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Background: Cutaneous melanoma is a common but aggressive tumor. Ferroptosis is
a recently discovered cell death with important roles in tumor biology. Nevertheless, the
prognostic power of ferroptosis-linked genes remained unclear in cutaneous melanoma.

Methods: Cutaneous melanoma patients of TCGA (The Cancer Genome Atlas) were
taken as the training cohort while GSE65904 and GSE22153 as the validation cohorts.
Multifactor Cox regression model was used to build a prognostic model, and the
performance of the model was assessed. Functional enrichment and immune infiltration
analysis were used to clarify the mechanisms.

Results: A five ferroptosis-linked gene predictive model was developed. ALOX5
and GCH1 were illustrated as independent predictive factors. Functional assessment
showed enriched immune-linked cascades. Immune infiltrating analysis exhibited the
distinct immune microenvironment.

Conclusion: Herein, a novel ferroptosis-related gene prognostic model was built in
cutaneous melanoma. This model could be used for prognostic prediction, and maybe
helpful for the targeted and immunotherapies.

Keywords: cutaneous melanoma, ferroptosis, immune, prognosis, gene model

INTRODUCTION

Cutaneous melanoma, an aggressive malignant tumor with increasing incidence, accounts for
more than 80% of all skin cancer deaths (Chen et al., 2019; Yumnam et al., 2020). Globally,
approximately 232,100 of cutaneous melanoma are newly diagnosed, and 55,500 patients die each
year (Schadendorf et al., 2018). Satisfactory therapeutic effects have not been achieved in melanoma.
Surgical resection is preferred for early-stage melanoma but may produce long scars and lead to
detrimental psychologic effects (Weyers, 2019). Melanoma is prone to recur or metastasize even
after the combination of surgery, radiotherapy, and chemotherapy (Huang et al., 2019). Immune
checkpoint inhibitors along with molecular-targeted treatment have improved the prognosis of
melanoma patients, but most patients do not show long-lasting responses to these therapies (Davis
et al., 2019; Wada-Ohno et al., 2019). Poorer survival may be related to multiplex clinical and
histopathological features, such as older age, elevated lactate dehydrogenase levels, ulceration,
increased thickness of tumor, and higher mitotic rate (Strudel et al., 2020). However, the predictive
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power of the traditional clinical information is limited. Therefore,
novel prognostic biomarkers are strongly needed to improve risk
stratification and inform treatment optimization in melanoma
patients.

Ferroptosis is a novel type of modulated cell death that
is different from other forms of cell death, i.e., apoptosis,
autophagic cell death, as well as necrosis. It is typified by
iron-dependent lipid peroxide aggregation (Dixon et al., 2012).
Shrinkage of the cell volume along with increased density
of the mitochondrial membrane are the main morphological
features of ferroptosis (Yu et al., 2017). Ferroptosis has a core
role in many diseases, e.g., ischemic organ injury, cancer, as
well as neurodegeneration (Stockwell et al., 2017). Abnormal
activation of neuronal ferroptosis is an important pathogenesis
of neurological diseases, and diet that affects ferroptosis can
be an adjuvant therapy for these diseases (Mao et al., 2021).
Recently, the stimulation of ferroptosis has mushroomed as an
alternative therapeutic approach to tumor suppression, especially
for therapy-resistant patients (Hassannia et al., 2019; Liang et al.,
2019). Ferroptosis exerts effectiveness in radiotherapy-induced
cancer suppression and mediates the synergy of radiation therapy
and immunotherapy (Lei et al., 2021). Apart from drivers
and inducers of ferroptosis, many genes have been defined
as suppressors, inhibitors, markers, and ferroptosis–disease
associations (Zhou and Bao, 2020). Ferroptosis may functionally
act as a double-edged sword that can either promote or inhibit
tumor progression processes in different environments (Jiang
et al., 2020). Ferroptotic cancer cells stimulate or suppress tumor
immunity by many steps (Cheng et al., 2020). The lymphatic
environment can protect melanoma cells from ferroptosis in
the blood (Ubellacker et al., 2020). By mining public databases,
the effective ferroptosis-related gene prognostic signatures were
developed in hepatocellular carcinoma and glioma (Liang et al.,
2020; Liu et al., 2020; Tang et al., 2020). The risk score based
on ferroptosis-related gene signature can also predict glioma
immunotherapy (Wan et al., 2021). Nevertheless, the relationship
of ferroptosis-linked genes with the prognosis of cutaneous
melanoma patients is still largely unknown.

