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DNA methylations in critical regions are highly involved in cancer pathogenesis and drug

response. However, to identify causal methylations out of a large number of potential

polymorphic DNA methylation sites is challenging. This high-dimensional data brings two

obstacles: first, many established statistical models are not scalable to so many features;

second, multiple-test and overfitting become serious. To this end, a method to quickly

filter candidate sites to narrow down targets for downstream analyses is urgently needed.

BACkPAy is a pre-screening Bayesian approach to detect biological meaningful patterns

of potential differential methylation levels with small sample size. BACkPAy prioritizes

potentially important biomarkers by the Bayesian false discovery rate (FDR) approach.

It filters non-informative sites (i.e., non-differential) with flat methylation pattern levels

across experimental conditions. In this work, we applied BACkPAy to a genome-wide

methylation dataset with three tissue types and each type contains three gastric cancer

samples. We also applied LIMMA (Linear Models for Microarray and RNA-Seq Data)

to compare its results with what we achieved by BACkPAy. Then, Cox proportional

hazards regression models were utilized to visualize prognostics significant markers

with The Cancer Genome Atlas (TCGA) data for survival analysis. Using BACkPAy, we

identified eight biological meaningful patterns/groups of differential probes from the DNA

methylation dataset. Using TCGA data, we also identified five prognostic genes (i.e.,

predictive to the progression of gastric cancer) that contain some differential methylation

probes, whereas no significant results was identified using the Benjamin-Hochberg FDR

in LIMMA. We showed the importance of using BACkPAy for the analysis of DNA

methylation data with extremely small sample size in gastric cancer. We revealed that

RDH13, CLDN11, TMTC1, UCHL1, and FOXP2 can serve as predictive biomarkers for

gastric cancer treatment and the promoter methylation level of these five genes in serum

could have prognostic and diagnostic functions in gastric cancer patients.
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1. INTRODUCTION

DNA methylation is a biochemical process of adding a methyl
group at the 5’ carbon of the cytosine ring in a nucleotide (Du
et al., 2010; Li et al., 2015). It is an epigenetic modification
in which chemicals tag DNA and regulate gene expressions.
Promoter DNA methylation is associated with genes silencing,
which contributes to the development of diseases, especially
cancers (Ma et al., 2013). An active research field is to detect
probes associated with differential methylation levels under
contrasting conditions (e.g., sex and tissue types). However,
the dimensionality of the problem makes it much harder. The
number of features (probes) in methylation dataset is typically
at least on the order of several thousand, whereas the number of

samples may be few, presenting challenges in multiple hypothesis
testing as well as overfitting. In this manuscript, we are interested
in identifying or filtering groups of potential probes that show
significant methylation level differences (and similar patterns)
among experimental conditions while accounting for another

demographic factor (e.g., sex). In particular, using a DNA
methylation dataset in gastric cancer with extremely small sample
size (e.g., in cell line experiments), we would like to analyse

differential methylation probes among experimental groups for
both male and female (see Figure 1 for instance).

A detailed review of current methods used for differential
methylation analysis can be found in literature (Wilhelm-
Benartzi et al., 2013). Some methods along with some software
and R packages have been developed to detect probe-wise or
locus-specific methylation differences between specific groups
(Wettenhall and Smyth, 2004; Zackay and Steinhoff, 2010;
Barfield et al., 2012; Kilaru et al., 2012; Wang et al., 2012;
Hansen and Aryee, 2013). For instance, the package MethVisual
can be applied to test whether each CpG site has independent
membership between two groups using Fisher’s exact test (Zackay
and Steinhoff, 2010). The Minfi R package uses linear regression
and an F-test to test for a univariate association between
methylation level of single loci and phenotypes (Hansen and
Aryee, 2013). Bayesian Gaussian models can also be used based
on methylation levels withM-values and they rely heavily on the
Gaussianity assumption (Zhuang et al., 2012).

