣∣∣∣

2

where Yi is the output of the batch correction network of cell i,
and Xi is the cell i in the scaled data with 2,000 HVGs.

Finally, the overall loss of deepMNN was defined as the
combination of a batch loss and a weighted regularization loss:

L = Lb + α · Lr

The value of α was set as 0.001 in our experiments.

Hyperparameters for Training deepMNN
We trained the deepMNN batch correction network de novo
with default initialization of weights as provided by the PyTorch
library (version 1.6.0). We employed the Adam optimizer
(Kingma and Ba, 2014) with default parameters β1 = 0.9 and
β2 = 0.999 and a batch size of 1,024 for all experiments. The
maximum number of epochs was set as 200. The training
procedure would stop early when the total loss did not decrease
for 10 consecutive epochs. The learning rate (LR) was initialized
as 0.1 and decayed by 0.8 every 20 epochs. In general, the
hyperparameters of the network were manually optimized. We
searched primarily over the residual block structure, empirically
chose the number of the residual blocks, and manually tuned the
LR to obtain optimal performance.

Batch Correction Through Other
Methods
Three widely used methods of Harmony, Scanorama, and Seurat
V4 and two deep learning-based methods of MMD-ResNet
and scGen were used to compare the performance on batch
correction with deepMNN.

We first applied the same data pre-processing as described in
section “Data Pre-processing” for all these methods, including
QC and filtering, normalization, and log-transformation. For
Harmony, the first 50 PCs were determined by applying
PCA on the pre-processed data, followed by utilization of
the RunHarmony function in its R package (version 0.1.0) to
conduct the batch correction experiments. The parameters of
maximum clusters and maximum iterations were set as 50
and 100, respectively. For Scanorama, we first identified 2,000
HVGs after data pre-processing and then employed its Python
implementation (version 1.7.1) to perform the experiments with
default parameter settings. For Seurat V4, we followed the
Seurat integration workflow recommended by the Seurat package
(version 4.0.3). Briefly, we first selected 2,000 HVGs from the
pre-processed data and then computed the anchors using the
FindIntegrationAnchors function, followed by integration of the
batches using the IntegrateData function to accomplish the
experiments. For MMD-ResNet, the PyTorch implementation2

was used to perform the experiments. After data pre-processing
and dimension reduction using PCA, we selected the first 50 PCs
to train the MMD-ResNet model with default hyperparameters
but with a batch size of 256. The training stopped when the
loss did not decrease for five consecutive epochs. For scGen, we
used the PyTorch implementation (version 2.0.0) to carry out the
experiments in our work. We selected the top 7,000 HVGs by
default from the pre-processed data to train the scGen model
with default hyperparameters except for epochs of 100 and a
batch size of 32.

To assess the performance of each method including
deepMNN, the top 50 PC vectors extracted from the batch-
corrected expression matrix were used for the calculation of
evaluation metrics and visualization.

Datasets
Human Peripheral Blood Mononuclear Cell
The data included two batches of human peripheral blood
mononuclear cells (PBMCs) from two healthy donors, which
were generated by the 3′ and 5′ Genomics protocols, respectively
(Zheng et al., 2017). The data and the cell type annotated by
Polański et al. (2020) were downloaded from ftp://ngs.sanger.
ac.uk/production/teichmann/BBKNN/PBMC.merged.h5ad. We
excluded cells without annotation and only retained common
genes, resulting in nine different cell types for a total of 8,098
cells in the 3′ batch and 7,378 cells in the 5′ batch, each
with 17,430 genes.

Human Pancreas
The data consisted of five published pancreas datasets:
Baron (GSE84133) (Baron et al., 2016), Muraro (GSE85241)

2https://github.com/ushaham/batchEffectRemoval2020
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(Muraro et al., 2016), Segerstolpe (E-MTAB-5061) (Segerstolpe
et al., 2016), Wang (GSE83139) (Wang et al., 2016), and Xin
(GSE81608) (Xin et al., 2016), generated using inDrop, CEL-Seq2,
SMART-Seq2, SMARTer, and SMARTer protocols, respectively.
The data batches and annotations were downloaded from https:
//hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/.
We removed the cells annotated with unknown cell types and
only retained the genes detected in all batches. As a result,
there were 15 different cell types for a total of 14,767 cells, each
with 15,558 genes.