Herein, we first explored the relative expression of
ferroptosis-associated genes in cutaneous melanoma samples.
Besides, we created and verified a prognostic model with
ferroptosis-linked genes. Further functional enrichment and
immune infiltration analysis were performed to elucidate the
responsible mechanisms.

MATERIALS AND METHODS

Data Collection and Preprocessing
Date of gene expression and matching clinical data for human
cutaneous melanoma (SKCM) tumors were abstracted from
TCGA (The Cancer Genome Atlas) program. FPKM (Fragments
Per Kilobase of transcript per Million mapped reads) represented
the expression values for all genes. This dataset consisted of
482 samples, comprising 471 tumor samples and one non-
malignant sample. The number of samples containing clinical
information was 458. To explore the pattern of gene expression

in a logarithmic form, we removed genes with FPKM values of
zero across more than 100 samples and added the value of 0.001
to every FPKM value before log2 transformation. For multiple
probes corresponding to one gene, the max expression value was
taken as the expression value of the gene. Finally, 21,550 gene
expression profiles were obtained. The FPKM expression profile
of 233 non-sun exposed skin samples from the Genotype-Tissue
Expression (GTEx) Project were obtained in order to increase the
number of normal patient samples. The batch effect was removed
using the removeBatchEffect function from the limma package
(v 3.44.3) (Ritchie et al., 2015) to analyze the expression data of
TCGA and GTEx data together (Wang et al., 2018).

In addition, we abstracted the GSE65904 and GSE22153
datasets as a validation set. These datasets were embedded in
the GPL10558 platform (Illumina HumanHT-12 V4.0 expression
beadchip) and, respectively, included gene expression profiles
and the survival data of 210 and 54 melanoma samples of the
patient. We converted the probes into the corresponding gene
symbols on the basis of the annotation information of platform.
When multiple probes correspond to the same gene, the max
expression value was considered as the gene expression value.

Determination of Differentially Expressed
Genes
Differentially expressed genes (DEGs) between tumor samples
and non-malignant tissues were determined by limma package in
R, with the criteria of log2 fold change (log2FC) > 1 along with a
false discovery rate (FDR) < 0.05. Gene expression levels were
normalized, respectively, using the normalizeBetweenArrays
function in limma before data analysis, to ensure that the
expression distributions of each sample are similar across
the overall matrix.

Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes, and Reactome
Enrichment Analysis
Gene Ontology (GO) terms along with Kyoto Encyclopedia of
Genes and Genomes pathway analyses (KEGG1) were employed
to interpret the gene set of interest, using the clusterProfiler R
package (v 3.16.1) (Yu et al., 2012). The GO analysis reveals the
gene function in the biology process, molecular function, and cell
component. KEGG is a data resource employed to explore high-
level functions, as well as utilities of a distinct biological system
at a molecular level. Reactome data resource2, an integrated
database for signaling pathway enrichment analysis, was also used
in the enrichment analysis in the ReactomePA (v 1.32.0) package
(Yu and He, 2016).

Immune Cell Infiltration Abundance
Analysis
On the basis of gene expression profiles of 458 cutaneous
melanoma samples containing corresponding clinical data in
TCGA, the infiltrations of 24 types of immune cells were

1http://www.genome.jp/kegg/
2http://www.reactome.org
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explored in the samples with Immune Cell Abundance Identifier
(ImmuCellAI). The assessed immune cells consisted of 18
T-cell subtypes, B cells, macrophage cells, NK cells, neutrophil
cells, dendritic cells (DCs), and monocyte cells. ImmuCellAI
is a new gene set signature-based approach that estimates
the abundance of 24 kinds of immune cells consisting of 18
T-cell subsets, B cells, monocytes, NK cells, macrophage cells,
neutrophil cells, and DCs.

