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Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has
been widely used in profiling genome-wide chromatin accessibility in thousands of
individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq
are much sparser due to the lower copy numbers (diploid in humans) and the inherent
missing signals, which makes it more challenging to classify cell type based on specific
expressed gene or other canonical markers. Here, we present svmATAC, a support
vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq
datasets by enhancing peak signal strength and imputing signals through patterns of
co-accessibility. We applied svmATAC to several scATAC-seq data from human immune
cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The
benchmark results showed that svmATAC is free of literature-based markers and robust
across datasets in different libraries and platforms. The source code of svmATAC is
available at https://github.com/mrcuizhe/svmATAC under the MIT license.

Keywords: scATAC-seq, classification, machine learning, support vector machine, cell-type annotation

INTRODUCTION

With the technological progress in Single-cell Assay Transposase Accessible Chromatin
sequencing(scATAC-seq) (Buenrostro et al., 2013), which has overcome the previous limitations
and is able to generate thousands of single cells chromatin accessibility data at lower cost (Chen
et al., 2019), a certain number of scATAC-seq datasets have been sequenced with different
techniques in diverse libraries. For example, the Chromium Single Cell ATAC technology from 10X
genomics (10X Genomic, 2020) can profile hundreds to tens of thousands of nuclei in one chip and
finish the process from sample to sequencing-ready library in 1 day. For single-cell RNA-sequencing
(scRNA-seq) and scATAC-seq data, the processing steps typically start with unsupervised clustering
cells from coordinate-based peak matrix and then identify cell types from clustered groups. Thus,
many methods requiring a training dataset labeled with corresponding cell populations for classifier
training have been developed to get rid of the requirement of prior knowledge in scRNA-seq
(Kiselev et al., 2018; Lieberman et al., 2018; Lopez et al., 2018; Boufea et al., 2019; Johnson et al.,
2019; Ma and Pellegrini, 2019; Tan and Cahan, 2019). Support vector machine (SVM) performs
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the best among machine learning methods for classifying
cell types in scRNA-seq (Abdelaal et al., 2019), and a
lot of SVM-based tools have been proved effective and
efficient (Pedregosa et al., 2011; Alquicira-Hernandez et al.,
2019). However, the low copy number of DNA molecule in a
cell results in only 1–10% of the accessible peaks in scATAC-
seq being detectable, while the percentage for expressed genes
detected in scRNA-seq is about 10–45% (Liu et al., 2019; Mereu
et al., 2020). When clustering in scATAC-seq, such severe signal
loss in a massive sparse space makes it more challenging to
annotate cluster groups through gene-related canonical markers,
which is practical and well-received in scRNA-seq. This missing
of signal makes the SVM with linear kernel hard to work (Stewart
et al., 2018) because this method starts with dimensionality
reduction and feature selection, which is largely dependent on
the accuracy and integrity of the dataset. Even so, SVM still
outperformed other popular machine learning methods on cell-
type classification of scATAC-seq (Cui et al., 2020), though the
classification results of these methods (including SVM) are all
performing at a low level. Since the signal missing will affect the
quality of feature selection and then affects the construction of
the classification model, the data recovery and signal strength
enhancement are essential for SVM-based methods in scATAC-
seq datasets (Yan et al., 2020).

Statistical methods such as imputing dropouts and correcting
excess zero-counts have already been applied to scATAC-seq
datasets, and this type of enhancing and recovering of missing
signals has shown great power for downstream analysis. SCALE
(Xiong et al., 2019) constructs a probabilistic Gaussian Mixture
Model to characterize data, followed by denoising and imputing
missing values in clustered subgroups. scOpen (Li et al., 2019)
recovers the dropout signal in a particular cell using positive-
unlabeled learning. However, these methods basically are using
the statistic-based model, which may require an extra prior
knowledge or time-consuming globally statistics. Since the
repertoire of accessible regulatory elements in cell lines or tissues
is unique, this type of data imputation is then considered as
a kind of molecular signature for identifying. For example,
Cicero (Pliner et al., 2018) is able to predictcis-regulatory DNA
interactions through scATAC-seq from a single experiment.