Human Cell Atlas
The Human Cell Atlas (HCA) dataset was downloaded
from https://github.com/immunogenomics/harmony2019/tree/
master/data/figure3, processed by Korsunsky et al. (2019). This
data had two batches, including 275,264 bone marrow cells
and 253,024 cord blood cells, respectively (Li et al., 2018). 10×
Genomics protocol was used to generate the data, and 24,823
genes were acquired for each cell. We removed the cell types
whose number of cells was less than 200, resulting in 22 different
cell types for a total of 528,014 cells.

Evaluation Metrics for Batch Correction
To assess the batch correction performance of deepMNN and
other methods as described above, we calculated three types of
metrics, batch and cell type entropies (Chazarra-Gil et al., 2021),
ARI F1 score (Hubert and Arabie, 1985; Tran et al., 2020), and
ASW F1 score (Rousseeuw, 1987; Tran et al., 2020).

Batch and Cell Type Entropies
The entropies of batch and cell type can be used to measure batch
mixing and cell type separation. To compute the batch and cell
type entropies, we first constructed a KNN graph where each cell
was a node and connected to its 20 nearest neighbors. Then, the
batch entropy Eb

i and cell type entropy Ec
i for cell i were calculated

as follows:

Pib =
Nib

Ni

Eb
i = −

1
B

∑
b

Piblog (Pib)

Pic =
Nic

Ni

Ec
i = −

1
C

∑
c

Piclog (Pic)

where Ni is the number of neighbors of cell i (Ni = 20 for each
cell i), Nib is the number of neighbors of cell i with batch b,
Nic is the number of neighbors of cell i with cell type c, and B
and C are the number of batches and the number of cell types,
respectively. A high batch entropy indicates a homogeneous
mixture of different batches, while a low cell type entropy suggests
that the cell types remain separate.

Adjusted Rand Index F1 Score
The rand index (RI) measures the similarity of results between
two clustering methods. It is useful to compare the true label

distribution with the clustering prediction and, therefore, can also
be applied to measure batch mixing and cell type separation. The
RI is defined as:

RI =
a + b( n

2
)

where a is the number of pairs of cells with the same true label that
belongs to the same cluster, b is the number of pairs of cells with a
different true label that are assigned to different clusters, and

( n
2
)

is the number of unordered pairs in a set of n cells. To ensure a
value close to 0 for random labeling, the RI score is “adjusted for
chance,” which gives the ARI:

ARI =
RI−E(RI)

max (RI)−E(RI)

where E(RI) and max(RI) are the expectation and maximum of
RI, respectively. The ARI score ranges from −1 to 1. A positive
high ARI score suggests that the result of clustering prediction is
much consistent with the true label distribution.

To obtain the ARI score, we first applied the k-means
algorithm to generate cluster labels for comparison against batch
labels and cell type labels. We then randomly selected 80% of
cells and calculated the ARI scores for batch and cell type. This
procedure was repeated 20 times to ensure stability. The batch
ARI score and cell type ARI score were further normalized
into an interval of [0, 1], which were denoted as ARIbatch_norm
and ARIcelltype_norm, respectively. Finally, the ARI F1 score was
defined as:

F1ARI =
2(1−ARIbatch_norm)(ARIcelltype_norm)

1−ARIbatch_norm + ARIcelltype_norm

The ARI F1 score is the harmonic mean of the ARI batch score
and the ARI cell type score. As a combined measurement of batch
mixing and cell type separation, a higher ARI F1 score indicates a
better performance of the batch correction method.