The aforementioned methods as well as many traditional
statistical methods such as t-test/F-test require moderate or
large sample sizes. When sample sizes are extremely small
(e.g., in cell line experiment), these methods tend to not
control the type-1 error rate accurately, which means they
may over-reject the null hypothesis. Therefore, the results
of hypothesis testing have low statistical power and more
advanced statistical methods should be taken into consideration.
Some exact techniques (i.e., procedures that rely on the
exact distribution of a test statistic) work with small sample
sizes, but they typically rely on strict model assumptions
that can hardly be verified—at least in more complex models
(Konietschke et al., 2021). Therefore, it is quite hard to obtain
meaningful results by applying existing statistical methods
when comparing methylation levels among different groups
with extremely small sample size in each group. In our study,
GSE97686 dataset contains DNA methylation levels among

three tissue types, and there are just three samples in each
tissue type. For example, the ATM group (patient-matched
adjacent tissue myofibroblasts) defined in Najgebauer et al.
(2019) only contains one female and two male samples. In
this case, LIMMA (Linear Models for Microarray Data) may
be a suitable choice for DNA methylation data, which is used
to assess differential expression in the context of multifactor
designed experiments and has features making the analyses
stable even for data with small sizes. However, LIMMA does
not provide clusters of differential features that may ease their
biological interpretations.

To this end, our novel method BACkPAy (BAyesian
mixture model for identifying Clusters of features (e.g.,
proteins) with similar “pre-defined” expression PAtterns) is
a more suitable choice over LIMMA, which is developed to
identify features (probes) that are differentially expressed in
varying conditions for downstream analyses (Chekouo et al.,
2020). More specifically, the method relies on a constrained
Bayesian mixture model for clustering that groups omics
features (e.g., proteins, methylation probes) into biologically
meaningful clusters. Patterns of differentially features in varying
conditions are obtained as combinations of these clusters.
In particular, by applying BACkPAy to our methylation
dataset, our aim is to group methylation probes based on
their methylation profile over the three different tissue types
for male and female samples. Unlike LIMMA, BACkPAy
allows to filter potentially significant probes by Bayesian
FDR method while obtaining several biologically meaningful
patterns/groups (e.g, UpUp-UpDown, UpDown-UpUp) of
probes. Additionally, in Chekouo et al. (2020), it has been shown
that BACkPAy achieved better performance than competing
methods (LIMMA included) across different sample sizes. In
particular, when the sample size is one in each experimental
group, other methods can not be applied, but BACkPAy achieved
satisfactory results.

In this paper, we filtered significant CpG sites with p
< 0.05 by ANOVA (Analysis of variance) from GSE97686
dataset, which contains methylation levels of 424383 probes
in gastric cancer. Then, 15,504 probes passing this critical
value were used to detect the methylation differences among
three groups comparing male to female samples by two
statistical methods: LIMMA (Linear Models for Microarray
Data) and our innovative Bayesian method (BACkPAy). To
identify significant prognostics biomarker genes for gastric
cancer, we applied a Cox model using the mRNA expression of
the genes that map to the Illumina IDs of probes with differential
methylation level filtered by BACkPAy. Gene expression data
was extracted from TCGA-STAD (The Cancer Genome Atlas
Stomach Adenocarcinom) dataset including 238 observations
with 26,540 mRNA markers. Five significant genes with adjusted
p < 0.05 were selected. In order to further compare the
changes of methylation levels and gene expression levels among
groups, CAM (primary gastric cancer-associatedmyofibroblasts),
ATM (patient-matched adjacent tissue myofibroblasts) and NTM
(unrelated normal tissue myofibroblast), the methylation data
and gene expression data of these five genes was collected
from GSE97686 and GSE107161, respectively (gene expression
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FIGURE 1 | Example of probes with differential methylation level pattern, UpUp-UpDown, among three groups when comparing male (red—UpUp trajectory in this

example) to female (green—UpDown trajectory in this example) samples. “N = 5” means that five differential methylation probes from GSE97686 dataset belong to

this pattern with probability larger than pb = 0.5. pma = 0.86 means that the maximum probability to belong to this pattern is 0.86.

data with 47,312 probes from gastric stromal myofibroblast) in
Figures 9–13.

In section 2, we introduced statistical methods in details.
In section 3, we compared the results of two methods through
methylation data of gastric cancer. The filtered significant
probes by BACkPAy were separated into patterns with
differential methylation levels. We also detected significant
genes with prognostic function in gastric cancer by Cox model
based on TCGA data relevant to potential significant probes
filtered by BACkPAy and summarized some methylation
biomarkers in different gastric groups (ATM, CAM, and
NTM). By the analysis of changes in DNA methylation
and corresponding RNA gene expression, the effects of
hypomethylation or hypermethylation among different
gastric groups in terms of these biomarkers have been

discussed. Finally, we concluded with a brief discussion
in section 4.

