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Background: The development of complex diseases is contributed by the combination
of multiple factors and complicated interactions between them. Inflammation has
recently been associated with many complex diseases and may cause long-term
damage to the human body. In this study, we examined whether two types of complex
disease, cerebrovascular disease (CVD) or major depression (MD), systematically altered
the transcriptomes of non-diseased human tissues and whether inflammation is linked to
identifiable molecular signatures, using post-mortem samples from the Genotype-Tissue
Expression (GTEx) project.

Results: Following a series of differential expression analyses, dozens to hundreds
of differentially expressed genes (DEGs) were identified in multiple tissues between
subjects with and without a history of CVD or MD. DEGs from these disease-
associated tissues—the visceral adipose, tibial artery, caudate, and spinal cord for
CVD; and the hypothalamus, putamen, and spinal cord for MD—were further analyzed
for functional enrichment. Many pathways associated with immunological events
were enriched in the upregulated DEGs of the CVD-associated tissues, as were the
neurological and metabolic pathways in DEGs of the MD-associated tissues. Eight
gene-tissue pairs were found to overlap with those prioritized by our transcriptome-
wide association studies, indicating a potential genetic effect on gene expression for
circulating cytokine phenotypes.

Conclusion: Cerebrovascular disease and major depression cause detectable changes
in the gene expression of non-diseased tissues, suggesting that a possible long-term
impact of diseases, lifestyles and environmental factors may together contribute to the
appearance of “transcriptomic scars” on the human body. Furthermore, inflammation is
probably one of the systemic and long-lasting effects of cerebrovascular events.
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INTRODUCTION

Complex diseases are caused by genetic, environmental and
lifestyle factors and their interactions, most of which have
not yet been identified. Recent studies have revealed that the
immune system and inflammatory responses are involved in a
wide range of complex diseases, such as cardiovascular disease
(Willerson and Ridker, 2004), stroke (Anrather and Iadecola,
2016), cancer (Coussens and Werb, 2002), and psychiatric
disorders (Yuan et al., 2019). Inflammation is generally defined
as the immune system’s response that defends against injury or
stress (Netea et al., 2017). In a normal inflammatory response,
the upregulation of inflammatory activity is strictly regulated.
However, with psychological, environmental and biological
factors (Schneiderman et al., 2005; Sears and Genuis, 2012; Zhu
et al., 2014; Furman et al., 2019), the regulated process can
become uncontrolled in the resolution phase, causing a systemic
chronic inflammation that contributes to damage in all tissues
and organs and increases the risk of diseases that remain global
leading causes of disability and mortality (Murray and Lopez,
1997; Virani et al., 2020).

The Genotype-Tissue Expression (GTEx) project
(Aguet et al., 2020) has established a database of expression
data, whole genome sequences, and whole-exome sequences
of 54 non-diseased tissue sites across nearly 1,000 individuals
(as of the current v8 release). Genotype-Tissue Expression
also collected subject phenotype data, including demographic
information, general medical histories, histories at the time
of death, the circumstances of death, and so on. The medical
histories were provided by the hospital systems, which recorded
the prior care of deceased donors.

Here we evaluate whether past chronic inflammatory diseases
could leave biological alterations (“scars”) in non-diseased tissues
of the human. We have focused on two types of complex
disease related to the brain, cerebrovascular disease (CVD) and
major depression (MD), as they are typical chronic inflammatory
diseases with heritable components (Flint and Kendler, 2014;
Boehme et al., 2017; Dichgans et al., 2019; Ormel et al., 2019),
and there are enough cases of these in the GTEx database.
CVD comprises clinical conditions that impair blood flow to the
brain, including strokes, transient ischemic attacks, intracranial
aneurysms, and other vessel diseases (Goldstein and Lichtman,
2013). Major depression is one of the most common psychiatric
illnesses, ranging from 3 to 16.9 percent worldwide (Kessler et al.,
2003; Demyttenaere et al., 2004), and has a significant impact
on society. It is characterized by a persistent feeling of sadness
or a loss of interest or pleasure in outside stimuli. Previous
large-scale genome-wide association studies (GWAS) and meta-
analyses have identified a large number of genetic loci associated
with stroke (Malik et al., 2018; Keene et al., 2020) and depression
(Wray et al., 2018; Howard et al., 2019; Ormel et al., 2019) in
multi-ancestry groups. However, genetic variability contributing
to the susceptibility mechanism underlying CVD and depression
as well as their interactions with inflammation remains not fully
identified or characterized.