Average Silhouette Width F1 Score
The silhouette score measures how well a cell lies within its own
cluster in comparison with other clusters. It is defined as:

si =
(bi−ai)

max (ai, bi)

where ai is the average distance between cell i and other cells in its
cluster, and bi is the average distance between cell i and the cells
in its nearest cluster. The silhouette score is between −1 and 1.
A positive high silhouette score suggests that the cell is close to its
own cluster but discrepant to other clusters. The ASW score over
the entire dataset is then given by:

ASW =
1
n

∑
i

si

where n is the total number of cells in the dataset. The ASW
score indicates whether the clusters are well separated and,
hence, can also be used to evaluate the performance of the batch
correction methods.
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Like the calculation of the ARI score, we randomly selected
80% of cells to compute the ASW batch score and the ASW cell
type score and repeated this procedure 20 times. We normalized
the ASW batch score and the ASW cell type score into an interval
[0, 1]. The ASW F1 score was then obtained by calculating the
harmonic mean of the normalized ASW batch score and the
normalized ASW cell type score as follows:

F1ASW =
2(1−ASWbatch_norm)(ASWcelltype_norm)

1−ASWbatch_norm + ASWcelltype_norm

The ASW F1 score is a combined metric to assess batch
mixing and cell type separation. A higher ASW F1 score indicates
better performance.

Statistical Test and Visualization
The Mann–Whitney U-test with the Benjamini–Hochberg
correction was applied to the ARI F1 scores and the ASW F1
scores to compare the performance on batch correction between
deepMNN and other methods.

We used UMAP (Becht et al., 2019) implemented in the
Scanpy library (version 1.6.0) to visualize our batch correction
results with default parameters.

RESULTS

We utilized the three datasets of PBMCs with two batches,
pancreas cells with five batches, and HCA cells with two batches
(Table 1) to evaluate all batch correction methods under four
different scenarios: identical cell types, non-identical cell types,
multiple batches, and large datasets.

The experiments were carried out on a workstation with four
NVIDIA GeForce GTX 1080 Ti graphics cards, two Intel Xeon
E5-2620 v4 CPUs, and 64G random access memory (RAM). We
performed experiments for all methods in the CPU environment
except the deep learning-based methods of deepMNN, scGen,
and MMD-ResNet, for which a single GPU card was used.

Scenario 1: Identical Cell Types
We first used the PBMC dataset to evaluate the batch correction
methods. This dataset was comprised of nine identical cell types

TABLE 1 | Single-cell RNA sequencing datasets used for evaluating deepMNN.

Dataset Batch Protocol Number of cells

PBMC 10× 3′ 10× Chromium Single Cell 3′ v2
chemistry

8,098

10× 5′ 10× Chromium Single Cell 5′

paired-end chemistry
7,378

Pancreas Baron inDrops 8,569

Muraro CelSeq2 2,122

Segerstolpe SMART-seq2 2,127

Wang SMARTer 457

Xin SMARTer 1,492

HCA Bone Marrow 10× 275,264

Cord blood 10× 253,024

and possessed a similar proportion of cells for each cell type
between the two batches (Figure 2A). The UMAP plots depicted
that all methods except MMD-ResNet successfully merged the
common cells (Figure 3A). The deepMNN, Harmony, and Seurat
V4 produced a distinct megakaryocyte cluster from other cell type
clusters. By comparison, most megakaryocyte cells were mixed up
with monocyte CD14 cells by Scanorama and scGen. Moreover,
the CD8 cells located much closer within the compact clusters
that resulted from deepMNN and Seurat V4. However, these cells
scattered around the CD4 T cells in the clusters generated by
Harmony, Scanorama, and scGen.

With regards to the batch and cell type entropies (Figure 3B),
deepMNN achieved a comparable or a slightly lower batch
entropy than Harmony, scGen, and Seurat v4, but higher than
MMD-ResNet and Scanorama. A lower cell type entropy was
reached by deepMNN compared to other methods except for
Harmony and Seurat V4. As for the ASW F1 score (Figure 3C),
deepMNN was significantly higher than the other methods
(p < 0.00001). Furthermore, the results of the ARI F1 scores
(Figure 3D) showed that the performance of deepMNN was
comparable with that of Harmony and Seurat V4 and significantly
better than all the other methods (p < 0.00001).