Consensus Cluster Analysis
According to the expression patterns of ferroptosis-linked
DEGs, we performed consensus clustering of 458 cutaneous
melanoma samples with the R package “ConsensusClusterPlus”
(v 1.52.0) (Wilkerson and Hayes, 2010). The clustering approach
was K-means algorithm with Euclidean distance. Consensus
clustering was run 1,000 times with all of the genes and 80% of
the samples randomly selected on each iteration, and the random
seed was 12,621. The cluster numbers k were selected by the
elbow approach (Li et al., 2019).

Construction and Verification of Risk
Score Model
We obtained 253 ferroptosis-linked genes from the FerrDb
data resource (Zhou and Bao, 2020). The intersection
of the 253 genes and DEGs identified 19 differentially
expressed ferroptosis-linked genes between non-malignant
and cancer samples. Multifactor Cox proportional hazard
regression model with stepwise regression was employed
to perform multivariate analysis. According to the
regression model, we obtained the risk score containing
the expression of five genes with the following formula:
RiskScore = −0.18811 × ALOX5 − 0.07911 × ANGPTL7 +
0.13678 × TXNIP + 0.28800 × SLC2A6 − 0.46713 × GCH1.
On the basis of the median risk score, the samples were stratified
into high-risk group and low-risk group (Du et al., 2020), and the
Kaplan–Meier curves of the two groups were plotted using the
survminer package (v 0.4.83) to compare the survival differences.
Subsequently, we constructed the ROC curve to explore the
prognostic value in 9, 11, 13, 15, and 20 years by using the
survivalROC package (v 1.0.34).

To ensure that GEO and TCGA expression profiles
are comparable, we removed the batch effect with the
RemoveBatchEffect function in limma package in R. The
batch effect between the GSE65904 dataset and the de-batched
TCGA data and the batch effect between the GSE22153 dataset
and de-batched TCGA data were both removed. On the basis of
the expression of five genes in the previous model, multifactor
Cox regression assessment was performed to establish a new
risk score model. Then, we determined the risk score for every
sample, stratified the samples into high- and low-risk groups
on the basis of the median value of risk score, and then verified
whether the risk score is an independent predictive factor. ROC
curves were drawn in 2, 4, 6, 8, and 10 years for the GSE65904
data and in 0.5, 1, 1.5, 2, and 2.5 years for the GSE22153 data.

3https://CRAN.R-project.org/package=survminer
4https://CRAN.R-project.org/package=survivalROC

Real-Time PCR Analysis
Total RNA was extracted, respectively, from normal human
epidermal melanocytes (NHEM) and melanoma cell lines
(A375, SK-MEL-28, and MV3) using RNAiso Plus (Takara
Biotechnology Co., Ltd., Shija, Japan). cDNA was synthesized
from this RNA using HiScript II Q RT SuperMix (R223-
01; Vazyme Biotech, Nanjing, China). Real-time PCR was
performed on a LightCycler R© 480 Instrument II (Roche, Basel,
Switzerland) using ChamQ SYBR qPCR Master Mix (Q331-
02; Vazyme Biotech, Nanjing, China). The 2−11Ct method
was used to calculate the relative gene expression levels and
then normalized against GAPDH. The primers are listed in
Supplementary Table 1.

Immunoblot Analysis
Total proteins of NHEM, A375, SK-MEL-28, and MV3 were
extracted by RIPA lysis buffer. Supernatant containing proteins
was quantified with a BCA kit (Beyotime, Beijing, China).
Proteins were separated with SDS-PAGE and transferred to a
PVDF membrane. Membranes were blocked with 5% BSA in
TBST for 1 h at room temperature and then incubated with
primary antibodies overnight at 4◦C. After washing, membranes
were incubated with matched secondary antibodies for 1 h.
Proteins were detected using a chemiluminescence kit.

