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Drug repositioning is a method of systematically identifying potential molecular targets
that known drugs may act on. Compared with traditional methods, drug repositioning
has been extensively studied due to the development of multi-omics technology
and system biology methods. Because of its biological network properties, it is
possible to apply machine learning related algorithms for prediction. Based on various
heterogeneous network model, this paper proposes a method named THNCDF for
predicting drug–target interactions. Various heterogeneous networks are integrated to
build a tripartite network, and similarity calculation methods are used to obtain similarity
matrix. Then, the cascade deep forest method is used to make prediction. Results
indicate that THNCDF outperforms the previously reported methods based on the
10-fold cross-validation on the benchmark data sets proposed by Y. Yamanishi. The
area under Precision Recall curve (AUPR) value on the Enzyme, GPCR, Ion Channel,
and Nuclear Receptor data sets is 0.988, 0.980, 0.938, and 0.906 separately. The
experimental results well illustrate the feasibility of this method.

Keywords: drug repositioning, drug discovery, drug–target interaction, heterogeneous similarity measures,
cascade deep forest

INTRODUCTION

In the past few decades, investment in drug research and development has grown rapidly, but most
drugs have failed in the first phase of clinical trials. Moreover, it normally costs billions of dollars
and consumes 10 years for any drug to be put on the market completely (Roessler et al., 2021). At
present, drug repositioning has a wide prospect and provides evidence for further drug discovery,
whose purpose is to determine potential therapeutic targets for existing drugs, thereby saving time
and minimizing risks of conventional drug development (Stein et al., 2021).

The key of drug repositioning hinges on identifying drug–target interaction (DTI), which
exerts a vital role in drug research and development (Badkas et al., 2020). Currently, traditional
experimental approaches are either time consuming or high costly. Despite that potential drug
indications can be directly detected by target or cell screening of thousands of drugs in synthetic
databases, there are still hurdles to massively relocate drugs owing to the needs of collecting existing
drugs, specialized equipment, and screening tests (Turanli et al., 2018).
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In general, the traditional methods for calculating drug target
interactions mainly consist of ligand method and structure
method (Huang et al., 2020; Yang et al., 2020; Zhang et al., 2020).
The ligand-based methods predict potential DTI via contrasting
candidate ligands with known ligands capable of binding to
them, but it does not perform well in the absence of ligand
information for potential targets (Juárez-Saldivar et al., 2020).
The structure-based method mainly uses the docking simulation
technology to predict the potential DTI on the basis of known
three-dimensional structure. In the same way, this method that
relies on simulated docking’s reliability often consumes a plenty
of time and requires all drugs and targets to provide accurate and
reliable three-dimensional structure (Vivarelli et al., 2020).

Along with sustainable innovative developments of
biological data, and high-speed improvements of machine
learning technology in recent years, a variety of methods
for computational drug repositioning have been put forward
correspondingly and achieved some achievements in practical
applications (Lan et al., 2016, 2020; Chen et al., 2021; Li et al.,
2019; Liu et al., 2019; Zeng et al., 2019; Fahimian et al., 2020;
Rauschenbach et al., 2020; Zhou et al., 2020; Jarada et al.,
2021; Meng et al., 2021). Machine learning is a beneficial
complement to ligand-based and structure-based methods. It
has been widely developed and applied as an effective method
for pinpointing drug–targets as well as predicting drug-diseases.
Machine learning is able to systematically integrate biological
databases, with the purpose of predicting potential DTI and
drug–disease interactions.

The method of similarity constrained probabilistic matrix
factorization (SCPMF) is used for drug repositioning through
recognizing novel drug–virus coactions (Meng et al., 2021).
Moreover, SCPMF innovatively reconstructs the drug–virus
interaction matrix, by dexterously projecting the drug–virus
interaction matrix into two potential feature matrices for
viruses and drugs. A new framework named Similarity Network
Fusion and Neural Networks (SNF-NN) on the basis of
deep learning was proposed and elaborated, which predicts
new drug–disease interactions though using similarity selection
relevant to drugs and diseases, similarity network fusion, and
a novel neural network model with superior tuning (Jarada
et al., 2021). By comparison of the performance of SNF-
NN with that of nine benchmark machine learning methods,
the robustness of SNF-NN is calculated. The values of AUC
and AUPR are 0.867 and 0.876, respectively. Besides, a
previous study has shown that a method based on network
called RepCOOL is utilized for drug repositioning (Fahimian
et al., 2020). The eventual model of drug repositioning is
constructed on account of a random forest classifier. RepCOOL
recommends four novel drugs for the treatment of breast
cancer at stage II, namely, paclitaxel, doxorubicin, tamoxifen,
and trastuzumab. In addition, a network embedding based
method for predicting drug–disease interactions (NEDD) is
raised (Zhou et al., 2020). Initially, through constructing a
heterogeneous network and utilizing meta-paths of various
lengths, NEDD accurately obtains the indirect associations
between drugs and diseases or their strong proximity, thereby
acquiring representation vectors of drugs and diseases with