Scenario 2: Non-identical Cell Types
To evaluate deepMNN under the scenario where batches had
non-identical cell types, we downsampled the PBMC dataset
using the following criteria: (1) the CD8 and B cells were removed
from the 10× 3′ batch and (2) the monocyte CD14 and NK
cells were removed from the 10× 5′ batch. As a result, the two
batches had different cell types except for CD4, megakaryocyte,
and monocyte FCGR3A cells (Figure 2B). Similar to the
results from scenario 1, we observed that all the methods,
except MMD-ResNet, merged the two batches (Figure 4A). The
deepMNN, Harmony, scGen, and Seurat V4 produced well-
separated clusters for megakaryocyte cells that, however, were
mixed up with monocyte CD14 cells using Scanorama. Moreover,
it was observed that the methods of Harmony, Scanorama, and
Seurat V4 mixed up some CD8 T cells with CD4 T cells, some
other CD8 T cells with NK cells, and some monocyte FCGR3A
cells with monocyte CD14 cells. In contrast, all cell types were
clearly distinguished by deepMNN except that only a few of CD8
T cells were mixed up with NK cells.

Regarding the batch and cell type entropies, deepMNN was
one of the methods that obtained the lowest cell entropy
(Figure 4B). It had a lower batch entropy than Harmony, scGen,
and Seurat v4 did. The ASW F1 score of deepMNN was lower
than scGen but significantly higher than all other methods
(p < 0.00001) (Figure 4C). No significant difference in the ARI
F1 scores was observed between deepMNN and the methods of
Harmony, scGen, and Seurat V4. However, deepMNN reached
a significantly higher ARI F1 score than MMD-ResNet and
Scanorama (p < 0.00001) (Figure 4D).

Scenario 3: Multiple Batches
To assess the performance of deepMNN on a dataset with
multiple batches, we employed the dataset of human pancreatic
cells that consisted of five batches. The dataset had different
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FIGURE 2 | The number of cells per cell type across batches in different datasets. (A) The human peripheral blood mononuclear cell (PBMC) full dataset,
corresponding to the scenario of identical cell types. (B) The PBMC subset dataset, corresponding to the scenario of non-identical cell types. (C) The pancreas
dataset, corresponding to the scenario of multiple batches. (D) The human cell atlas dataset, corresponding to the scenario of large-scale datasets.

numbers of cells and non-identical cell types between batches
(Figure 2C). The UMAP plots demonstrated that Harmony,
scGen, and Seurat v4 can merge all batches, while deepMNN and
Scanorama were more likely to make cell-specific clusters close
together (Figure 5A). Interestingly, all methods appeared to have
maintained a relatively good cell type separation.

For the evaluation metrics, deepMNN obtained a lower batch
entropy than Harmony, scGen, and Seurat V4 and was one of
the methods that achieved the lowest cell entropy (Figure 5B).
It reached a significantly higher ASW F1 score compared to the
other methods (p< 0.00001) (Figure 5C). The ARI F1 score from

deepMNN was also significantly higher than that from Harmony
(p < 0.05), Scanorama (p < 0.00001), and scGen (p < 0.001)
except for Seurat V4 (p > 0.05) (Figure 5D). Due to the bad
performance of MMD-ResNet in the experiments using two-
batch datasets as shown above, we did not evaluate the method
of MMD-ResNet under this multiple-batch scenario.

Scenario 4: Large-Scale Dataset
We further evaluated the batch correction methods using the
large-scale HCA dataset that was comprised of two batches,
where one batch had 275,184 bone marrow cells, while another
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FIGURE 3 | Comparison of batch effect correction methods for the human peripheral blood mononuclear cell dataset of identical cell types with two batches.
(A) Qualitative evaluation of the raw data, Harmony, MMD-ResNet, Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches
on the top row and colored by cell type on the bottom row. (B) The batch and cell type entropies resulting from the batch correction methods. The plots show the
median (line within box), 25th and 75th percentiles (box), 5th and 95th percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from
different batch correction methods. (D) The ARI F1 scores resulting from different batch correction methods. ∗∗∗∗p ≤ 0.0001.