2. MATERIALS AND METHODS

2.1. Datasets
In this work, we used a dataset with very small sample size and
a large number of features, which is available from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) public functional genomics data repository
with GEO number GSE97686 and GSE107161 (Najgebauer
et al., 2019). They are originated from the Illumina Infinium
HumanMethylation450 BeadChip arrays with 424,383 probes
and obtained from nine blood samples with gastric stromal
myofibroblasts. Sex and tissue type are treated as experimental
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FIGURE 2 | Continued
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FIGURE 2 | The first 6 three-dimensional patterns of differential methylation levels. Two other patterns are shown below. Three-dimensional patterns of differential

methylation levels. Eight patterns (A–H) with differential methylation levels between three groups (CAM, ATM, and NTM) when comparing male to female samples

were identified by BACkPAy. Each group contains three samples (one male and two female samples or two male and one female samples). In each panel, N

represents the number of differential methylation level probes belonging to one specific pattern with probability larger than pb = 0.5. pma is the maximum probability

to belong to the corresponding pattern.

and independent variables, respectively. There are three different
tissue types: primary gastric cancer-associated myofibroblasts
(CAM), patient-matched adjacent tissue myofibroblasts (ATM),
and unrelated normal tissue myofibroblasts (NTM). Each tissue
type contains three samples. Before analyzing methylation
data, we pre-processed the original β values in GSE97686 by
logit transformation to get M-values that are more statistically
valid for the differential analysis of methylation levels (Du
et al., 2010). Similarly, GSE107161 gene expression data
contains total RNA with 47,312 genes obtained from gastric
stromal myofibroblasts, including three CAMs, three ATMs, and
three NTMs, and hybridized to the Illumina HumanHT-12v4
Expression BeadChip.

Some preliminary processing steps have been applied to the
two datasets: (1) we remove genes with missing expression values
for GSE107161; (2) and applied ANOVA to filter probes/genes
with significant differences among tissue types (P-value < 0.05).
BACkPAy and LIMMA were applied to the remaining 15,504
probes and 738 genes for the DNA methylation and gene
expression datasets, respectively.

In this manuscript, we also used the survival data of
gastric cancer from TCGA-STAD dataset, The Cancer
Genome Atlas Stomach Adenocarcinoma. TCGA-STAD
level-3 mRNA expression data contains 238 sample subjects
with 26,540 mRNA markers. The level-3 mRNA expression
data has been quantified by mRNA Analysis Pipeline
(Grossman et al., 2016).

2.2. Quantitative Method of DNA
Methylation
In DNA methylation analysis, β value is a quantitative indicator
of the methylation level. The formula is shown below

β = Max(M, 0)

Max(M, 0)+Max(U, 0)+ 100
, (1)

where Max(M, 0) is the intensity of methylated allele, while
Max(U, 0) is the intensity of unmethylated allele (Du et al., 2010;
Li et al., 2015). β value varies between 0 and 1, which represents
the degree of DNA methylation in a sample. Generally, “zero”
indicates there is no DNAmethylation in CpG sites of the sample;
“one” means that the focal CpG site in all the cells of the sample is
methylated. Additionally, we used 0.2 and 0.8 as the thresholds of
hypomethylation and hypermethylation. Alternatively, a β value
could be transformed to aM-value by the following formula

M = log2
β

1− β
. (2)

We can see the M-value and β-value are related through a log-
2 ratio transformation. However, the range of M-value is from
−inf to +inf, which is larger than β value. In this case, “zero”
indicates the sample is half-methylated. And positive values
mean a methylation rate >50% while negative values suggest a
methylation rate <50% (Du et al., 2010; Li et al., 2015).

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 705708

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Filtering Methylation Marks

FIGURE 3 | Circular plot of DNA methylation levels of significant genes in stromal myofibroblasts. The outermost ring represents human ideograms, i.e., genome

positions by chromosomes. The black lines are cytobands. The labels outside the ring are the names of significant genes (probes) selected by BACkPAy. Different

colors of these gene labels represent the differential methylation patterns significant genes belong to among ATM (adjacent tissue-derived myofibroblast), CAM

(cancer-associated myofibroblast), and NTM (normal tissue-derived myofibroblast) groups comparing male to female samples; each tissue type contains three

samples, Bayesian q-value≤0.05. The first track shows the adjusted p-value of these prognostics genes with the survival data in TCGA package. (red: FDR p-value <

0.05, blue: FDR p-value > 0.05). The second track, the third track and innermost track represent the DNA average methylation levels of corresponding CpG sites from

significant genes among CAM, ATM, and NTM, respectively. (red: β value < 0.2, hypermethylated loci, blue: β value>0.2). The complete list of genes (with colors) is

available in the Supplementary Material (section 1).