low dimensions. NEDD estimates novel relationships between
diseases and drugs by utilizing a random forest classifier.
A recent study has reported that a network-based method
about deep learning for drug repositioning (deepDR) recognizes
advanced characteristics of drugs from heterogeneous networks
through a multi-mode autoencoder. Then, through a variational
autoencoder, the obtained low-dimensional representation of
the drug as well as clinically reported drug–disease pairs
are uniformly encoded and decoded to infer candidates for
approved drugs that were actually without initial approval
(Zeng et al., 2019).

The main contributions of this paper are summarized as
follows:

We study various calculation methods based on the tripartite
heterogeneous network, and finally adopt the Gaussian kernel
between each layer, and the Tanimoto’s coefficient is used in the
drug layer to calculate the chemical structure similarity matrix.
Besides, the similarity matrix is fitted by all matrices;

We improve and adjust the parameters according to the
gcForest (Zhou and Feng, 2019) method. We use 10-fold cross-
validation to check the final prediction (termed THNCDF,
Tripartite Heterogeneous Network Cascade Deep Forest).

We compare the results of THNCDF with four types of
methods (Cao et al., 2014; Hao et al., 2016; Rayhan et al., 2017;
Thafar et al., 2020). The experimental results show that the
THNCDF method has good performance, and the area under
Precision Recall curve (AUPR) values on the four benchmark
data sets reach 0.988, 0.980, 0.938, and 0.906.

The rest of this paper is organized as follows. In Section
2, we introduce the data sets used for similarity measurement,
and then we present the general framework and cascade deep
forest methods with details in Section 3. In Section 4, the
performance of our proposed THNCDF method is evaluated
through extensive experiments. At the end, some discussions are
provided in Section 5.

RELATED WORK

Data Sets
In our experiments, we use the data sets listed in Table 1
to build a tripartite heterogeneous network model. Table 1

TABLE 1 | Sources and verification of databases.

Resource Description Url

DrugBank Free accessible drug database www.drugbank.ca/

DisGeNET Free accessible human disease
database

www.disgenet.org/

ChEMBL Free accessible drug and target
database

www.ebi.ac.uk/chembl/

Kegg Free accessible database for
molecular-level information

www.kegg.jp/

Uniprot Free accessible protein sequence and
annotation database

www.uniprot.org

OMIM Free accessible compendium for
Mendelian disorder

www.omim.org/
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shows the exactly biologic data sets we used during the
experiments (Yamanishi et al., 2008; Zheng and Wu, 2021).
Especially, the main resource of the data set for the disease
layer is from DisGeNET. This paper also uses a data set called
DisGeNET approved, which contains FDA-approved drugs and
their corresponding protein targets in the DisGeNET.

We will evaluate the performance of THNCDF on benchmark
data sets. The benchmark data sets used in many DTI predictions
were originally proposed by Y. Yamanishi, which have been
considered as the golden data sets for comparing various DTI
prediction methods. The benchmark data sets are listed in
Table 2, which are downloaded from http://web.kuicr.kyotou.
ac.jp/supp/yoshi/drugtarget/. The data sets include four subsets
grouped by target classification: Enzyme, ion channel, GPCR
(G protein-coupled receptor), and nuclear receptor. The largest
subset, Enzyme, includes 445 drugs and 664 targets with 2,926
known DTI between them. Another NR, the smallest subset
includes only 54 drugs and 26 targets with 90 known interactions.
The other two subsets, IC and GPCR, consist of 210 and
223 drugs, 204 and 95 targets, and 1,476 and 635 known
interactions, respectively.

Tripartite Heterogeneous Network
Based on the related ideas of pharmacology, the therapeutic effect
of a single drug is relatively limited for diseases that are complex
multiple pathological (Zamami et al., 2017; Zhu et al., 2020).
Recently, the development of high-throughput biotechnology has
produced a large amount of data. However, one of the main
difficulties is how to collect and analyze the required biomedical
data because they are heterogeneous and the data generated from
different experiments include different types of information,
such as nucleotide sequences and protein–protein interactions
(Luo et al., 2020).