Statistical Analyses
Statistical analyses were implemented in R, version 4.0.2.
Throughout the study, p-values were adjusted using the
FDR, and statistical significance was assumed at an adjusted
p-value threshold of 0.05. The screening criteria for DEGs
were FDR < 0.05 and log2FC > 1. Multivariable Cox
proportional hazards regression model with stepwise regression
was performed to define risk factors, and patients were clustered
into high- and low-risk groups on the basis of the risk scores.
The survival probabilities between high- and low-risk groups
were assessed by the Kaplan–Meier curve, and the difference in
survival rate was compared by the log-rank test. We performed
ROC curves and calculated the AUC to assess the predictive
accuracy of the model and explore the estimation accuracy of the
risk score model.

RESULTS

Data Preprocessing and Identification of
Differentially Expressed Genes
First, the gene expression pattern data were integrated from
two platforms (TCGA and GTEx). A total of 21,550 genes and
705 samples were obtained, including 471 cutaneous melanoma
samples and 234 normal samples. Comparisons between TCGA
and GTEx samples had strong batch effects (Figure 1A).
We removed the batch effect and made the PCA (principal
component analysis) with the PCA function in FactoMineR.
A PCA plot illustrated that the batch effect between the two
cohorts were well removed (Figure 1B).
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FIGURE 1 | Data preprocessing and identification of differentially expressed genes (DEGs). (A) Principal component analysis (PCA) analysis before the removal of
batch effect. (B) PCA analysis after the removal of batch effect. (C) DEG volcano plot; red dots designate upregulated genes, green dots designate downregulated
genes, and gray dots designate no difference genes. (D) Hierarchical clustering heat map of expression values sorted according to sample (rows) and gene
(columns), where the color changed from red to yellow and green suggesting gene expression changed from high to low.

A differential expression analysis was performed after
removing the batch effect. Based on the threshold of log2FC > 1.0
along with FDR < 0.05, a total of 1,410 genes, consisting of 412
upregulated and 998 downregulated genes were uncovered as
DEGs in contrast with the normal sample group. The DEGs are
shown in a volcano map and a heat map (Figures 1C,D).

Identification of Ferroptosis-Related
Differentially Expressed Genes
Ferroptosis-linked genes were obtained by abstracting data
from FerrDb. Genes in FerrDb were annotated as markers,
drivers, and suppressors. Drivers positively regulated ferroptosis,
whereas suppressors negatively regulated ferroptosis. Markers
indicated the occurrence of ferroptosis without regulating
ferroptosis (Zhou and Bao, 2020). We obtained 253 ferroptosis-
related genes including107 drivers, 68 suppressors, and 107
markers after removing genes without HGNC ID in FerrDb
database (Figure 2A). After intersection ferroptosis-linked
genes with DEGs, a total of 19 ferroptosis-linked DEGs were
determined, of which two were upregulated genes, whereas 17

were downregulated genes (Figure 2B). Box plots showed the
expression patterns of 19 ferroptosis-linked genes were expressed
differentially between cutaneous melanoma and non-malignant
samples (Figure 2C).

Establishment of the Ferroptosis-Linked
Gene Prognostic Model
On the basis of the multivariable Cox proportional
hazard regression that was based on 19 ferroptosis-
linked DEGs, we obtained the risk core containing the
expression of five genes with the following formulas:
RiskScore = −0.18811 × ALOX5 − 0.07911 × ANGPTL7 +
0.13678 × TXNIP + 0.28800 × SLC2A6 − 0.46713 × GCH1.
TXNIP and SLC2A6 were risk factors, while ALOX5, ANGPTL7,
and GCH1 were protective factors (Figure 3A). Kaplan–Meier
curves indicated that ALOX5 (Figure 3B) and GCH1 (Figure 3C)
were, respectively, served as independent prognostic factors.
Survival analysis through GEPIA (Gene Expression Profiling
Interactive Analysis) also verified that high ALOX5 (Figure 3D)
or GCH1 (Figure 3E) mRNA expression group had a better
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FIGURE 2 | Identification of ferroptosis-related DEGs. (A) A Venn diagram showed ferroptosis-linked genes consisting of drivers, markers, and suppressors. (B) A
Venn diagram illustrating that 19 ferroptosis-linked DEGs were uncovered in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) Project data
sets. (C) Box plot representing the gene expression indexes of the ferroptosis-related DEGs; red for tumor group, and blue for normal group; the X-axis showed the
19 ferroptosis-related genes, and the Y-axis represented the expression level of genes. Wilcox test was employed to assess the gene expression values between the
tumor and normal groups. p < 0.05 signified statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001.