2.3. BACkPAy
BACkPAy is a recently released software that implements a
Monte Carlo Markov chain (MCMC) algorithm for the detection
of omics patterns (Chekouo et al., 2020). The software is available

via this link: https://github.com/chekouo/BAckPAy. BACkPAy is
one of the few statistical methods that is able to detect omics
patterns while identifying differential omics features between
experimental conditions when sample sizes are extremely small.
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FIGURE 4 | Survival analysis in RDH13. (A) Depicts the histogram of RDH13 gene expression. Based on TCGA-STAD dataset, we set 6 as the gene expression

threshold to separate the 238 observations into two groups: low expression and high expression groups of samples. (B) Shows the estimated survival functions using

a Cox proportional hazard regression analysis in RDH13 between the two groups; FDR p-value = 0.0325 indicates a significant survival time difference between the

two groups.

FIGURE 5 | Survival analysis in CLDN11. (A) Describes the histogram of CLDN11 gene expression. Based on the CLDN11 data extracted from TCGA-STAD, we set

0.5 as the gene expression threshold to separate the 238 observations into two groups: low expression and high expression groups of samples. (B) Shows the

estimated survival function plots using a Cox proportional hazard regression analysis in CLDN11 between the two groups; FDR p-value = 0.0325 indicates a

significant survival time difference between the two groups.

Here, we provide a general overview of the method. Additional
details on the BACkPAy architecture as well as on the software
can be found in Chekouo et al. (2020).

Overall, the methylation data is encoded as Y = (ys, j =
1, ..., p; s = 1, 2), where yjs = (yjs1, yjs2, ..., yjsns ) is a vector in
which each element yjsi represents the M-value of probe j in
sample i = 1, ..., ns of type s, s = 1 if the sample is male and
s = 2 if female. Then, we assume that yjs comes from a mixture
of a finite number H of components. Given the h’th component
(cluster) of the mixture, the model is written as

yjsi = ajh+ xsi1βh1+ xsi2βh2+ ǫjsih, ǫjsih ∼ Normal(0, σ 2
h ), (3)

where ajh is the probe-specific random effect of probe j within
cluster h, xsi1 = 1 (i.e., k = 1) if sample i of type s (male
or female) is from ATM group, and 0 otherwise; and xsi2 = 1
(i.e., k = 2) if sample i of type s is from NTM group, and 0
otherwise. Finally, (βh1,βh2) is the vector of slopes that measures
the tissue type group effects. Through prior distributions of the
slopes, we defined H = 9 clusters with respect to the signs of
the coefficients βsh1 and βsh2. For instance, cluster 1 (DownUp) is
characterized by features with decreasing methylation level from
ATMgroup to CAMgroup and increasingmethylation level from
CAM group to NTM group (β11 > 0 and β12 > 0), and cluster
2 (FlatUp) is characterized by features with constant methylation
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FIGURE 6 | Survival analysis in TMTC1. (A) Depicts the histogram of TMTC1 gene expression. Based on the TMTC1 data from TCGA-STAD, we set 2 as the gene

expression threshold to separate the 238 observations into two groups: low expression and high expression groups of samples. (B) Shows the estimated survival

function plots using a Cox proportional hazard regression analysis between the two groups; FDR p-value = 0.0325 indicates a significant survival time difference

between the two groups.

FIGURE 7 | Survival analysis in UCHL1. (A) Depicts the histogram of UCHL1 gene expression. From TCGA-STAD dataset, we set 2 as the gene expression threshold

to separate the 238 observations into two groups: low expression and high expression groups of samples. (B) Shows the estimated survival function plots using a

Cox proportional hazard regression analysis between the two groups; FDR p-value = 0.0325 indicates a significant survival time difference between the two groups.

level from ATM to CAM group and increasing methylation level
from CAM group to NTM (β21 = 0 and β22 > 0), etc.
For instance, pattern of features DownUp-FlatUp is a group of
probes that belong to clusters DownUp and FlatUp for male and
female samples, respectively. To implement BACkPAy, we set the
hyperparameters of the parameters τsh’s which help to constrain
the regression coefficients in Equation (3) and allow to make
a clear distinction between the clusters (e.g., UpUp, UpDown).
Formally, τsh follows a Gamma distribution with parameters
aτ = 7 and bτ = 5 (i.e., prior mean of τsh is 1.4) when
βsh 6= 0 for both DNAmethylation and gene expression data. For
the estimation in BACkPAy, the total number of MCMC draws
was 30,000 iterations, with 10,000 discarded as burn-in. Further,
we plotted patterns of features with inclusion probabilities

larger than 0.5. The maximum of those inclusion probabilities
for each pattern was also shown on the graph (see Figure 2

for instance).