Here, we present svmATAC, an automatic cell classification
SVM-based method for scATAC-seq data. svmATAC enhances
the data from cluster/group data first, followed by imputing
the signal linkage according to the co-accessibility scores from
Cicero. The enhanced and imputed data will then be input to
SVM (linear kernel) classifier for model training and cell-type
prediction (Figure 1). We applied svmATAC to several typical
scATAC-seq datasets containing different cell types, including
human immune cell (hereafter Corces2016) (Corces et al.,
2016), human hematopoietic system cell (hereafter Buenrostro
et al., 2018), and peripheral blood mononuclear cell (hereafter
10 × PBMCs) (Genomic, 2020), to evaluate its classification
ability. With fivefold cross-validation, svmATAC showed a great
advance on prediction accuracy and surpassed 7.13–21.34%
compared to SVM (linear kernel). In inter-dataset experiments,
svmATAC also maintained great predictive power to accurately
and quickly identify cell types based on a pre-trained model. We

believe that svmATAC has great potential to handle complex cell-
type identification problems in practical and realistic scenarios.

RESULTS

svmATAC as a General Framework for
Classification of scATAC-seq
svmATAC applies two pivotal functions, i.e., group-based
read signal enhancement and cis-regulatory relationship-based
imputation to cell-peak matrix, followed by training model and
predicting cell types using SVM classifier (Figure 1). With this
specific design, the peak signals of scATAC-seq are strengthened
and related by extra biological connections, which improves the
feature selection in lower dimensional space. svmATAC consists
of three main steps: (1) It applies a specific design enhancement
method to establish cell-peak matrix. The peak value 0 will
be set to 1 when the peak (column) signal rate is larger than
prior knowledge cutoff in a cell-type/cluster group. This step is
able to correctly classify some of the cell types (Supplementary
Tables 1–10), compared to directly using raw dataset, but it is
still not good enough. (2)An imputation method, i.e., Cicero,
is applied to construct the cis-regulatory relationship between
peaks and to compute the co-accessibility scores. Two peaks of
a cell-type/cluster group will be integrated for imputation when
its co-accessibility score ≥ 0.25 (Pliner et al., 2018). That is, the
value 1 will be assigned for both peaks if any one peak is distinct.
(3) The cell-peak matrix processed by the two pivotal functions
will be used as input for an SVM classifier to perform model
training. With the trained SVM model, svmATAC can achieve the
final prediction of cell types in unlabeled dataset. In order to give
a comprehensive evaluation on the performance of svmATAC,
we, respectively, designed an intra-dataset experiment and an
inter-dataset experiment as below.

Benchmark Results on Intra-Dataset
Experiments
We evaluated the performance of svmATAC in an intra-dataset
experiment by applying a fivefold cross-validation across each
dataset after cell filtering. We randomly divided all the cells
into fivefold with equal proportions of each cell population
in each fold. The first and smallest dataset we used is from
the human immune cells (hereafter Corces2016). This dataset
consists of 576 immune cells from four isolated cell populations
including leukemic blasts (Blast), lymphoid-primed multipotent
progenitors (LMPP), leukemia stem cells (LSC), and monocytes.
The gold standard labels we used here are from the original
paper and predicted by enhancer cytometry. Compared to the
SVM (linear kernel), we found an improvement on the predicted
results when using svmATAC. The percentage of correctly
predicted cells in all populations are all increased by at most
19.79% (from 75 to 94.79%) in monocyte (Figure 2A); the
F1 scores are also improved in all population with monocyte
increased the most from 0.85 to 0.97 (Figure 3A). The details for
confusion matrix and F1 score list for Corces2016 are presented
in Supplementary Tables 1, 2.
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FIGURE 1 | Summary of svmATAC method. (A) Training step. A fixed-size cell-peak matrix is constructed from a labeled scATAC-seq dataset. The peak matrix will
be filtered and (1) matrix with 5 k peak will be split by cell types for calling distinct peak and signal in qualified peaks will be enhanced; (2) matrix with Cicero peak will
be input to Cicero for calculating co-accessibility score between peaks. Two peaks with cis-regulatory interaction will be integrated for imputation in each enhanced
peak matrix. All enhanced and imputed peak matrix will be merged to a single matrix for training SVM classifier. (B) Prediction step. A clustering is necessary at first
for assigning each cell a clustering group number and then the matrix will be filtered, followed by enhancement and imputation steps. Finally, an SVM classifier will
identify the cell types of predicting dataset using the SVM model trained from step A.