survival outcome. Tumor samples, 458, from TCGA were
stratified into high- and low-risk groups by the risk scores
determined by the prediction model. The results illustrated that
those patients with higher risk scores had a dismal survival time
(Figure 3F). The AUC values for the ROC curve were 0.691,
0.712, 0.757, 0.760, and 0.780 for 9, 11, 13, 15, and 20 years,
respectively, illustrating that the model was of good predictive
ability (Figure 3G).

Functional Assessment
Based on the limma package, the high-risk group had 211
downregulated genes and nine upregulated genes in contrast with
the low-risk group with cutoff criteria of log2FC > 1, as well as

FDR < 0.05, as illustrated in the volcano plot along with the heat
map (Figures 4A,B).

To further understand the underlying biological functions,
we performed GO, KEGG, and reactome analyses on the 220
DEGs. A suite of enriched functional categories related with
immunity were observed in GO terms of the BP (biological
process), CC (cellular component), and MF (molecular function)
(Figure 4C). For the BP, “lymphocyte-mediated immunity,”
“modulation of complement activation,” and “modulation of
immune effector process” were the dominant terms. For the CC,
“MHC protein complex,” “external side of plasma membrane,”
as well as “immunoglobulin complex” were the dominant terms,
and in the part of the MF section, “antigen binding,” “peptide

Frontiers in Genetics | www.frontiersin.org 5 August 2021 | Volume 12 | Article 697043

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-697043 August 4, 2021 Time: 13:52 # 6

Xu and Chen Ferroptosis-Related Gene Model for Melanoma

FIGURE 3 | Establishment of the ferroptosis-linked gene predictive model. (A) The forest plots of hazard ratios showed the risk and protective factors; protective
factors are indicated in green, and risk factors are indicated in red. (B,C) Kaplan–Meier survival curves of ALOX5 and GCH1 in the prognosis of melanoma patients.
Patients with low ALOX5 and GCH1 expression exhibited a shorter overall survival rate (ALOX5, p = 0.00084; GCH1, p < 0.0001). (D,E) Overall survival analysis in
high and low ALOX5 and GCH1 expression samples in the GEPIA data resource. (F) Kaplan–Meier survival curve of TCGA samples stratified into high- and low-risk
groups in the entire set (p < 0.0001). (G) The ROC curves for 9-, 11-, 13-, 15-, and 20-year overall survival predictions.

FIGURE 4 | Functional assessment. (A) Volcano plot illustrating DEGs between the high- and low-risk groups; red dots designate upregulated genes, green dots
designate downregulated genes, and gray dots designate no difference genes. (B) Heat map of DEGs between high- and low-risk group. (C) Bar plot of Gene
Ontology (GO): biological process (BP), GO: cellular component (CC), and GO: molecular function (MF). (D) The top 10 enriched KEGG pathway terms. (E) The top
10 enriched reactome cascade terms. The X-axis indicates the number of rich genes, and the Y-axis indicates the pathway. Bar colors represent p-values.
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antigen binding,” along with “MHC class II receptor activity”
were the most represented terms. The KEGG database contains
pathway maps that represent molecular interactions and reaction
networks. A group of enriched KEGG pathways was related
to immunity including “antigen processing and presentation”
and “phagosome” (Figure 4D). In addition, reactome pathway
analysis indicated enrichment of immune-related pathways,
including “interferon gamma signaling,” “interferon signaling,”
“phosphorylation of CD3 and TCR zeta chains,” “PD-1 signaling,”

“translocation of ZAP-70 to immunological synapse,” and other
pathways (Figure 4E). Therefore, immune-related cascades were
remarkably enriched between the high- and low-risk groups.