2.4. LIMMA
LIMMA is a popular R/Bioconductor software package using
linear models with robust hyperparameter estimation to assess
differential methylation levels in several (more than 2) groups.
We fitted a linear model using lmFit function in R to estimate
βj, the differences among three groups for the j’th probe. Let

yTj = (yj1 , ..., yjn ) define the DNAmethylation level (M-value) for

three groups with n = n1+n2+n3 for the j’th probe. The expected
value of yj is defined as E(yj) = Xαj, where X is a design matrix
providing a representation of the different DNA methylation
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FIGURE 8 | Survival analysis in FOXP2. (A) Depicts the histogram of FOXP2 gene expression. From TCGA-STAD dataset, we set 1 as the gene expression threshold

to separate the 238 observations into two groups: low expression and high expression groups of samples. (B) Shows the estimated survival function plots using a

Cox proportional hazard regression analysis between the two groups; FDR p-value = 0.0338 indicates a significant survival time difference between the two groups.

FIGURE 9 | The overall methylation and gene expression levels of the RDH13 promoter region. (A) Averaged methylation level over the three samples of gene RDH13

among tissue types from GSE97686 dataset. (B) Averaged gene expression level over the three samples of gene RDH13 among tissue types from GSE107161

dataset. The blue bars represent 95% confidence intervals. Some error bars are large as the sample size is only 3 in each tissue type.

targets that have been hybridized to the arrays, αj is a vector

of coefficients. β j = CTαj, where C is a contrast matrix. Thus,
the null hypothesis for testing the DNA methylation differences
between male and female in each group is H0 :βjt = 0 for probe
j = 1, ..., n and t = 1, 2, 3 representing three groups of tissue type.
The test statistic for testing H0 is the moderated t-statistic, based
on a Bayesian approach, defined by

t̃jt =
β̂jt

s̃j
√
vjt

. (4)

The p-value for testing H0 is calculated from the t distribution
with dj + d0 degrees of freedom. More information on s̃j, vjt , dj
and d0 could be found in Phipson et al. (2016). If the p-value
of t̃jt is <0.05, we could reject the null hypothesis H0, i.e., there
is a significant difference between male and female for probe
j in group t. Conversely, If p-value is larger than 0.05, that

means there is no difference between male and female for probe j
in group t.

To account for the multiplicity of tests, we adjusted
the p-values obtained from LIMMA using the False
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FIGURE 10 | The overall methylation and gene expression levels of the CLDN11 promoter region. (A) Averaged methylation level over the three samples of gene

CLDN11 among tissue types from GSE97686 dataset. (B) Averaged gene expression level over the three samples of gene CLDN11 among tissue types from

GSE107161 dataset. The blue bars represent 95% confidence intervals. Some error bars are large as the sample size is only 3 in each tissue type.

FIGURE 11 | The overall methylation and gene expression levels of the TMTC1 promoter region. (A) Averaged methylation level over the three samples of gene

TMTC1 among tissue types from GSE97686 dataset. (B) Averaged gene expression level over the three samples of gene TMTC1 among tissue types from

GSE107161 dataset. The blue bars represent 95% confidence intervals. Some error bars are large as the sample size is only 3 in each tissue type.

discovery rate (FDR) approach of Benjamini and Hochberg
(1995). More details about the procedure are provided
in the Supplementary Material (section 2). Storey (2003)
introduced a modified version of the FDR that allows to

define q-values which is a natural Bayesian posterior p-
value. BACkPAy uses q-values to detect differential features
and provides q-values of each feature with respect to
each pattern/group.
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FIGURE 12 | The overall methylation and gene expression levels of the UCHL1 promoter region. (A) Averaged methylation level over the three samples of gene

UCHL1 among tissue types from GSE97686 dataset. (B) Averaged gene expression level over the three samples of gene UCHL1 among tissue types from

GSE107161 dataset. The blue bars represent 95% confidence intervals. Some error bars are large as the sample size is only 3 in each tissue type.

FIGURE 13 | The overall methylation and gene expression levels of the FOXP2 promoter region. (A) Averaged methylation level over the three samples of gene FOXP2

among tissue types from GSE97686 dataset. (B) Averaged gene expression level over the three samples of gene FOXP2 among tissue types from GSE107161

dataset. The blue bars represent 95% confidence intervals. Some error bars are large as the sample size is only 3 in each tissue type.