In this paper, we integrate the composition of many different
heterogeneous networks and construct our novel tripartite
heterogeneous network model according to different types of
data. Figure 1A is the part of visualization of the Enzyme in
benchmark data sets, in which the red nodes are drugs and the
green nodes are targets. Figure 1B is the bipartite graph model of
a part of Figure 1A; the red nodes are drugs, and the green nodes
are targets in the same.

We construct a tripartite network that includes three
layers: drugs, targets, and diseases. Correspondingly, two types
of interactions, drug–target interactions and target–disease
interactions, are interpreted as edges to connect nodes in these
layers. We mainly focus on constructing the similarity matrix and
feature information of the tripartite heterogeneous network.

TABLE 2 | Benchmark data sets.

Data sets Drugs Targets nd/nt Interactions

Enzyme 445 664 0.667 2,926

Ion channel 210 204 1.03 1,476

GPCR 223 95 2.35 635

Nuclear receptor 54 26 2.08 90

MATERIALS AND METHODS

In this study, we propose THNCDF, a new computational
approach for molecular target identification from known drug–
target centered DTI prediction. It utilizes low-dimensional but
informative matrix representations of features for both drugs and
targets through a cascade deep forest classifier in prediction of
DTI (Zheng and Wu, 2021).

As shown in Figure 2, THNCDF mainly includes three
steps: (1) Data integration and complete heterogeneous network
is obtained, which contains diverse cheminformatics and
bioinformatics profiles; (2) Similarity matrix calculation and
parameter setting; (3) Application of cascade deep forest classifier
and verification of the results.

Similarity of Medicinal Chemical
Structures
To ensure that the features in the network model are
distinguishable, the similarity of the medicinal chemical structure
is a relatively objective feature (Zheng and Wu, 2021). In
particular, the chemical structure of various drugs under the same
standard can be obtained through the simplified molecular-input
line-entry system (SIMILES), and then converted into 166-bits
string of a certain length fingerprint. Thus, each fingerprint
represents a unique drug. Through the calculation of Tanimoto’s
coefficient, the similarity matrix of medicinal chemical structure
among all drugs is obtained. The formula for calculating
Tanimoto’s coefficient is shown in Equation (1).

SIMchem =
|f (dx)×f (dy)|

|f (dx)+ f (dy)| − |f (dx)×f (dy)|
(1)

where f(dx) is the binary chemical fingerprint of drug x.
According to Equation (1), a matrix of chemical structure
similarity is constructed.

Gaussian Kernel Similarity
The Gaussian kernel is defined as the unimodal of the Euclidean
distance between any two points in the network (Zheng and Wu,
2021). In THNCDF method, the Gaussian kernel is mainly used
to calculate the feature of the connection between two layers,
like the edge between the drug layer and the target layer or
between the target layer and the disease layer. Also, for drug–
drug interactions and target–target interactions, the Gaussian
Kernel can calculate the edges in the same layer. Therefore,
the calculation formula is commonly used to construct various
types of matrices, such as the drug–drug interactions similarity
matrix, target–target interactions similarity matrix, and target–
disease interactions similarity matrix. The calculation formula is
as follows:

KGIP,d(Di,Dj) = exp(−γ d||ydi − ydj||
2) (2)

γd = γ
′

d/(
1
m

m∑
i = 1

||ydi||
2) (3)
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FIGURE 1 | An example of bipartite graph for drug–target interactions. (A) Is the part of visualization of the Enzyme in benchmark data sets, in which the red nodes
are drugs and the green nodes are targets. (B) Is the bipartite graph model of a part of Figure 1A.

where Di is defined as the i-th drug in the drug set, Ti represents
the i-th target in the target set, while tsi represents the i-th target
in the target–disease interactions set. m is the size of drug set,
while n and k represent the size of target set and the size of
target–disease interactions set, respectively. The adjacency matrix
Y ∈ m n represents the known drug–target interactions. If the
drug and the target have an existing interaction, the value is 1;
otherwise, the value is 0. ydi {yi1, yi2, ..., yin} is defined as the
correlation vector between the drug di and all targets; meanwhile,
ytsi {yi1, yi2, ..., yin} is defined as the correlation vector between
the target tsi and all diseases. γd, γt , and γts are adjustment
parameters that control the width of the kernel, whereγ

′

d, γ
′

t , and
γ
′

ts are set to 1 by using Gaussian kernels.

Similarity Matrix Fusion
According to the above multiple similarity matrices, we construct
a kernel containing the spatial information of drugs and targets
(Ding et al., 2018, 2020a,b; Zheng and Wu, 2021). Since the
similarity matrix is not a positive definite matrix, predictions are
ultimately required. We linearly fit the similarity matrix of drug
chemical structure, the drug Gaussian kernel, the target Gaussian
kernel, and the disease Gaussian kernel. We also set the weighted
factors in the following equations empirically.