The second dataset we used is from the human hematopoietic
system, which consists of 2,034 labeled hematopoietic cells
from 10 cell populations including hematopoietic stem
cells (HSC), multipotent progenitors (MPP), lymphoid-
primed multipotent progenitors (LMPP), common myeloid
progenitors (CMP), granulocyte-macrophage progenitors
(GMP), GMP-like cells, megakaryocyte-erythroid progenitors
(MEP), common lymphoid progenitors (CLP), monocytes
(mono), and plasmacytoid dendritic cells (pDC). In order to
test the ability of identifying the cells from different batches, we
divided the LMPPs into two groups: LMPP-O: generated and
first published in Corces2016; LMPP: newly generated and first
published in Buenrostro2018. We used the FACS-sorting labels
as the gold standard for this dataset. All cells in this dataset
are correctly classified using svmATAC. Similar to the results
on Corces2016, the percentage of correctly predicted cells in all
population are increased by at most 86% in MPP (Figure 2B),
and the F1 scores are also improved in all populations, with
MPP increased the most from 0.25 to 1 (Figure 3B), compared
to SVM (linear kernel). The details for confusion matrix and F1
score list for Buenrostro2018 are presented in Supplementary
Tables 3, 4.

The last two datasets we used are from the peripheral blood
mononuclear cells. These two datasets were generated from the
same healthy donor but prepared in different libraries. In total,
there are 3,917 cells profiled in 10× PBMCs v1 dataset and

4,585 cells were profiled in 10× PBMCs Next Gem dataset but
both datasets are unlabeled. Based on recent studies (Bravo
González-Blas et al., 2019; Pliner et al., 2019), we expected eight
populations in each dataset, so we clustered cells into eight
groups and use these cluster IDs as the gold label for training
and testing (Supplementary Figures 1, 2). However, though cells
with the same cluster ID may be predicted together into one
group, we cannot check whether these predicted cell-types are
true positives when only cluster ID is available. Thus, we assigned
cell types using Seurat v3 (Stuart et al., 2019) based on a labeled
scRNA-seq dataset from the same sample and then selected the
high-confidence labels as gold standard for scATAC-seq datasets.
We totally labeled 2,927 cells for the 10× PBMCs v1 dataset
and 3,670 cells for the 10× PBMCs Next Gem dataset. For the
Seurat labeled 10× PBMCs v1 dataset, the percentage of correctly
predicted cells in each population increases to 100%, while CD8+
T, DC, and FCGR3A+ Mono are barely correctly identified at
first using SVM (linear kernel) (Figure 2C); the F1 scores also
improved in all populations, notably from 0 to 1 in CD8+, 0.09–1
in DC, and 0–1 in FCGR3A+ Mono (Figure 3C), compared to
SVM (linear kernel). For the Seurat labeled 10× PBMCs Next
Gem dataset, the percentage of correctly predicted cells in all
population increases by at most 91% in CD8+ T (Figure 2D); the
F1 scores also improved and CD8+ T increased the most from
0.16 to 1 (Figure 3D). The details for confusion matrix and F1
score list for the Seurat labeled 10× PBMCs v1 dataset and the
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FIGURE 2 | Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of intra-dataset experiment. (A) The experiment on
Corces2016. In monocyte, the percentage of correctly predicted cells by svmATAC is increased the most, by 19.79% (from 75 to 94.79%), while the percentage of
LSC is increased the least, by only 0.52% (from 98.96 to 99.48%), compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. All cells are correctly
classified by svmATAC, and the percentage of correctly predicted cells in all population increase by at most 86% in MPP, compared to the SVM (linear kernel).
(C) The experiment on 10× PBMCs v1. All cells are correctly classified by svmATAC. The cells of CD8+ T and FCGR3A+ Mono, which are totally incorrectly
classified by the SVM (linear kernel), are all correctly classified by svmATAC. (D) The experiment on 10× PBMCs Next Gem. All cells are correctly classified by
svmATAC. The cells of CD8+ T, DC, and FCGR3A+ Mono, most of which are incorrectly classified by the SVM (linear kernel), are all correctly classified by svmATAC.
Colors represent the percentages of cells of a specific reported type labeled as each type by svmATAC.