Immune Infiltration Analysis
Furthermore, to characterize the immune microenvironment,
we used ImmuCellAI to determine the relative abundances
of 24 kinds of immune cells on the basis of the gene
expression patterns of 458 samples from TCGA data resource.

FIGURE 5 | Immune infiltration analysis. (A) Comparisons between immune cells in the high- and low-risk groups in TCGA. *p < 0.05, **p < 0.01, ***p < 0.001, and
ns designates not significant. (B) Correlation between the relative abundances of the 24 immune cells and the 19 ferroptosis-linked DEGs. The values in the squares
represent the predicted Pearson correlation coefficients (–1 to 1.0), with black text indicating significant correlations (FDR < 0.05) and gray text. The colors of the
squares denote the nature of the correlation, with Pearson’s correlation r = 1 for a perfect positive association, and r = –1 for a perfect negative relationship.
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Infiltration of most cell types, including induced regulatory
T (iTreg), CD4 T cells, natural killer T (NKT) cells, CD4
naive, cytotoxic T cells, CD8 naive, exhausted T cells, B cells,
natural regulatory T (nTreg), Th1, Th2, Tfh cells, neutrophil,
type 1 regulatory T cells (Tr1), central memory T cells,
mucosal-associated invariant T cells (MAIT), DC, monocytes,
macrophages, natural killer cells (NK), gamma delta T cells,
and CD8 T cells, were remarkably different in the high- and
low-risk group (Figure 5A). Only Th17 and effector memory
T cells were not remarkably different between the two groups.
We employed Pearson correlation analysis to validate the
relationship of the 19 ferroptosis-related DEGs with the 24
immune cells. We established that the levels of expression of most
ferroptosis-linked DEGs were highly linked to the abundances
of multiple immune cells (Figure 5B). For example, GCH1
was remarkably positive linked to exhausted T cells, cytotoxic
T cells, and MAIT, and negatively correlated with neutrophil
and NKT cells. ALOX5 had a significantly positive correlation
with macrophages and DCs, and negatively correlated with
neutrophil and NKT cells.

Consensus Clustering Identifies Four
Subtypes of Cutaneous Melanoma
We did consensus clustering for cutaneous melanoma samples
based on 19 ferroptosis-related DEGs. Samples were clustered
with the k value at the inflection point, which is k = 4, according
to the elbow method (Figures 6A–C). The Kaplan–Meier
assessment revealed that the survival of patients in clusters 1 and
4 were worse than that in clusters 2 and 3 (Figure 6D). These
results might provide an efficient classification by ferroptosis-
related DEGs.

Validation of the Prognostic Model
We validated the estimation performance of the prognostic
model using the GSE65904 and GSE22153 datasets. Comparable
data were obtained after removing the batch effects (Figures 7A–
D). The overall survival rates in the high-risk groups were
poorer in contrast with those in the low-risk groups, both in
the GSE65904 (Figure 7E) and GSE22153 (Figure 7F) datasets
(p < 0.05). In the GSE65904 dataset, the AUC values of 2, 4,

FIGURE 6 | Consensus clustering identifies four subtypes of cutaneous melanoma. (A) Consensus clustering cumulative distribution function (CDF) from k = 2 to
k = 10. (B) Relative change in area under the CDF curve from k = 2 to k = 10. (C) Consensus clustering matrix for k = 4. (D) Kaplan–Meier curves for melanoma
patients stratified by four clusters.
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FIGURE 7 | Validation of the prognostic model. (A) PCA analysis before removal of the batch effect between the GSE65904 dataset and the de-batched TCGA
data. (B) PCA analysis after removal of the batch effect between the GSE65904 dataset and the de-batched TCGA data. (C) PCA analysis before the removal of
batch effect between the GSE22153 dataset and the de-batched TCGA data. (D) PCA analysis after removing the batch effect between the GSE22153 dataset and
the de-batched TCGA data. (E) Kaplan–Meier survival curve of GSE65904 dataset. (F) Kaplan–Meier survival curve of GSE22153 dataset. (G) Time-dependent ROC
curves in GSE65904. (H) Time-dependent ROC curves in GSE22153.
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6, 8, and 10 years were 0.675, 0.618, 0.657, 0.698, and 0.728,
respectively (Figure 7G). In the GSE22153 dataset, the AUC
values of 0.5, 1, 1.5, 2, and 2.5 years were 0.768, 0.714, 0.645, 0.636,
and 0.657, respectively (Figure 7H).