had 252,830 cord blood cells (Li et al., 2018; Figure 2D). Seurat
V4 and scGen were not capable of running successfully on our
server with 64GB RAM due to the exceedingly huge size of the
dataset. The deepMNN took approximately 17 min to complete
the process of batch effect correction, which was significantly
faster than Harmony (∼35 min) and Scanorama (∼77 min). Since

the computation of batch and cell type entropies required more
than 1 TB RAM and the calculation of the ASW F1 score was
unable to be completed within 48 h on our server, we did not
provide the results of the quantitative metrics. However, it was
observed that deepMNN, Harmony, and Scanorama were able to
bring cell-specific clusters close together (Figure 6).
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FIGURE 4 | Comparison of batch effect correction methods for the human peripheral blood mononuclear cell dataset of non-identical cell types with two batches.
(A) Qualitative evaluation of the raw data, Harmony, MMD-ResNet, Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches
on the top row and colored by cell type on the bottom row. (B) The batch and cell type entropies resulting from the batch correction methods. The plots show the
median (line within box), 25th and 75th percentiles (box), 5th and 95th percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from
different batch correction methods. (D) The ARI F1 scores resulting from different batch correction methods. ∗∗∗∗p ≤ 0.0001.
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FIGURE 5 | Comparison of batch effect correction methods for the pancreas datasets with five batches. (A) Qualitative evaluation of the raw data, Harmony,
Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches on the top row and colored by cell type on the bottom row. (B) The
batch and cell type entropies resulting from the batch correction methods. The plots show the median (line within box), 25th and 75th percentiles (box), 5th and 95th
percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from different batch correction methods. (D) The ARI F1 scores resulting from
different batch correction methods. ∗0.01 < p ≤ 0.05, ∗∗0.001 < p ≤ 0.01, ∗∗∗∗p ≤ 0.0001.
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FIGURE 6 | Evaluation of raw data, Harmony, MMD-ResNet, Scanorama, scGen, and deepMNN on the large-scale HCA dataset with 528,014 cells. The cells were
colored by batches on the top row and colored by cell type on the bottom row.

DISCUSSION

Batch effect poses a big challenge in scRNA-seq data analysis.
In this study, we proposed deepMNN, a novel deep learning-
based scRNA-seq batch correction method. The deepMNN
was constructed by a residual-based batch correction network
in conjunction with MNN pairs to remove batch effects in
scRNA-seq data. The experiment results showed that deepMNN
can successfully align different datasets under four scenarios

such as identical cell types, non-identical cell types, multiple
batches, and large-scale datasets. We compared the performance
of deepMNN with state-of-the-art batch correction methods,
including Harmony, Scanorama, and Seurat V4 as well as MMD-
ResNet and scGen. The results demonstrated that deepMNN
achieved a better or comparable performance in terms of both
qualitative analysis using UMAP plots and quantitative metrics
such as batch and cell entropies, ARI F1 score, and ASW F1 score
as well as running time. Two review papers (Tran et al., 2020;
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Chazarra-Gil et al., 2021) reported that Harmony and Seurat
were the best batch correction methods in most scenarios,
which, in turn, suggested the high efficiency of deepMNN to
correct batch effect.

The cell types and their proportions may be considerably
different across batches. For MNN-based batch correction
methods, such as MNNCorrect, Scanorama, and deepMNN, the
MNN pairs across batches need to be computed first. When
two cells from two datasets were identified in an MNN pair,
they were likely the same cell type. To remove the batch effect,
traditional methods usually calculated reference vectors based on
the identified MNN pairs and mapped one dataset to the space
obtained from the reference dataset. By comparison, deepMNN
applied a batch correction network that was formed by the stack
of two residual blocks for batch removal. Since the residual
block contained a residual term δ(x) and an identity term
x, deepMNN can easily learn a representation similar to the
identity term. In addition, the distributions of the same cell types
from different batches were theoretically close to each other,
and the discrepancy may be introduced by the batch effect.
Thus, the residual structure of deepMNN attempted to learn a
representation for the identity term, and the residual term can be
regarded as the batch effect.