Seurat labeled 10 × PBMCs Next Gem dataset are presented in
Supplementary Tables 5–8.

Benchmark Results on Inter-Dataset
Experiments
In order to evaluate the ability of svmATAC to control or
even overcome the deviation between different datasets
such as batch effect, tissue type, and other technical
factors, we designed the inter-dataset experiment, in
which two datasets are generated from the same tissue,
but prepared in different libraries and sequenced from
different platforms.

We used Seurat labeled 10× PBMCs v1 to train a model
first and then classify the labels of 10× PBMCs Next Gem
based on this model. We compared the predicted labels with

Seurat labels to evaluate the performance of svmATAC, and we
found that although the model of the v1 dataset was trained on
sparser molecular data from a different method and instrument,
svmATAC is robust, performing well across datasets, and capable
of overcoming batch effect and technical bias.

svmATAC accurately classified 99.95% (3,668 out of 3,670)
cells in the 10× PBMCs Next Gem dataset (Supplementary
Tables 9, 10), compared to 47.96% using SVM (linear kernel)
(Figure 4A). We also notice that all cells in the 10× PBMCs
Next Gem dataset are correctly classified by svmATAC, even
though the cells of CD8+ T and FCGR3A+ Mono are
barely correctly classified when using SVM (linear kernel).
Therefore, the F1 scores for all populations in svmATAC are
all improved and CD8+ T and FCGR3A+ Mono increase the
most by 0.996 (from 0 to 0.996) and 0.96 (from 0.04 to 1),
respectively (Figure 4B).
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FIGURE 3 | The F1 scores plot showing the performance comparison of SVM(linear kernel) and svmATAC for cell classification of intra-dataset experiment. (A) The
experiment on Corces2016. svmATAC performed best on LMPP and its F1 score is 1 and the F1 score of monocyte increased the most, by 0.12 (from 0.85 to 0.97),
compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. The F1 scores of all cell types are 1 for svmATAC, which means that all cells are correctly
classified and the F1 scores of all populations are increased by at most 0.75 (from 0.25 to 1) in MPP, compared to SVM (linear kernel). (C) The experiment on Seurat
labeled 10× PBMCs v1. All cells are correctly classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which
are 0 when using SVM (linear kernel), are all increased to 1 for svmATAC. (D) The experiment on Seurat labeled 10× PBMCs Next Gem. All cells are correctly
classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono increased most by 0.84 (from 0.16 to 1) and 0.51
(from 0.49 to 1) when using SVM (linear kernel), compared to SVM (linear kernel). The red panel represents the results for svmATAC, and the blue panel represents
the results for SVM (linear kernel) on unenhanced and unimputed data.

We next investigated qualitatively the obtained classification
results, using the respective feature matrices to project the
cells onto a 2-D space using UMAP (McInnes et al., 2018)
and colored them based on the obtained classification results
or the gold standard labels. We found a high distribution
consistency between true labels and svmATAC classified
labels (Figure 4C), while SVM (linear kernel) misclassified
most of the cells into two similar cell groups. Because
of the close spatial distribution in lower-dimensional
feature space, SVM (linear kernel) misclassified almost
all cells of FCGR3A+ Mono and CD8+ T to CD14+
Mono and Naive CD4+ T, respectively. svmATAC not
only successfully classified the almost all cells of these

two cell types but also correctly classified all cells of
other cell types.