To identify prognostic markers, we used Cox regression
models defined by the hazard function

h(t) = h0(t) exp{b1X1} (5)

where h0(t) is the baseline hazard function at survival time
t, the coefficient b1 measures the effect of variable X1 (e.g.,
gene expression) [see Supplementary Material (section 3) for
more details].
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3. RESULTS

3.1. Differentially Probes/Genes Using
BACkPAy and LIMMA
Using the GEO DNA methylation data, BACkPAy identified
11,834 (out of 15,504) potential differential probes (Bayesian q-
value <0.05) while we got only 1,080 differential probes using
LIMMA (p-value with F distribution<0.05). In addition, after
adjusting the p-values obtained by LIMMA with the Benjamin-
Hochberg approach (Benjamini and Hochberg, 1995), we were
not able to find any significant probes (adjusted p-value < 0.05).
In BACkPAy, non-differentially probes belong to group FlatFlat-
FlatFlat i.e., probes that do not have a significant change between
tissue types for male and female samples. We note that in the
presence of extremely small sample sizes (one or two samples
per experimental condition), BACkPAy can be considered as a
“pre-screen” method that screens out non-differential probes and
keeps potential differential probes but not necessary important
ones. On the other hand, for gene expression data (GSE107161),
the number of potential differential genes filtered by BACkPAy
is 10 out of 738, which is smaller than genes we got by
LIMMA (34 out of 738). We were also not able to find any
significant genes after adjusting the p-values for LIMMA. The 10
genes obtained by BACkPAy do not overlap with those filtered
obtained from methylation dataset. All these results show that
LIMMA has conservative statistical power when sample sizes
are extremely small and it is hard to get any significant probes
or genes after multiple testing correction. BACkPAy can filter
potentially significant probes/genes by Bayesian q-values and
also, can separate differential methylation probes into biologically
meaningful patterns (see Figure 2).

3.2. Gene Expression Profiling With TCGA
Data
We are interested in groups/patterns of differential methylation
level probes between the three tissue types for male and female.
We will focus on the eight patterns/groups as illustrated in
Figure 2 using our GEODNAmethylation dataset. In each of the
eight patterns, clusters for males is different from females (e.g., in
Figure 2A), UpUp is cluster for male, and UpDown for female).
We have then selected 181 significant probes with differential
methylation level that are clustered into the eight patterns of
interest. To further investigate probes of interest found using
BACkPAy, we analyzed TCGA-STAD data that contains related
gene expression data with approximately 238 cancer patients.
We focused on mRNA expression and the overall survival time
of those patients. From TCGA data, we extracted the mRNA
expression of genes corresponding to 181 significant probes
filtered by BACkPAy. We then fitted univariate Cox proportional
hazard models for each gene (Supplementary Table 1) and
five significant genes were filtered by adjusted p-value < 0.05
(Bradburn et al., 2003). They are RDH13, CLDN11, TMTC1,
UCHL1, and FOXP2.

To validate significant probes with differential methylation
patterns mapping to the related genes, we generated the
circular plot containing differential methylation probes and gene
expression profiling among CAM, ATM, and NTM in Figure 3.

In Figure 3, genes with the same color belong to the same pattern
of interest (e.g., genes written in blue indicate that important
methylation probes from those genes belong to pattern UpUp-
UpDown). We can observe that genes in chromosomes 6, 15,
and 20 have similar methylation patterns, DownUp-UpUp or
DownUp-DownDown. That means genes in these chromosomes
show identical methylation cluster (DownUp; decrease from
ATM to CAM and increase from CAM to NTM) for males
while they have two different clusters for females (UpUp and
DownDown). On the other hand, the two genes, CHMP4C and
TRAPPC9 in chromosome 8, show the same methylation cluster
(DownDown) for females while the methylation cluster for males
is totally different between the two genes (DownUp cluster in
CHMP4C, UpDown cluster in TRAPPC9). This indicates that,
for gastric cancer, Sex shows a strong effect on the methylation
pattern in chromosomes 6, 8, 15, and 20.

Moreover, from the second, third and innermost tracks in
Figure 3, there are 33 genes (KCNAB2, TTLL3, S100A7L2, etc.)
showing hypomethylation or hypermethylation levels in CAM
and ATM compared with non-cancer group NTM. It implies
that hypomethylation or hypermethylation of genes is likely to
have a predictive function for gastric cancer and different type
of patients (male or female with different tissue type) would
have differential hypomethylated or hypermethylated levels in
details. As these genome regions show distinct DNAmethylation
patterns in myofibroblast populations, it is possible that these
distinct DNA methylation patterns have significant influence on
the growth or discovery of gastric tumors.