Validation of the Genes by qRT-PCR and
Western Blot
After verification with qRT-PCR (Figure 8A) and Western blot
(Figure 8B), we confirmed that ALOX5, ANGPTL7, SLC2A6,
and GCH1 were downregulated in A375, SK-MEL-28, and MV3
compared with NHEM. The relative protein expression levels of
TXNIP were downregulated in all three melanoma cell lines, and
the mRNAs expression levels of TXNIP were downregulated in
A375 and MV3 cell lines, compared with NHEM. The results had
statistical significance (p < 0.05).

DISCUSSION

In the current study, 19 ferroptosis-related DEGs were
obtained in cutaneous melanoma. A novel predictive
model with five ferroptosis-linked genes was first built
and verified in external cohorts. Two ferroptosis-related
genes were, respectively, considered as potential independent

prognostic factors. Functional analysis revealed the presence of
immune-related processes.

The predictive model consisted of five ferroptosis-linked genes
(ALOX5, ANGPTL7, TXNIP, SLC2A6, and GCH1). ALOX5 (5-
lipoxygenase) is a non-heme iron-containing dioxygenase and
plays a key role in ferroptosis by inducing lipid peroxidation (Sun
et al., 2019). Pharmacological repression of ALOX5 protected
neurons from ferroptosis in mice with stroke (Karuppagounder
et al., 2018). ALOX5 inhibition limited lipid peroxidation during
ferroptosis and indirectly promoted the growth of pancreatic
cancer cells (Kuang et al., 2021). Our study showed that
ALOX5 may improve survival rates in melanoma by inducing
ferroptosis. ANGPTL7 (angiopoietin-like protein 7) is a new
pro-angiogenetic factor, which is highly expressed in colorectal,
ovary, and breast cancer (Parri et al., 2014). It was reported
that skin stem cells can express Angptl7 to promote lymphatic
drainage (Gur-Cohen et al., 2019). Whether lymphatic drainage
is related to the effect of Angptl7 on melanoma remains to
be elucidated. The latest literature showed that GLO1 deletion
upregulated TXNIP expression and accelerated human A375
malignant melanoma tumor growth (Jandova and Wondrak,
2021). This finding is congruent with the data of this study, in
which the TXNIP was a risk factor for melanoma patients. We
found that TXNIP was upregulated in the SK-MEL-28 cell line at
mRNA level and downregulated at protein level compared with

FIGURE 8 | Validation of the genes by qRT-PCR and Western blot. (A) The relative mRNAs expression levels of ALOX5, ANGPTL7, TXNIP, SLC2A6, and GCH1 were
presented by RT-qPCR. Data are shown as mean ± standard deviations, n = 3; *p < 0.05; **p < 0.01; ***p < 0.001. (B) The relative protein expression levels of
ALOX5, ANGPTL7, TXNIP, SLC2A6, and GCH1 are presented by Western blot.
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NHEM. It may be related to the posttranscriptional regulatory
mechanism. SLC2A6 (solute carrier family 2 member 6) is a
lysosomal transporter, which is modulated by NF-κB cascade
(Maedera et al., 2019). GCH1 (GTP cyclohydrolase 1) is the
rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin
(BH4) (Pickert et al., 2013). GCH1 expression level determined
ferroptosis sensitivity in cancer cells (Kraft et al., 2020).
Increasing BH4 levels by GCH1 overexpression augmented
responses of T cells, enhancing their antitumor activity (Cronin
et al., 2018). The beneficial effect of GCH1 expression on
melanoma patient survival may be related to the immune
response. This prognostic model is reliable, and genes in the
model deserve further research.