DISCUSSION

Single-cell ATAC sequencing is a new technology in the area of
the chromatin accessibility profile of individual cells and gives a
new perspective of the identification and characterization of cell
types (Cusanovich et al., 2015). Here, we introduced svmATAC, a
specially designed method for scATAC-seq data to classify single
cells based on readout enhancement, imputation, and a SVM
model. The benchmark results show that svmATAC is able to
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FIGURE 4 | Summary of inter-dataset experiment. (A) Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of inter-dataset
experiment. The cells of CD8+T and FCGR3A+ Mono are barely correctly classified when using SVM (linear kernel). svmATAC not only successfully classified all cells
of CD8+T and FCGR3A+ Mono but also correctly classified all cells of other cell types, which increased the percentage of correctly predicted cells of all cell
population from 47.96 to 99.95%. (B) The F1 scores plot displaying the performance comparison of SVM (linear kernel) and svmATAC for cell classification of
inter-dataset experiment. All cells are correctly classified by svmATAC, and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which
are 0 when using SVM (linear kernel), are all increased to 1 in svmATAC. (C) Umap plots of the 10× PBMCs Next Gem (n = 3,670 cells). The first panel is colored by
the true ground cell types of dataset, i.e., Seurat labeled cell types. The second panel is colored by the SVM (linear kernel) classification and the third panel is colored
by the svmATAC classification.

accurately classify cells in both intra- and inter-datasets. The
outstanding achievements of svmATAC are mainly due to its two
pivotal modules: (1) the peak signal enhancement can overcome
the disadvantage of read loss by sequencing technology; (2)
the biological cis-regulatory relationship-based imputation can
establish connections between significant regions.

However, there are still a few shortcomings for svmATAC
that cannot be ignored. (1) In the current version of svmATAC,
the accuracy and sensitivity of cell-type classification are highly
relying on the manually selected cutoff for enhancement and
imputation, which does exist a gap for applying svmATAC
to more complex scATAC-seq datasets. We will develop an
automatic cutoff adjustment for svmATAC in the future. (2)
We also notice that a certain number of noisy read signals are
added by mistake to the enhancement and imputation processes
and decreases the performance especially in the inter-dataset
experiment. This is another point for future work about how to
avoid adding useless signal in enhancement and imputation steps.
(3) Although svmATAC shows its potential on overcoming the
batch effect on inter-dataset experiments using 10× datasets, we
still expect more datasets coming from the same tissue or sample
but generated through different sequencing pipelines.

Moreover, svmATAC also supports the user-defined
classification model from all kinds of machine learning
algorithms, which has great potentials in the adaptability

in various scATAC-seq datasets. Therefore, svmATAC is a
promising approach and benefits cutting-edge genomic studies.

MATERIALS AND METHODS

Construction of Cell-Peak Matrix
Several region definitions for cell-peak matrix have been broadly
used (Chen et al., 2019), including peaks on bulk data or
aggregate single-cell data, pseudo-bulk data, regions around
insertion sites, and fixed-size bins. The regions from bulk or
aggregate scATAC-seq data are based on peak calling, and
this process only keeps those areas covered by at least one
read. The pseudo-bulk clades created by hierarchical clustering
is different in the way of calling peaks, but the peaks are
still generated from sequencing data. These regions around
insertion sites do not rely on calling peaks from sequencing
reads; however, this kind of peak region still only covers a
part of the whole genome reference. These types of regions
selection may be suitable for the developer’s application scenarios,
such as clustering the cells into groups but cannot fulfill
the requirement of svmATAC. This is because one of the
most common scenarios for svmATAC is to predict the
cell types for a dataset using a pre-trained classifier, which
requires the two datasets used in training and predicting to
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share the same peak regions to ensure the compatibility of
selected features.

