AUTHOR=Chen Xiao-Yu , Song Dan-Yu , Jiang Li , Tan Dan-Dan , Liu Yi-Dan , Liu Jie-Yu , Chang Xing-Zhi , Xing Guo-Gang , Toda Tatsushi , Xiong Hui TITLE=Phenotype and Genotype Study of Chinese POMT2-Related α-Dystroglycanopathy JOURNAL=Frontiers in Genetics VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.692479 DOI=10.3389/fgene.2021.692479 ISSN=1664-8021 ABSTRACT=Objective

Alpha-dystroglycanopathy (α-DGP) is a subtype of muscular dystrophy caused by defects in the posttranslational glycosylation of α-dystroglycan (α-DG). Our study aimed to summarize the clinical and genetic features of POMT2-related α-DGP in a cohort of patients in China.

Methods

Pedigrees, clinical data, and laboratory tests of patients diagnosed with POMT2-related α-DGP were analyzed retrospectively. The pathogenicity of variants in POMT2 were predicted by bioinformatics software. The variants with uncertain significance were verified by further analysis.

Results

The 11 patients, comprising eight males and three females, were from nine non-consanguineous families. They exhibited different degrees of muscle weakness, ambulation, and intellectual impairment. Among them, three had a muscle-eye-brain disease (MEB)-like phenotype, five presented congenital muscular dystrophy with intellectual disability (CMD-ID), and three presented limb-girdle muscular dystrophy (LGMD). Overall, nine novel variants of POMT2, including two non-sense, one frameshift and six missense variants, were identified. The pathogenicity of two missense variants, c.1891G > C and c.874G > C, was uncertain based on bioinformatics software prediction. In vitro minigene analysis showed that c.1891G > C affects the splicing of POMT2. Immunofluorescence staining with the IIH6C4 antibody of muscle biopsy from the patient carrying the c.874G > C variant showed an apparent lack of expression.

Conclusion

This study summarizes the clinical and genetic characteristics of a cohort of POMT2-related α-DGP patients in China for the first time, expanding the mutational spectrum of the disease. Further study of the pathogenicity of some missense variants based on enzyme activity detection is needed.