In this study, we aimed to answer the following two
questions: (1) is there any significant transcriptomic difference
in non-diseased tissues with and without a history of CVD or

MD? (2) if yes, is there any evidence to indicate that inflammation
may play a role in shaping these transcriptomic landscapes? We
performed a differential expression analysis on each GTEx tissue
by comparing the expression profiles between subjects with and
without the medical history of CVD or MD. Top differentially
expressed genes (DEGs) identified in multiple tissues from the
series of DE analyses were included in the downstream functional
enrichment analysis. We also performed transcriptome-wide
association studies (TWAS) on inflammation biomarkers to find
any overlaps with the DEGs.

RESULTS

Cohorts and Risk Factors
Multi-tissue RNA-seq data were compiled from the GTEx project,
as described in the Materials and Methods section. Subjects with
an explicitly reported medical history of cerebrovascular disease
or major depression were considered in this study. A total of
16,412 samples across 46 tissues, obtained from 928 subjects, were
included in the CVD analysis (Supplementary Figure 1), and
16,221 samples across 45 tissues from 926 subjects in the MD
analysis (Supplementary Figure 2).

Risk factors of complex diseases include clinical variables such
as age (Niccoli and Partridge, 2012), sex (Ober et al., 2008),
and BMI (Knight, 2011). The average age of the cohort with a
history of CVD was significantly higher than that of the non-
CVD cohort (CVD 52.09 ± 13.09, non-CVD 57.74 ± 10.79 yrs,
P = 3.87 × 10−6, t-test), while BMI, sex and race showed no
significant differences between the two groups (Supplementary
Figure 3). The average age of the MD cohort was younger
than that of the non-MD cohort (MD 49.69 ± 13.33, non-MD
53.07 ± 12.91 yrs, P = 1.82 × 10−2, t-test). Moreover, females
had a higher incidence of developing depression (P = 0.01,
Chi-squared test) (Supplementary Figure 4). This is consistent
with the higher prevalence of major depressive disorder in
women than in men (Kessler, 2003). To eliminate possible
confounding effects from these risk factors, we included them as
covariates into our multivariate linear models in the differential
expression analysis.

Differentially Expressed Genes Identified
in Multiple Tissues
To investigate whether past CVD or MD left “transcriptomic
scars” on any tissues or organs, we implemented the voom-limma
(Law et al., 2014; Ritchie et al., 2015) pipeline to identify genes
differentially expressed between the cohorts with and without a
history of CVD or MD, using the linear model described in the
Materials and Methods section.

Since the analyzing tissues were defined as non-diseased, we
did not expect that there would be a significant number of DEGs
identified. To our surprise, 17 out of 46 and 16 out of 45 tissues
displayed significant differential expression (false discovery rate
<0.05 and absolute fold change >1.5) in the CVD and MD
analyses, respectively (Figures 1A,B). The top four tissues with
the highest number of significant DEGs were included in the
functional enrichment analysis (Adipose – Visceral, Artery –
Tibial, Brain – Caudate, and Brain – Spinal cord for CVD), as
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well as the top three MD tissues (Brain – Hypothalamus, Brain –
Putamen, and Brain – Spinal cord).

