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Understanding the causal relationships between variables is a central goal of many
scientific inquiries. Causal relationships may be represented by directed edges in a graph
(or equivalently, a network). In biology, for example, gene regulatory networks may be
viewed as a type of causal networks, where X—Y represents gene X regulating (i.e.,
being causal to) gene Y. However, existing general-purpose graph inference methods
often result in a high number of false edges, whereas current causal inference methods
developed for observational data in genomics can handle only limited types of causal
relationships. We present MRPC (a PC algorithm with the principle of Mendelian
Randomization), an R package that learns causal graphs with improved accuracy over
existing methods. Our algorithm builds on the powerful PC algorithm (named after its
developers Peter Spirtes and Clark Glymour), a canonical algorithm in computer science
for learning directed acyclic graphs. The improvements in MRPC result in increased
accuracy in identifying v-structures (i.e., X—Y <«-2), and robustness to how the nodes are
arranged in the input data. In the special case of genomic data that contain genotypes
and phenotypes (e.g., gene expression) at the individual level, MRPC incorporates the
principle of Mendelian randomization as constraints on edge direction to help orient the
edges. MRPC allows for inference of causal graphs not only for general purposes, but
also for biomedical data where multiple types of data may be input to provide evidence
for causality. The R package is available on CRAN and is a free open-source software
package under a GPL (>2) license.

Keywords: causal inference, graphical models, networks, principle of Mendelian randomization, gene regulatory
networks, R package

Abbreviations: aSHD, Adjusted Structural Hamming Distance; bnlearn, Bayesian Network learn; CPDAG, Completed
Partially Directed Acyclic Graph; DAG, Directed Acyclic Graph; DREAMS, Fifth Dialog on Reverse Engineering Assessment
and Methods; eQTL, expression Quantitative Trait Locus; FCI, Fast Causal Inference; FDR, False discovery rate; RFCI, Really
FCIL; GEUVADIS, Genetic EUropean VAriation in DISease; GMAC, genomic mediation analysis with adaptive confounding
adjustment; mmpc, Max-Min Parents and Children; mmhc, Max-Min Hill Climbing; MPDAG, Maximally oriented Partial
DAG; MRPC, a PC algorithm with the principle of Mendelian Randomization; The PC algorithm, the Peter-Clark algorithm;
pc, the implementation of the PC algorithm in the pcalg package; PCA, Principal component analysis; PCs, Principal
Components; PEER, Probabilistic estimation of expression residuals; PMR, the principle of Mendelian randomization; SD,
standard deviation; SHD, Structural Hamming Distance; SNP, Single nucleotide polymorphism; TETRAD, A TOOLBOX
FOR CAUSAL DISCOVERY; TP, true positive; WGCNA, Weighted correlation network analysis for genes.
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INTRODUCTION

Graphical models provide a powerful mathematical framework
to represent dependence among variables. Directed edges in
a graphical model further represent marginal and conditional
dependencies that may be interpreted as causality (Lauritzen,
1996; Spirtes et al., 2000; Koller and Friedman, 2009; Pearl, 2009;
Dawid, 2010; Guyon et al., 2010; Peters et al., 2017). Directed
Acyclic Graphs (DAGs), also known as Bayesian networks, are
a class of graphical models with only directed edges and no
directed cycles.

Multiple DAGs may represent the same conditional
independencies, and therefore are Markov equivalent and
belong to the same Markov equivalence class (Richardson,
1997). Without additional information, inference methods can
infer only these Markov equivalence classes. For example, for a
simple graph of three nodes, namely X, Y, and Z, if X and Z are
conditionally independent given Y (i.e., XLZ | Y), three Markov
equivalent graphs exist:

XIZY : X > Y > Z; X« Y« Z;X<«<Y—>Z (1)

Without additional information, it is not possible to determine
which graph is the truth, and the inferred graph, which represents
the equivalent class, is X—Y—Z.

Existing methods for inference of DAGs or the equivalent
classes fall into three broad classes (Scutari, 2010) (i) constraint-
based methods (Tsamardinos et al., 2003; Kalisch and Bithlmann,
2007; Colombo and Maathuis, 2014), which perform statistical
tests of marginal and conditional independence for pairs
of nodes; (ii) scored-based methods (Peters et al, 2011;
Mooij et al,, 2016; Nowzohour and Bithlmann, 2016), which
optimize the search according to a score function; and (iii)
hybrid methods (Tsamardinos et al., 2006) that combine the
former two approaches.

The PC algorithm (named after its developers Peter Spirtes
and Clark Glymour) is one of the first constraint-based
algorithms (Spirtes et al, 2000). This algorithm makes it
computationally feasible to infer graphs of high dimensions,
and has been implemented in open-source software, such as the
R package pcalg (Kalisch et al., 2012). The R package bnlearn
(Bayesian Network learn) (Scutari, 2010) implements a collection
of graph learning methods from the three classes described
above.Other implementations of these algorithms also exist; for
example, TETRAD (A TOOLBOX FOR CAUSAL DISCOVERY),
a desktop Java application (Ramsey et al., 2018).