We generated two types of cell-peak matrix containing
different peak regions. One peak region is applying fixed-size
peak regions (hereafter 5 k peak) for the training and predicting
of the classifier process, in which we detected the read signal every
5,000 bp and therefore split the whole genome reference(hg19)
into more than 600 k pieces. Note that some other tools may filter
out the peaks with no read signal detected for saving memory
and computing time, and we kept all the peaks here to make
sure all regions for training data and predicting data are the
same for compatibility of data structure. The other peak region
is designed for Cicero; it is because we found that Cicero cannot
process matrix with large regions spanning too large, such as 5 k
here. We obtained a much smaller peak region (hereafter Cicero
peak) from published data or bulk ATAC-seq data for matrix
construction. This data matrix is only used for computing the
co-accessibility score in the imputation process.

For the Coces2106 dataset, we first downloaded it from
the NCBI database (GSE74310) and aligned it to hg19 using
BWA-MEM (version 0.7.17-r1188) (Li, 2013) and enabled
Picard (Broad_Institute, 2019) and Samtools (version 1.9) (Li
et al., 2009) to remove the duplicated reads. Only duplication
remove is applied to 10× PBMCs v1 and 10× PBMCs Next Gem
dataset because these datasets are obtained in bam format from
https://support.10xgenomics.com/single-cell-atac/datasets/
1.2.0/atac_pbmc_5k_v1 and https://support.10xgenomics.
com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem,
respectively. These two 10× PBMCs datasets are downloaded
with only cluster group ID available, but no true cell label was
provided; we assigned labels to each cell by Seurat v3 as it
can convincingly assign labels for scATAC-seq data when its
scRNA-seq and labels are available. The peak and count file
of Buenrostro2018 is available at GSE96769, and we obtained
the aligned data from https://github.com/pinellolab/scATAC-
benchmarking/tree/master/Real_Data/Buenrostro_2018.

Based on aligned and duplication-removed data and the cell
labels provided in the datasets, we then estimated read coverage
for each peak to build a cell-peak binary count matrix, in which
each value 1 or value 0 represents whether a read signal was
detected from the cell in this bin (1) or not (0). There is no limit
to the number of cell types or the number of cells. Peaks that
overlap ENCODE-defined blacklist regions are all set to zero. Cell
populations with a size smaller than 10 were filtered. Note that
for both kinds of peak region (5 k or Cicero), we did not filter out
columns when all values are 0, which could be a kind of feature of
classifier training.

Each cell matrix is represented in a compressed, sparse,
column-oriented numeric matrix (dgCMatrix class in R). All
these matrices are stored in RDS files and publicly available at
https://github.com/mrcuizhe/svmATAC.

Signal Strength Enhancement
The massive loss of read signal in scATAC-seq leads to incorrect
zero counts of the cell-peak matrix, which may influence the
training and prediction of the SVM classifier. Recovering the
loss signal in data is a popular and workable way to strengthen

the classification ability of machine learning classifiers, and this
method has already been broadly accepted and developed in
scRNA-seq data analysis, whose loss rate is a quarter less than
that of scATAC-seq.

The enhancement process in svmATAC is trying to recover
the inherent loss signal caused by sequencing techniques or
experimental bias and then enhance the peak signal strength of
each group. The enhancement procedure is a group-based step,
in which data must be first divided into several groups based on
its cell labels or clustering group numbers.

We first separated the cell-peak matrix by cell types into
ann mmatrix by cell types, i.e., a data matrix with ncells and
mpeaks, Then, we enhanced the read signal by recovering the
missing signal using the following formula:

• When the fraction of non-zero cells of the ith peak is larger

than the cutoff for enhancement (i.e., cenh ≤
∑n

j=1 Ci,j
n ≤ 1),

we will treat all counts in the ith peakas follows:

Si =
[
Ci,1, ...,Ci,j, ...,Ci,n

]
,Ci,j = 1 (1)

where Si represents the read count for the ith column
(peak) in cell-peak matrix, Ci,j represents the read count
of the jth cell in theith column in matrix and i ∈ [1,m], j ∈
[1, n]. cenh represents the cutoff for enhancement, and we
recommend 0.1 here based on the read loss rate of scATAC-
seq (Mereu et al., 2020; Liu et al., 2019) and experiment
results (Supplementary Tables 1–10), which also shows
that the enhancement step is efficient and necessary on
scATAC-seq data for cell-type classification.
• When the percentage of non-zero cells of a peak is less than

the cutoff for enhancement (i.e., 0≤
∑n

j=1 Ci,j
n ≤ cenh), we

will not change Si and keep it intact.