There was no common DEG shared by the four CVD or the
three MD tissues (Figures 2A,B). A large number of significant
DEGs identified by our CVD model (Supplementary Table 1)
were associated with inflammation. For instance, the most
significantly upregulated gene in the spinal cord, CHI3L1, is
related to a variety of inflammatory disorders (Kastrup et al.,
2009; Johansen et al., 2010; Im et al., 2020) and coronary
artery disease (Rathcke and Vestergaard, 2009). Gene FCGR3A—
upregulated in three of the CVD tissues (Brain – Spinal cord
adj.P.val = 0.02; Brain – Caudate adj.P.val = 0.03; Artery –
Tibial adj.P.val = 0.02)—encodes a receptor that binds the Fc
portion of IgG, and it affects the pharmacokinetics in patients
with Crohn’s Disease (Termant et al., 2015). LPAR5, which
was overexpressed in both the brain caudate and the spinal
cord of the subjects with a history of CVD, has been reported
to be activated during nerve injury (Santos-Nogueira et al.,
2015), and it transmits pro-inflammatory signals (Plastira et al.,
2016). DLG2, which was downregulated in hypothalamus tissues
with MD (Supplementary Table 2), has been reported to be
associated with interferon production (Ali et al., 2018). These
results suggest that the systematic effects left by CVD and MD
can still be identified in several post-mortem human tissues
on the transcriptomic level; among these tissues, top DEGs
were reported to have a link with inflammation, indicating that
inflammation may play a role.

Inflammatory Events Enriched in
Differentially Expressed Genes
A functional overview can be gained through gene set enrichment
analysis. CVD DEGs from the Adipose – Visceral, Artery –
Tibial, Brain – Caudate, and Brain – Spinal cord; and MD DEGs
from the Brain – Hypothalamus, Brain – Putamen, and Brain –
Spinal cord were further analyzed using the Gene Set Enrichment
Analysis method (Subramanian et al., 2005). A broad spectrum
of Gene Ontology (GO) terms, with the top significantly enriched
GO terms in the CVD spinal cord, is presented as an example in
Figure 3.

Strikingly, upregulated genes in all four CVD tissues
were significantly enriched in immunological events, for
instance antigen binding, T cell proliferation, the interferon-
gamma-mediated signaling pathway (Figure 3, Table 1),
although the visceral adipose had only one significantly
upregulated gene. This is consistent with a large body of
evidence showing that inflammation plays a crucial role
in cerebrovascular diseases. Inflammation can rupture the
intracranial aneurysm wall (Tulamo et al., 2010), lead to
secondary injury after an ischemic stroke (Ahmad and Graham,
2010), and impact the progression of symptomatic intracranial
atherosclerosis (Arenillas et al., 2008). Inflammation has
also been linked to blood–brain barrier dysfunction (de
Vries et al., 2012) and tissue injury (Jin et al., 2010) in
cerebrovascular diseases.

For the MD tissues, inflammatory events only mainly
enriched in downregulated genes only in the spinal cord
(Table 1) and a few in upregulated genes in the hypothalamus
(Supplementary Data Sheet 2). Likewise, depression has
been associated with increased inflammatory activation in
both the periphery and the central nervous system. Many
antidepressant agents reduce inflammatory activation in
immune cells and lower circulating inflammatory cytokine
levels, supporting this association (Lee and Giuliani, 2019).
Furthermore, it is worth mentioning that mitochondrial
events and cellular respiration were significantly upregulated
in the putamen. Since mitochondrial energy metabolism in
the putamen has been reported to be highly correlated with
emotional and intellectual impairment in Schizophrenics
(Prince et al., 2000), it might also have some hidden links
with depression as well. Another interesting result is that
hypothalamus upregulated genes were mapped to terms
related to cilia (Supplementary Data Sheet 1). There is
still no obvious evidence connecting cilia with depression
so far, but it is an underexplored area worth investigating
(Pruski and Lang, 2019).

We further explored our differential expression results
using Disease Ontology (Schriml et al., 2019) and Human
Phenotype Ontology (Köhler et al., 2019) annotations.
Top enriched diseases and human phenotypes are similar

FIGURE 1 | The number of significantly upregulated and downregulated genes (FDR < 0.05 and absolute log2 fold change > 1.5) identified in GTEx tissues in (A)
cerebrovascular diseases and (B) major depression analyses.
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FIGURE 2 | Overlaps of significantly differentially expressed genes. (A) CVD-associated tissues: Adipose – Visceral, Artery – Tibial, Brain – Caudate, and Brain –
Spinal cord. (B) MD-associated tissues: Brain – Hypothalamus, Brain – Putamen, and Brain – Spinal cord, there is no overlap between these three.