SIMdrug(dx, dy) = (1−α)×KGIP,d(dx, dy)+ α × SIMchem(dx, dy)
(4)

SIMtar(tx, ty) = (1−α) × KGIP,t(tx, ty)+ α × KGIP,S(tsx, tsy)
(5)

The result of similarity matrices is used as the original input of
the next step. In the latter experiments, in order to balance the
constructed similarity matrix, the ratio of 0.5:0.5 is used with
parameter setting.

Cascade Deep Forest
Random forest, developed by Bermain and Culter (Breiman,
2001), is widely used due to its excellent stability and resistance
to overfitting. Nowadays, random forest has been successfully
applied to the analysis of multiple biological and pharmacological
contexts, such as Diabetic Retinopathy screening procedure
(Alabdulwahhab et al., 2021) and detection of copy number
variations for uncovering genetic factors (Zhuang et al.,
2020). But in novel review by Zhou et al., deep learning
based on non-differentiable modules exhibits the possibility of
constructing deep models without using backpropagation. They
have proposed the gcForest approach, which has generated
three characteristics: layer-by-layer processing, in-model feature
transformation, and sufficient model complexity. It provides an
alternative methods to deep neural networks (DNNs) to learn
hyper-level representations at a low computational cost. gcForest
is a novel decision tree ensemble, with a cascade structure. It has
much fewer hyper-parameters than DNNs, which the training
process does not rely on backpropagation. In fact, the most
important value of gcForest approach is it may open a door
for non-NN style deep learning, or deep models based on non-
differentiable modules. An extended depiction and the study of
the theory on random forest or gcForest can be referred to the
Web site of Bremain or the paper of Zhou et al.

Based on the advantage of random forest and characteristics
of gcForest, we construct the THNCDF method, which includes
the similarity matrices described above and utilizes improved
gcForest approach for prediction. First, the fusion similarity
matrix is the origin input for cascade structure of deep forest.
Each level of cascade receives the feature information processed
by its previous level and outputs its processing result to the
next level. All level is an ensemble of decision tree forest. For
example, each forest will count the percentages of different classes
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FIGURE 2 | The overview of the proposed work THNCDF.

of training examples at the leaf node, and then average all trees in
the same forest to obtain an estimate of the class distribution.

Secondly, we use three random forests: (a) two completely
random tree forests, (b) two gradient boosting tree forests, and
(c) two extra randomized tree forests. Each forest contains 1,000
trees, and there are 6,000 trees in total. Each node selects a feature

randomly as the judgment condition and generates leaf nodes
according to the condition. Stop until each leaf node contains
only instances of the same class.

To compare with other results, we use 10-fold cross validation
(Liu et al., 2016). It means that class vectors produced by each
forest are generated by 10-fold cross validation to reduce the risk
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of overfitting. Finally, if there is no significant performance gain,
the training process will terminate. The number of cascade levels
is automatically determined.

EXPERIMENTAL RESULTS AND
ANALYSIS

Baseline Methods
In order to evaluate the performance of our method, we
mainly introduce DTI prediction results compared with baseline
methods on the benchmark data sets that are proposed by Y.
Yamanishi. The following are the state-of-the-art methods made
in comparison with the same standard criteria:

RLS-KF (Hao et al., 2016): A regularized least squares
combining with nonlinear kernel fusion method is developed.

RF (Cao et al., 2014): A computational method integrated the
information from network, chemical, and biological properties.
This method is developed based on the random forest combining
with integrated features.

DTiGEMS (Thafar et al., 2020): A computational method
using graph embedding, graph mining, and similarity properties
techniques. DTiGEMS firstly applies a similarity selection
procedure and a similarity fusion algorithm. Then, it integrates
multiple drug–drug similarities and target–target similarities into
the final heterogeneous graph structure after.

iDTI-ESBoost (Rayhan et al., 2017): A prediction model uses
evolutionary and structural features. The method uses a new data
balancing and boosting technique to make prediction.

Evaluation Criteria
Two quality measures are commonly used to evaluate the
performance of these methods: AUC and AUPR. Specifically, we
calculate the receiver operating characteristic curve (ROC) of true
positive as a function of false positive, and use the area under
the ROC curve (AUC) value as a quality measure. In addition,
we also calculate the precision–recall curve (P–R), which is the
chart of true positive rate between all positive predictions of each
given recall rate. The area under the P–R curve (AUPR) provides
a quantitative assessment. These two kinds of quality measures
have become the standard criteria for evaluating methods.