Ferroptosis and immunotherapy are both research hotspots,
and the correlations between cancer immunity and ferroptosis
have drawn more and more attention (Shi et al., 2019; Du
and Zhang, 2020). Excessive or lack of ferroptosis is related
to a growing list of physiological and pathophysiological
processes, accompanied by dysregulated immune response (Chen
et al., 2021). The immune checkpoint blockade therapies are
newly developed immunotherapies, which function through
the activation of the natural tumor-selective killing activity
of T cells (Sanmamed and Chen, 2018; Stockwell and Jiang,
2019). The important function of iron in tumor development
is linked to its potential to modulate both innate and acquired
immune responses, particularly in T cells and macrophages
(Jung et al., 2019). Previous studies have illustrated that
CD8 + T cells activated by immunotherapy sensitize tumors
to ferroptosis and ultimately promote immunotherapy efficacy
in melanoma (Wang et al., 2019). Interferon gamma mediates
CD8 + T-cell ferroptosis-inducing activity because blocking
interferon gamma could eliminate this activity of T cells. Herein,
the remarkable differences of lymphocyte-mediated immunity,
interferon gamma signaling, and immune cell invasion between
the high- and low-risk group further suggested that targeting
tumor ferroptosis-linked metabolism through interferon gamma
promotes the efficacy of immunotherapy. However, an article in
Nature reported that the unique composition of the lymphatic
environment may prevent melanoma cells from ferroptosis,
thereby promoting metastasis (Ubellacker et al., 2020). It remains
unclear how the immune system interacts with ferroptosis.
Macrophages have a vital role in the modulation of iron
metabolism (Shen et al., 2021). Investigations have documented
that ferroptotic cancer cells were phagocytosed by macrophages
in vitro, confirming that that ferroptotic cells communicate
with the immune cells by producing “find me” signals such as
oxidized lipid mediators (Friedmann et al., 2019; Kloditz and
Fadeel, 2019). There was a remarkable difference in macrophage
infiltration between the high- and low-risk groups. Macrophage
infiltration was linked to the expression of numerous ferroptosis-
linked genes including ALOX5. Previous studies have proved that
ALOX5 was involved in the synthesis of leukotriene B4 (LTB4), a
proinflammatory lipid mediator production acting as a phagocyte
chemoattractant (Serezani et al., 2011; Afonso et al., 2012; Orr
et al., 2015). We speculated that ferroptotic cells release lipid
mediators such as LTB4 through ALOX5, to attract macrophages
to the site of ferroptotic cells in melanoma.

Cancer therapy has entered the age of immunity and iron
(Tarangelo and Dixon, 2016; Du and Zhang, 2020). FePt
nanoparticles is a novel ferroptosis-inducing agent, working by
producing reactive oxygen species (ROS) by the Fenton reaction.
The combination treatment of oligodeoxynucleotides containing
cytosine–guanine and systemic checkpoint blockade abolishes
tumors and offers a strong immunological memory effect (Zhang
et al., 2019). Ferroptosis-driven nanotherapeutics combined with
immunomodulation is a promising cancer treatment (Shan et al.,
2020). Immunotherapy synergizing with radiotherapy can induce
ferroptosis and T-cell immunity in tumor (Lang et al., 2019).
By limiting immunity and ferroptosis, TYRO3 can induce anti-
PD-1/PD-L1 therapy resistance in tumors (Jiang et al., 2021).
A critical molecule relationship for bridging ferroptosis and
immunotherapy was found to identify eligible patients for the
ferroptosis-induction therapy combined with immunotherapy
in clear cell renal carcinoma (Mou et al., 2021). These studies
confirmed the pivotal role of ferroptosis in immunotherapy. We
reason that genes in our model may guide the ferroptosis and
immune combination treatment.

Although this is the first study that provides a new predictive
model of five ferroptosis-linked genes in cutaneous melanoma, it
still possessed some limitations that warrant consideration. First,
the accuracy and applicability of the model and key prognostic
genes should be validated using more prospective real-world
data. Second, the underlying specific mechanisms between
ferroptosis-linked genes and tumor immunity in cutaneous
melanoma remained poorly understood and needed to be verified
by further experimental and clinical studies.
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