FIGURE 3 | Cytoscape network image for GO terms significantly enriched in DEGs from the spinal cord in the CVD analysis. Similar GO terms (inner circles) were
combined into groups (outer circles) by AutoAnnotate, summarizing labels generated from the app were further improved manually. Circles in blue (left) are GO terms
enriched for downregulated DEGs, those in red (right) are GO terms enriched for upregulated DEGs (significant GO term’s cutoff: q-value < 0.1).

to the biological phenotypes found by our GO analysis
(Supplementary Data Sheet 1). Immune responses and
cerebrovascular lesions were significantly enriched in the
upregulated genes of the CVD tissues. For example, six Disease
Ontology terms—human immunodeficiency virus infectious
diseases, temporal arteritis, alopecia areata, autoimmune
thrombocytopenic purpura, intracranial aneurysms, and
primary immunodeficiency diseases—were shared by all four
CVD tissues’ overexpressed genes (Supplementary Figure 5),
and they are all diseases associated with inflammation and
cerebrovascular accidents.

Our enrichment results reinforce the strong evidence linking
inflammation to CVD, as well as other interesting biological
phenomena that probably have associations with CVD and MD
in the analyzing tissues.

Transcriptome-Wide Association Study
We then enquired whether the “transcriptomic scars” were
associated with the subject’s genotype. TWAS is a powerful
approach to prioritize target genes by combining genetic variants
identified in GWAS with transcriptome data, and can help shed
light on possible associations between genetic loci and human
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TABLE 1 | Top three Gene Ontology (GO) terms with the highest normalized
enrichment scores in tissues with many immunological terms.

GO term NES FDR q-val FWER p-val

Adipose – Visceral (CVD)

Extracellular matrix structural
constituent conferring tensile strength

2.351 <0.001 <0.001

fc receptor mediated stimulatory
signaling pathway

2.336 <0.001 <0.001

Antigen binding 2.258 0.005 0.012

Artery – Tibial (CVD)

Immunoglobulin complex 3.722 <0.001 <0.001

Antigen binding 3.520 <0.001 <0.001

Co-translational protein targeting to
membrane

3.386 <0.001 <0.001

Brain – Caudate (CVD)

Positive regulation of T cell proliferation 2.980 <0.001 <0.001

Positive regulation of leukocyte cell-cell
adhesion

2.934 <0.001 <0.001

T cell proliferation 2.929 <0.001 <0.001

Brain – Spinal cord (CVD)

Response to interferon gamma 2.981 <0.001 <0.001

Leukocyte proliferation 2.936 <0.001 <0.001

Leukocyte cell cell adhesion 2.926 <0.001 <0.001

Brain – Spinal cord (MD)

Antigen binding −2.670 <0.001 <0.001

T cell receptor complex −2.610 <0.001 <0.001

Immunoglobulin complex −2.451 <0.001 <0.001

NES, normalized enrichment score; FDR, false discovery rate; FWER, familywise-
error rate.

complex diseases. Here, we carried out TWAS with S-PrediXcan
(Barbeira et al., 2018) on four public GWAS summary statistics
datasets, in which human circulating levels of C-reactive protein
(CRP) (Han et al., 2020), monocyte chemotactic protein-1
(MCP1), interleukin-6 (IL-6), and interferon-gamma (Ahola-
Olli et al., 2017) were evaluated (Table 2). C-reactive protein
is known as a systemic biomarker of inflammation and has
been shown to be a CVD risk biomarker (Di Napoli et al.,
2011) and to increase in patients with MD (Miller and Raison,
2016). Cytokines MCP1, IL-6 and interferon gamma have been
reported to have a great probability of contributing to both
CVD (Moreno et al., 2008; Seifert et al., 2014; Georgakis
et al., 2019) and MD (Eyre et al., 2016; Franscina Pinto
and Andrade, 2016; Hodes et al., 2016). Our aim was to
find any overlaps between gene–tissue pairs identified from
TWAS and from our DE analyses amongst the tissues with
expression variance (including Adipose – Visceral, Artery –
Tibial, Brain – Caudate, Brain – Hypothalamus, Brain – Putamen,
and Brain – Spinal cord), plus whole blood, since circulating
cytokine levels were measured in serum or plasma samples.
There were 1,575 and 25 significant gene–tissue pairs passing
the adjusted P-value threshold (P-value/number of genes) found
in CRP and MCP1 data, respectively, regardless of tissue types
(Supplementary Table 3). There were eight overlapping gene–
tissue pairs (Table 3), amongst which PPP1R18, RP11-238F2.1,
FRK had the same direction of variations but others had