To further investigate the gene expression and function of the
five prognostic genes in gastric cancer, (i) we created two groups
of samples that have low and high mRNA expressions for each
gene in Figures 4A–8A; and (ii) associated those two groups to
the overall survival time of gastric cancer patients by Cox model.
The corresponding survival curves of the two groups for each
gene were generated in Figures 4B–8B. For gene RDH13, high
expression is associated with increased survival time while for
the other genes, CLDN11, TMTC1, UCHL1 and FOXP2, high
expression is associated with decreased survival time.

3.3. Association of Genes RDH13, CLDN11,
TMTC1, UCHL1, and FOXP2 With Previous
Cancer Studies
Here, we identify and report the relationship between the five
genes and previous cancer disease studies. It is known that
RDH13 shares the greatest sequence similarity with RDH11,
RDH12, and RDH14. And it has been studied that gene
CLDN11 (claudin-11) has been shown to be silenced in gastric
cancer via hypermethylation of its promoter region, and this
hypermethylation is significantly correlated with downregulation
of CLDN11 expression vs. normal tissues (Agarwal et al., 2009).
It has also be shown that during the treatment of gastric cancer,
differentially downregulated TMTC1 protein is identified in
human gastric carcinoma cells (Mao et al., 2016), and TMTC1
is also found to be correlated with breast cancer at the functional
level (Moccia et al., 2017).
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TABLE 1 | Significant genes for diagnosis of gastric cancer by Cox model.

Probe Gene name Pattern Adjusted p-value Sign

1 cg18743287 RDH13 UpUp-UpDown 0.0325 +

2 cg17078427 CLDN11 UpUp-DownUp 0.0325 −
3 cg05471616 TMTC1 DownUp-UpUp 0.0325 −
4 cg09921610 UCHL1 DownUp-DownDown 0.0325 −
5 cg20050108 FOXP2 UpDown-DownDown 0.0338 −

The first four columns list prognostics probes filtered by BACkPAy, their related,

corresponding groups/patterns of methylation levels and adjusted p-values calculated by

Benjamin-Hochberg approach, respectively. The last column shows the effect of genes

on gastric cancer survival time. + Indicates high gene expression associated with better

survival time while − indicates high gene expression with poorer survival time.

Gene UCHL1, Ubiquitin C-terminal hydrolase-L1 (UCHL1)
is a de-ubiquitinating enzyme. As pointed out in Gu et al. (2015),
its function is controversial in different types of cancer diseases as
it can be an oncogene (i.e., causes cancer) or a tumor suppressor.
But, it has been reported that it has a higher positive expression
rate in liver metastases from gastric cancer (Gu et al., 2015).

For gene FOXP2, several researches have also reported the
roles of FOXP2 as a tumor suppressor in gastric cancer and
other diseases like osteosarcoma and hepatocellular carcinoma.
It is revealed that FOXP2 expression was associated with the
regulation of microRNAs in cancer cells and FOXP2 could inhibit
the growth of cancer cells by suppressing a series of cancer stem
cell associated factors (Jia et al., 2016; Chen et al., 2018).

3.4. Methylation Profiling of Gastric Tumors
Purified From Different Tissue Type and
Different Sex in Each Tissue Type
We analyzed the methylation profiles of probes that map to
five prognostic significant genes. We summarized the significant
prognostic genes with adjusted p-values obtained by Cox model
and the patterns of probes related to these genes by BACkPAy
into Table 1. For gene RDH13 (or probe cg18743287), there is no
significant methylation level difference between male and female
in both CAM and ATM (Up-Up) while the difference can be
seen in NTM (Up-Down). Similarly, methylation levels between
male and female in NTM group are significantly different in gene
UCHL1. In addition, the methylation levels between different sex
in CAM group have significant differences in CLDN11, TMTC1,
and FOXP2.

3.5. Promoter Hypomethylation Induces
RDH13 Expression in Gastric Cancer
In order to compare the trends of gene expression levels and
their corresponding methylation levels between tissue types
for each of the 5 prognostics genes, we plotted the means of
methylation levels and gene expressions in each tissue type based
on GSE97686 and GSE107161 datasets, respectively (Figure 9).
It reveals that the RDH13 promoter is hypomethylated in ATM
tissue group, which means that its methylation level is lower in
ATM than the other two tissue types (CAM and NTM). However,
the gene expression among tissue types confirms that RDH13 is

significantly upregulated in ATMs due to its hypomethylation
compared to the other two tissue types, especially in normal
tissues. Collectively, these results provide a strong indication
that RDH13 expression may be induced by cancer-induced
reprogramming, resulting in RDH13 promoter hypomethylation
within gastric ATM group. That is, the hypomethylation of
gene RDH13 may provide a proxy or biomarker for gastric
identification in ATMs.