Prediction Ability
To provide a fair comparison of DTI prediction performances, we
apply these methods on the same benchmark data sets. We also
use 10-fold cross-validation random setting, the same evaluation
criteria, and optimal parameters of each method.

From the results reported in Table 3 and Figure 3, THNCDF
algorithm still maintains a high performance, especially for the
AUPR values. For example, in the enzyme data set (Figure 3A),
the ion channel data set (Figure 3B), and the GPCR data
set (Figure 3C), THNCDF outperforms all other methods
by achieving the best performance for AUPR values. On the
other hand, for the AUC values, THNCDF still maintains
the high performance. It is well known that the training
of DNN usually requires a large amount of training data;
hence, its implementation on tasks with small-scale data is
not suitable. This is the inherently unavoidable characteristic
of the method we use. Thus, it is reflected in the correlation
between the size of the benchmark data sets and the AUC
values obtained.

In addition, the number of positive samples and negative
samples in each data set is highly imbalanced. The fact that few
positive samples make THNCDF cannot exert its advantages,
which is based on a large amount of training data. For benchmark
data set, the feature dimension used in this method is low, and
cascade deep forest has great advantages in the representation
learning of ultra-high-dimensional data.

As shown in Figure 3, it is found that the prediction accuracy
is approximately equal to each other. It also shows that the
THNCDF preserves the best performance on all data sets so
that it can be migrated to other predictions. The experiment
procedure shows that THNCDF is not very sensitive to parameter
settings. Therefore, it does not need large-scale parameter
adjustment, especially the selection of the optimal combination
of base classifiers. Comparing with DNN, THNCDF is more
stable and easier.

It is worth mentioning that for the two commonly used
evaluation metrics, more and more authors think that AUPR
provides more informative assessment than AUC for highly
imbalanced data sets. They argue in favor of AUPR values as a
key standard of evaluating the performance for skewed data sets,
especially the data sets with more negative samples than positive
samples. In fact, all of the four subsets in the benchmark data

TABLE 3 | The results of the baseline methods and the THNCDF method.

Data sets Methods RLS-KF RF DTiGEMS iDTI-ESBoost THNCDF

Enzyme AUC 0.990* 0.978 0.990 0.960 0.987

AUPR 0.915 0.935 0.970 0.680 0.988*

Ion channel AUC 0.987 0.924 0.990* 0.905 0.982

AUPR 0.901 0.948 0.960 0.480 0.980*

GPCR AUC 0.981 0.951 0.990* 0.932 0.937

AUPR 0.806 0.896 0.860 0.480 0.938*

Nuclear receptor AUC 0.987 0.987 0.990* 0.928 0.963

AUPR 0.911* 0.847 0.880 0.790 0.906

For each methods, ∗ indicates the highest value.
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FIGURE 3 | Comparison results for THNCDF and other methods in terms of AUC and AUPR values on the benchmark data sets. The best AUC values are indicated
in red, and the best AUPR values are in purple.

sets possess the imbalanced characteristic, which means that the
number of known drug–target interactions is far less than the
number of pairs with no interaction evidence. So a more sensitive
AUPR metric is generally preferred for assessing the prediction
results for those imbalanced datasets. From this perspective, the
result clearly shows that THNCDF outperforms the prediction in
terms of AUPR as well.

DISCUSSION

In this paper, we present a new multi-kernel computational
approach combined with an improved cascade deep forest,
which leads to good predictive performance on the task of
predicting DTI. The values of AUPR on four benchmark data
sets are improved to 0.988, 0.980, 0.938, and 0.906, respectively.

Theoretically, THNCDF can process various high dimensional
features by utilizing heterogeneous networks. However, we still
have some problems to be solved in the future. First, even
though studies have discussed multiple similarity calculation
methods, they have not escaped the research scope on the
network interactions. We are more looking forward to the
introduction of new biochemical similarity calculation methods
or data sets. Secondly, we suggest applying different embedding
techniques, integrating more similarity measures from more
sources, and generating more graph-based features. It can also
be found that various data sets, such as chemical structure,
side effect, therapeutic effect, gene expression, drug binding
site, and semantic data, have been utilized in former studies.
However, the disadvantages of these biomedical data sets are
also obvious, which include high data noise, incompleteness,
and inaccuracy. Thirdly, some potential extensions of our work
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include applying THNCDF to different networks formulated
as an interaction prediction problem. Popular examples of
interaction prediction in the bioinformatics field include but are
not limited to drug–drug interactions prediction, drug–disease
interactions prediction, and gene–disease association prediction.
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