the opposite direction. All seven protein-coding genes were
more or less related to immune responses. Specifically, it was
demonstrated that complement gene C2 was expressed in human
post-mortem brain-derived cerebrovascular smooth muscle cells
and may amplify the pro-inflammatory effects in brain vessels
(Walker et al., 2008). The major histocompatibility complex class
I chain-related gene A MICA is a highly polymorphic gene that
encodes protein variants functioning in immune activation and
surveillance; our results therefore indicate that there may be a link
between MICA and depression.

DISCUSSION

Most CVD and MD transcriptome analyses (Grond-Ginsbach
et al., 2008; Pantazatos et al., 2017; Kim et al., 2018; Cai
et al., 2019; Zhu et al., 2019; Androvic et al., 2020; Wittenberg
et al., 2020) are restricted to mouse models or a limited
sample size of human expression data. In this study, we
systematically analyzed expression data for over 16,000 non-
diseased human samples across multiple tissues from GTEx,
investigating global transcriptomic alterations on the human
body in cases with a history of CVD or MD. We first built a
linear mixed model and applied it to the expression data. Dozens
to hundreds of differentially expressed genes were identified
in the visceral adipose, tibial artery, caudate, and spinal cord
for CVD, and in the hypothalamus, putamen, and spinal cord
for MD. Furthermore, functional enrichment analysis showed
that a large number of annotations pertaining to inflammatory
responses were enriched in upregulated CVD DEGs from all
four tissues, and that MD DEGs were mostly associated with
neurological and metabolic events. Our results suggest that the
long-term sequelae of cerebrovascular accidents and depressive
symptoms can still be reflected in post-mortem samples, and
that inflammation may be maintained for a period of time
after CVD onset.

A growing body of evidence indicates that inflammation
not only contributes to the initiation and development of
CVD (Lakhan et al., 2009; Gu et al., 2019), it also persists
globally in the brain for the long-term after CVD (Shi
et al., 2019). Neuroinflammation followed by cerebrovascular
accidents may promote recovery and further injury, playing both
beneficial and detrimental roles (Jayaraj et al., 2019). A large-
scale GWAS discovered one genetic variant (rs1842681) in
the gene LOC105372028 associated with post-stroke outcomes

TABLE 2 | GWAS datasets used in this study.

Phenotype Data source Sample size

C-reactive protein
(Han et al., 2020)

UK BioBank 418,642

MCP1
(Ahola-Olli et al., 2017)

The Cardiovascular Risk in
Young Finns Study, FINRISK

8,293

IL-6
(Ahola-Olli et al., 2017)

The Cardiovascular Risk in
Young Finns Study, FINRISK

8,293

Interferon gamma
(Ahola-Olli et al., 2017)

The Cardiovascular Risk in
Young Finns Study, FINRISK

8,293
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TABLE 3 | Overlaps of TWAS associations and DE genes.

Gene Tissue TWAS z-score TWAS P.val DE t-statistics DE adj. P.val Study

C2 Spinal cord −6.43 1.27 × 10−10 5.36 7.93 × 10−4 CVD

PSD4 Spinal cord −4.34 1.45 × 10−5 4.25 8.15 × 10−3 CVD

PPP1R18 Spinal cord 4.78 1.75 × 10−6 4.21 8.73 × 10−3 CVD

PTPRJ Spinal cord −5.02 5.10 × 10−7 3.82 0.017 CVD

RP11-238F2.1 Spinal cord −5.07 4.08 × 10−7
−3.21 0.046 CVD

FRK Spinal cord −4.59 4.44 × 10−6
−3.15 0.050 CVD

CD1E Whole blood −8.74 2.25 × 10−18 4.43 0.040 CVD

MICA Hypothalamus −5.16 2.50 × 10−7 3.90 0.046 MD

(Söderholm et al., 2019). Furthermore, proteomic studies of
post-stroke depression (PSD) reveal that immune dysfunction
in stroke survivors is associated with PSD (Zhan et al., 2014;
Nguyen et al., 2016). The connection between inflammation
and depression is undeniable (Dantzer et al., 2008; Miller and
Raison, 2016). Unlike the CVD results, only a small portion
of the MD DEGs were enriched in immune responses, while
the top ones are mostly non-coding RNAs (Supplementary
Table 2). This is reasonable since MD is highly heterogeneous
(Goldberg, 2011) and not all individuals exposed to inflammatory
challenges develop depression. Still, inflammatory responses that
occur before and after cerebrovascular accidents or depression
are very complicated, and the underlying mechanism is yet
to be elucidated.