3.6. Promoter Hypermethylation Represses
CLDN11 Expression in Gastric ATM and
CAM Group
Using the same procedure mentioned in section 3.5, for gene
CLDN11, DNA methylation levels in each tissue type are
NTM>ATM≈CAM and they are all hypomethylated. The gene
expression plot indicates that CLDN11 is upregulated in ATM
and CAM tissue types compared with NTMs (Figure 10).
Hence, we can conclude that the hypermethylation can
downregulate CLDN11 expression levels and further accelerate
the development of gastric tumors. Collectively, all of the results
above illustrate that CLDN11 expression may be repressed
by hypermethylation in promoter region, which induces the
gastric cancer.

3.7. Promoter Hypermethylation Represses
TMTC1 Expression in Non-cancer Group
In order to investigate the cancer-induced change in TMTC1
expression, as the previous two genes, we extracted the survival
data of TMTC1 using TCGA data, and the gene expression data
of nine samples in GSE107161 across the three tissue types.
These data indicate that the level of TMTC1 promoter DNA
methylation gradually changes in gastric cancer with low level
in ATM and CAM tissue types and high level in NTM group
which its β value is about 0.8, hypermethylation, but TMTC1
expression is almost the same among three tissue types in
Figure 11. Combined with survival curve in Figure 6, we can
imply that TMTC1 expression is repressed in non-cancer group,
further prove TMTC1 promoter hypermethylation in NTMs will
repress gene expression.

3.8. Promoter Hypomethylation Induces
UCHL1 Expression in Gastric Cancer
Group
Based on 9 samples, the plots of means of beta-value and
gene expression among three groups confirm that these
methylation trends represent a negative correlation with
UCHL1 expression patterns (Figure 12). Especially, UCHL1
is significantly upregulated in CAMs, the tissue group of
gastric cancers. Moreover, patients with low UCHL1 expression
have longer survival time than patients with high expression
(Figure 7). Therefore, We can conclude that promoter UCHL1
hypomethylation is associated with high expression level of
UCHL1 expression in CAMs.
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3.9. Promoter Hypomethylation Induces
FOXP2 Expression in Non-cancer Group
For the gene FOXP2, we found that the methylation levels in
ATM and CAM samples are quite similar while the level in
NTMs is lower. However, FOXP2 expression level is upregulated
in NTMs compared with other two tissue types (Figure 13).
Thus, the upregulation of FOXP2 expression in NTMs and
confirms that hypomethylation have a significantly positive effect
on FOXP2 expression in non-cancer group.

4. CONCLUSION

To demonstrate the utility of BACkPAy, we chose gastric
datasets containing very small sample sizes. It was shown
that the Bayesian hierarchical clustering approach in
BACkPAy is advantageous for data with high-dimensional
but very small sample sizes. In this paper, we identified 181
differential probes that belong to eight distinct patterns.
On the other hand, comparing male to female samples,
we conclude that the probes within UpUp-UpDown,
UpDown-UpUp, DownUp-DownDown, and DownDown-
DownUp patterns have significant difference between female
and male samples in NTM group, whereas, the probes
from UpUp-DownUp, UpDown-DownDown, DownUp-
UpUp, and DownDown-UpDown patterns have differential
methylation level comparing male to female samples in CAM
group. The result of patterns was visualized in 3D plots
(Figure 2).

We utilized BACkPAy and LIMMA to detect probes
with differential methylation levels in gastric cancer.
Unlike LIMMA, BACkPAy can filter differential significant
probes using Bayesian q-values for downstream analysis,
and separate them into different biological interpretable
pre-defined groups. Moreover, BACkPAy achieved
satisfactory results and other current methods can
not be applied when the sample size is one in each
experimental group.

Further, we identified 5 prognostic genes (RDH13, CLDN11,
TMTC1, UCHL1, and FOXP2) in gastric cancer. our analysis

implied that DNA hypomethylation may lead to induce the
RDH13 and UCHL1 expression in gastric cancer, whereas DNA
hypermethylation is able to cause decreasing expression of
CLDN11 in gastric groups. Promoter hypermethylation will
repress the expression of TMTC1 in non-cancer group. On
the contrary, Promoter hypomethylation will induce FOXP2
expression in normal tissues.
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