Methods like Scanorama and Seurat V4 merged only two
datasets at once and iterated the same procedure to accomplish
the integration of multiple datasets. To our best knowledge,
deepMNN was the first method to integrate multiple batches of
scRNA-seq data in one step. After identifying MNN pairs among
batches, we minimized the batch loss that measured the distance
between cells in the MNN pairs, which can promote the network
removing the multiple-batch effect simultaneously. It should be
noted that the batch loss was not directly based on the output
of the batch correction network. We applied the PCA instead to
reduce the dimension of the output first and then calculated the
distance between cells in the MNN pairs.

Compared to the state-of-the-art batch correction methods,
deepMNN achieved almost significantly high ARI F1 scores and
ASW F1 scores under the scenarios of identical cell types, non-
identical cell types, and multiple batches. The scGen reached
a higher ASW F1 score than deepMNN under the scenario of
non-identical cell types. This was partially due to the feature of
scGen that was a supervised learning method and required cell
type labels. As for computation time, deepMNN was comparable
with other methods when the dataset was small. However, it
was significantly fast when dealing with large-scale datasets – for
example, deepMNN spent around 17 min on batch correction for
the 528k HCA dataset, while Harmony and Scanorama needed
about 35 and 77 min, respectively. Korsunsky et al. (2019)
compared the runtimes for different batch correction methods
and reported Harmony as one of the fastest batch correction
methods, which took 68 min on 500,000 cells. One reason for
the ability of quick batch correction by deepMNN was likely
that it removed batch effect in one step. Another reason might
probably be that deepMNN converged fast and can complete
batch correction within tens of epochs. In our experiments,
deepMNN only required 50 to 100 epochs to accomplish the
removal of batch effect. The last reason was partially due to the
deep learning-based method of deepMNN that used GPU to
speed up the computation. Seurat V4 and scGen cannot run on
our 64GB server for the 528k HCA dataset due to their high
RAM requirement.

The overall loss of deepMNN was the sum of a batch loss
and a weighted regularization loss that was controlled by the
tradeoff parameter α. The use of regularization loss was to make
the output of the network similar to the input and to prevent the
output from being zero when no batches existed in a dataset. We
investigated the effect of α on the batch correction performance of
deepMNN in terms of the ARI F1 score and ASW F1 score under
three different scenarios. Generally, the ASW F1 score tended to
rise first and then declined with the decrease of α, and it reached

FIGURE 7 | The effect of value changes in α on the batch correction performance of deepMNN under three scenarios of identical cell types, non-identical cell types,
and multiple batches. (A) The ASW F1 scores versus various α values under different scenarios. (B) The ARI F1 scores versus various α values under different
scenarios.
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almost the highest value when α was 0.001 under each of the
three scenarios (Figure 7A). Although the ARI F1 score exhibited
much fluctuation with the change of α, it can also have the highest
value with α of 0.001 under the scenario of identical cell types
(Figure 7B). Therefore, we chose 0.001 as the optimal value of
parameter α .

One key limitation of our method was that deepMNN
depended heavily on the identified MNN pairs. Only a small
number of MNN pairs can be found when a handful of cells
represented a shared biological state across batches, which was
not sufficient to remove batch effects in the entire datasets
effectively. On the other hand, even though a large number of
MNN pairs have been identified but a low percentage of them
have had the same cell types, deepMNN would result in a poor
performance on batch correction. In our experiments, about 80–
90% of MNN pairs had the same cell types. In the future, more
reliable schemes of searching MNN pairs will be investigated.
Another aspect of limitation in this study was related to
the dimension reduction method. In this study, deepMNN
used the PCA to project raw single-cell gene expression data
into low-dimensional space. However, a previous study (Butler
et al., 2018) demonstrated that PCA could intrinsically identify
biologically irrelevant variations caused by technical effects.
Other data embedding methods like CCA (Butler et al., 2018)
and autoencoder (Li et al., 2020) would be further considered to
improve the batch correction performance of deepMNN.
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