Our study also provides evidence of the general and potential
long-term effects left by cerebrovascular events and depression
from the transcriptomic aspect. A great number of DEGs were
identified in some of the tissues, especially the brain, indicating
that gene expression levels were alternated since CVD/MD onset.
Non-brain tissues with significant CVD DEGs are related to
vascular diseases and may pose risks to CVD. To be more specific,
adipose tissue and its secreted inflammatory proteins contributed
to obesity-associated vasculopathy and cardiovascular risk (Berg
and Scherer, 2005), and they may contribute to CVD as
well. Peripheral arterial disease occurring in the tibial artery
shared similar risk factors with CVD (Banerjee et al., 2010).
Moreover, DEGs such as CHI3L1 and LPAR5 may reveal possible
mechanisms for post-CVD outcomes, but further experiments
are necessary for validation. Interestingly, the hypothalamus had
the highest number of MD DEGs, which is compatible with one
of the most enduring and replicated findings in psychiatry —
the activation of the hypothalamic-pituitary-adrenal axis in
a subset of MD patients. The identified DEGs may play a
role in the neuroendocrine function of the hypothalamus. The
pathways enriched in putamen positive DEGs were mainly about
mitochondrial functions and the electric transport chain, which
replicates previous results (Sacchet et al., 2017) and provides new
insights into the effects of depression. Apart from these, other
tissues have a relatively small number of DEGs reported. The
reasons could be (1) small sample sizes of tissues that limit the
statistical power to detect any differences; (2) tissue specificity, in
other words, the studied diseases (CVD and MD) may raise only a
modest effect on the gene expression of those tissues. In addition,
the effect may get compensated gradually or last not long enough

to be detectable at the end of life. Further studies are needed to
elucidate these points.

Only a few DEGs identified by our linear model overlapped
with genes prioritized by TWAS for selected cytokine
phenotypes. This was expected and is probably due to the
small fraction of genetic risk factors shared by complex
diseases and these circulating cytokine levels. Additionally,
only about 11 percent of heritability was explained by bulk
tissue expression quantitative trait loci, according to this study
(Yao et al., 2020). Therefore, possible long-term transcriptomic
alterations across tissues and organs are probably caused by
external factors such as lifestyle and the social and physical
environment. Nevertheless, we used bulk RNA-seq for our
analyses, and further utilizing techniques with higher resolution,
such as single-cell sequencing and cell-type decomposition
from bulk sequencing, could reveal more precise signals on
specific cell types.

CONCLUSION

This study reveals molecular signatures of chronic effects and
damage on multiple tissues potentially contributed by two types
of complex diseases (CVD and MD) and associated factors.
These signatures may be linked to inflammation and other
disease-related pathways. Together, these results indicate that
suffering from a complex disease can cause a tissue-wide impact
on the transcriptomes, and they also suggest that treatment to
attenuate inflammation may improve the body’s health in patients
recovering from CVD. Our study not only provides insights
into these disease mechanisms but also offers a possible route to
studying the long-lasting changes caused by chronic diseases on
multiple tissues or organs.