Signal Imputation
Apart from the enhancement of read signal, another way
frequently applied in scATAC-seq data analysis is imputing read
signal based on iconic biomarkers or biologic relationships,
which may benefit the selection of features for each cell type. The
imputation in svmATAC is also group-based and includes two
steps:

• Compute the co-accessibility score for every two peaks.
Co-accessibility scores represent the patterns and linkages
of co-accessible pairs of DNA elements, such as distal
elements and promoters. We use Cicero (v3.11, with default
parameters) here to compute the co-accessibility scores for
every two peaks. The co-accessibility score of each two
peaks ranges from 0 to 1, indicating the strength of Cicero
co-accessibility links. Scores closer to 1 indicate that two
elements (peaks) are more co-accessible and vice versa.
• Imputing read signal based on cis-regulatory relationship

into each group from co-accessibility score.
Two peaks from enhanced data matrix will be considered as
significantly connected if its co-accessibility score is higher
than a threshold value. We first separated the enhanced
cell-peak matrix by cell types into an n = m matrix, i.e., a
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data matrix with ncells and mpeaks; then, all Cicero-linked
peaks will be integrated for imputation using the following
formula:
When the Cicero co-accessibility score for the linkage
between the ith peak and kth peak is higher than the cutoff
for imputation and there is no zero cell for the kth peak (i.e.,
Lik ≥ cint and

∑n
j=1 Ck,j = n), we will treat all counts in the

ith peak as follows:

Si =
[
Ci,1, ...,Ci,j, ...,Ci,n

]
Ci,j = 1 (2)

where Si represents the ith column (peak) in cell-peak
matrix, Ci,j represents the read count of the jth cell
in theithpeak in matrix and i, k ∈ [1,m], j ∈ [1, n]. cint
represents the cutoff for co-accessibility score, and we
recommend 0.25 here based on the prior knowledge from
the Cicero paper and experiment results (Supplementary
Tables 1–10), which also shows that the enhancement step
is efficient and necessary on scATAC-seq data for cell-
type classification. Lik represents the Cicero co-accessibility
score for the linkage between the ithpeak and the kth peak.
When either the Cicero co-accessibility score for the linkage
between the iþ peak and kþ peak is lower than the cutoff
for imputation or there is more than one non-zero cell for
the kth peak (i.e., Lij < cintor

∑n
j=1 Ck,j 6= n), we will not

change the count value in theith peak and keep Siintact.

Note that the matrix for computing Cicero co-accessibility
score is based on Cicero peaks, which is different from the 5 k
peak used for enhanced data matrix. Only the first (leftmost) 5
k peak will be considered for imputation if a peak from Cicero
peaks is overlapped with multiple 5 k peaks. All imputed matrixes
should be merged back into one matrix by columns(peaks) for
downstream training and predicting.

Classifier Training and Predicting
The enhanced and imputed cell-peak matrix will be used as input
for SVM to train a classifier, and the trained classifier will then
be used to predict cell types in an unlabeled dataset. We totally
designed two types of experiments including intra-dataset and
inter-dataset for evaluating the performance and adjusting the
parameters in svmATAC.

In intra-dataset experiments, we performed a fivefold
cross-validation on four datasets, including Corces2016,
Buenrostro2018, 10× PBMCs v1, and 10× PBMCs Next Gem,
to evaluate the classification ability of svmATAC. The folds were
divided in a stratified manner to keep equal proportions of each
cell population in each fold. The training and testing folds were
same for all methods.

To evaluate the performance of svmATAC in more realistic
scenarios (batch effect, technical factors, etc.), we designed an
inter-dataset experiment, in which we trained a classifier based on
10× PBMCs v1 dataset and used this classifier to predict the cells
of 10× PBMCs Next Gem dataset. Note that for the predicting
dataset, since there are no known labels before classification and
our process of enhancement and imputation are both group-
based, a clustering is recommended to assign the cells a group
number for following enhancement and imputation.