MATERIALS AND METHODS

GTEx Data
Multi-tissue RNA-seq data were collected from the GTEx project
(Aguet et al., 2020) v8 release (dbGaP: phs000424.v8.p2). The
genes and samples were filtered and quantile-normalized in a
tissue-aware manner, as described in the Yet Another RNA
Normalization (YARN) pipeline paper (Paulson et al., 2017).
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Subjects with an explicitly reported medical history of
cerebrovascular disease (MHCVD, phv00169142.v8.p2) or major
depression (MHDPRSSN, phv00169145.v8.p2) were considered
in this study. We removed subjects with missing values in their
Hardy scale (DTHHRDY), ischemic time (SMTSISCH), or batch
ID (SMNABTCH). All cell lines and tissues with less than 12
samples with a history of CVD or less than 10 samples with a
history of MD were excluded from our analyses. Finally, we used
a total of 16,412 human post-mortem samples (1,498 with and
14,914 without a history of CVD), covering 46 tissues from 928
subjects (99 with and 829 without a history of CVD) in the CVD
analysis (Supplementary Figure 1); and a total of 16,221 samples
(1,602 with and 14,619 without a history of depression) across
45 tissues, including at least 10 samples with a history of MD,
from 926 subjects (91 with and 835 without a history of MD)
(Supplementary Figure 2).

Differential Expression Analysis
Differential expression analysis between the samples with and
without a history of CVD/MD was conducted using the voom-
limma pipeline (Law et al., 2014; Ritchie et al., 2015). Briefly,
RNA-seq read counts were transformed to log counts per million
(log-cpm) with associated precision weights to stabilize the
variance in the data using the voom function, followed by linear
model fitting and the empirical Bayes procedure. According to
the paper (Somekh et al., 2019), the multivariate linear regression
model that adjusted for known confounders outperforms other
methods correcting for hidden confounders, which may remove
some of the desired biological signals. Hence, we adopted the
linear regression model but replaced the experimental batch
(SMGEBTCH) with another batch information (SMNABTCH).
This model fits for gender (GENDER), the interval between the
time of the donor’s death and the sample collection (SMTSISCH),
age (AGE), the type of nucleic acid isolation batch (SMNABTCH),
the type of death (DTHHRDY), as well as the variables of
our interest—the medical history of CVD (MHCVD) and MD
(MHDPRSSN)—for the gene expression data (Y):

Y ∼ β1GENDER+ β2SMTSISCH+ β3AGE+ β4SMNABTCH
+ β5DTHHRDY + β6MHCVD+ ε

Y∼ β1GENDER+ β2SMTSISCH+ β3AGE+ β4SMNABTCH
+ β5DTHHRDY + β6MHDPRSSN + ε

The GENDER term was removed from sex-specific tissues,
and the SMNABTCH term was removed from tissues in only
one batch. P-values from the regression model were adjusted
for multiple testing using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995).

Functional Enrichment Analysis
Pre-ranked Gene Set Enrichment Analysis (GSEA) (Subramanian
et al., 2005) was conducted with gene lists ranked by
the t-statistics from the results of our DE analyses, with
default program parameters and a default background set on
GSEA v4.0.1. The Gene Matrix Transposed (GMT) files of
Gene Ontology were obtained from the Molecular Signatures
Database v7.1. Disease Ontology (Schriml et al., 2019) data

were downloaded from the Alliance of Genome Resources1.
Human Phenotype Ontology (Köhler et al., 2019) annotations
were acquired from the website2. The Cytoscape (Shannon
et al., 2003) figure (Figure 3) was generated with the
AutoAnnotate application (Kucera et al., 2016), and auto-
generated summarizing labels were further improved manually.

Association Detection From GWAS
Summary Statistics
GWAS summary statistics datasets were downloaded from the
NHGRI-EBI GWAS Catalog (Buniello et al., 2019) for study
GCST009777 (Han et al., 2020) and study GCST004421 (Ahola-
Olli et al., 2017) on 19/10/2020. These GWAS datasets examined
biomarkers of inflammatory responses, and they were obtained
from Caucasian subjects (Table 2). Gene expression variation
was inferred using S-PrediXcan (Barbeira et al., 2018) with
GTEx v8 elastic-net prediction models3 for the four tissues
with expression variation between CVD and non-CVD cohorts:
Adipose – Visceral, Artery – Tibial, Brain – Caudate, and Brain –
Spinal cord; and the three tissues with expression variation
between MD and non-MD cohorts: Brain – Hypothalamus,
Brain – Putamen, and Brain – Spinal cord. We ran S-PrediXcan
on these tissues one by one in each phenotype. Tissue–gene
pairs with P-value < 0.05/(number of tested genes) were
considered as significant.
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