Performance Evaluation Metrics
In this paper, we evaluated and compared the performance of
SVM (linear kernel) and svmATAC using the following two
metrics:

For all datasets, we compared the F1scores across different
cell types and evaluated the performance of each method
using mean F1scores.

F1 score is defined as:

F1 =
2× Precision× Recall
Precision+ Recall

(3)

where Precision is defined as:

Precision =
TruePositives

TruePositives+ FalsePositives
(4)

Similarly, Recall (or the ratio of TPs to total calls in the truth set)
is defined as:

Recall =
TruePositives

TruePositives+ FalseNegatives
(5)

We represented the percentage of cells of a specific reported
type labeled as each type in a heatmap, which flatly and
intuitively showed the confusion matrix and the percentage of
correctly/incorrectly classified cells.

The percentage of cells of a specific reported type labeled as
each type is defined as:

Percentagecell_typei,cell_typej =
Ncell_typei,cell_typej

Ncell_typei
(6)

where Percentagecell_typei,cell_typej represents the percentage
of those cell_typeicells labeled as cell_typej, Ncell_typei,cell_typej
represents the number of those cell_typeicells labeled as
cell_typej, and Ncell_typei represents the total number ofcell _typei.
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Supplementary Figure 1 | Heatmap and F1-score comparing the SVM (linear
kernel) and svmATAC predicted cells cluster versus original cluster in intra-dataset
experiment. (A) Heatmap displaying the confusion matrix of predicted cell cluster
ID versus original cluster ID in 10× PBMCs v1 with cluster ID dataset. (B)
Heatmap displaying the confusion matrix of predicted cell cluster ID versus original
cluster ID in 10× PBMCs Next Gem with cluster ID dataset. (C) Bar plot displaying
the f1 scores of 10× PBMCs v1 with cluster ID. (D) Bar plot displaying the f1
score of 10× PBMCs Next Gem with cluster ID. Colors of (A,B) represent the
percentages of cells of a specific reported type labeled as each type by svmATAC.
In (C,D), the red panel represent the results for svmATAC, and blue panel
represents the results for general SVM on unenhanced and unimputed data.

Supplementary Figure 2 | Heatmap comparing the SVM (linear kernel) and
svmATAC predicted cells cluster versus original cluster ID in inter-dataset
experiment. (A) 10× PBMCs v1 with cluster ID dataset. (B) 10× PBMCs Next

Gem with cluster ID dataset. Colors represent the percentages of cells of a
specific reported type labeled as each type by svmATAC.

Supplementary Table 1 | F1 scores of intra-dataset experiment using
Corces2016 dataset with different enhancement and imputation cutoffs.

Supplementary Table 2 | The confusion matrix across different enhancement
and imputation cutoffs.

Supplementary Table 3 | F1 scores of intra-dataset experiment using
Buenrostro2018 dataset with different enhancement and imputation cutoffs.

Supplementary Table 4 | The confusion matrix across different enhancement
and imputation cutoffs for Buenrostro2018 dataset.

Supplementary Table 5 | F1 scores of intra-dataset experiment using 10×
PBMCs v1 Seurat Labeled dataset with different enhancement and
imputation cutoffs.

Supplementary Table 6 | The confusion matrix across different enhancement
and imputation cutoffs for 10× PBMCs v1 Seurat Labeled dataset.

Supplementary Table 7 | F1 scores of intra-dataset experiment using 10×
PBMCs Next Gem Seurat Labeled dataset with different enhancement and
imputation cutoffs.

Supplementary Table 8 | The confusion matrix across different enhancement
and imputation cutoffs for 10× PBMCs Next Gem Seurat Labeled dataset.

Supplementary Table 9 | F1 scores of inter-dataset experiment that training with
10× PBMCs v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem
Seurat Labeled dataset with different enhancement and imputation cutoffs.

Supplementary Table 10 | The confusion matrix across different enhancement
and imputation cutoffs for inter-dataset experiment that training with 10× PBMCs
v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem Seurat
Labeled dataset.
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