The methods described above are designed for generic
scenarios. In genomics there is growing interest in learning causal
graphs among genes or other biological entities, with biological
constraints, such as the Principle of Mendelian randomization
[PMR (Smith and Ebrahim, 2003; Smith and Hemani, 2014)].
The PMR is a randomization principle that assumes the alleles
of a genetic variant having been randomly assigned to individuals
in a population, analogous to a natural perturbation experiment
and therefore achieving the goal of randomization (Smith and
Hemani, 2014). The genetic variant is then an instrumental
variable that allows us to establish the causal relationship between
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FIGURE 1 | Basic causal graphs under the principle of Mendelian
randomization. (A) The five basic (inferred) causal graphs. Each includes a
genotype node (also an instrumental variable), V1, and two phenotype nodes,
T4 and Tz. (B) Two DAGs Ms and Mg are Markov equivalent, and can both be
represented by M.

phenotypes (e.g., gene expression). The canonical causal model
(see M; in Figure 1), X—Y—Z, where X is the instrumental
variable, Y the exposure and Z the outcome, underlies most of
the existing causal inference methods for genomic data based on
the PMR (e.g., Didelez and Sheehan, 2007; Lawlor et al., 2008;
Millstein et al., 2009; Smith and Hemani, 2014; Millstein et al.,
2016; Wang and Michoel, 2017; Yang et al., 2017; Hemani et al.,
2018; Verbanck et al., 2018; Howey et al., 2020; Zhao et al., 2020).

Whereas these methods use the genetic variant as the
instrumental variable to account for unobserved confounding,
we assume causal sufficiency, i.e., confounding variables are fully
observed and may be incorporated into the network inference
(Spirtes et al., 2000). We take a graphical model approach to
learning causal graphs from individual-level data under causal
sufficiency. For the basic models, we consider five (inferred)
causal graphs involving a genetic variant node and two phenotype
nodes, with the canonical model being one of them (Figure 1A
and also see Figure 1 in Badsha and Fu, 2019). The PMR
here means that the edges connecting a genetic variant and a
phenotype always points fo the phenotype and not the other
way around. This constraint induced by the PMR provides
background knowledge to the graph inference and helps limit the
number of possible graphs.

Our algorithm, namely MRPC, is essentially a variant of the
PC algorithm that incorporates the PMR (Badsha and Fu, 2019).
MRPC implements several improvements over existing general-
purpose graph inference methods, and these improvements
enable us to obtain more accurate and stable inference for generic
data sets compared to several methods implemented in the
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bnlearn and pcalg packages, both of which have been widely used
for network inference. Our package further provides alternative
approaches to graph visualization and graph comparison that are
unavailable in the bnlearn and pcalg packages.

METHOD

The MRPC package contains four modules: inference,
simulation, visualization, and assessment (Figure 2; two
sample analysis pipelines of using these modules are provided in
the Supplementary Material).

The Inference Module

Since PC-based algorithms have demonstrated computational
efficiency in learning causal graphs, we built the inference module
of our MRPC algorithm on the pc function implemented in the
R package pcalg. The inference module takes the data matrix

or correlation matrix as input, and outputs a graph object that
contains the adjacency matrix and may be visualized or compared
with other graphs. The adjacency matrix of a causal graph is
denoted by A = {a;j}, where a;; takes the value 1 if there is
a directed edge from node i to node j, and 0 otherwise. In
our package, we consider the rows to be parent nodes and the
columns child nodes. If a;; = a; = 1, then the edge between nodes
i and j is bidirected (which is equivalent to being undirected in
our representation).

Below we describe our MRPC algorithm [first introduced in
Badsha and Fu (2019)], which is at the center of the inference
module. Similar to other PC-like algorithms, MRPC consists of
two steps: learning the graph skeleton, and orienting edges in the
skeleton:

Step I: Learning the graph skeleton

The procedure in this step is standard in all the PC-based
algorithms: it starts with a fully connected graph, and then

Correlation matrix
(and data matrix) )
Graph object
Type of statistical test V1V2T172T3
Inference —_—
Overall FDR level v 00100
v200010
No. of instrumental variables n 8 8 g 8 (1)
(genetic variants) 300010
Topology of graph . . :
ayorg } Simulation — Data matrix
Parameter values
Graph object Graph o
VIV2T1T2T3 O
vi00100 ) o T
V200010 =—> Visualization —— < Dendrogram '
TM0000 1 -
200000 s
300010 Modules /:}3.
Recall/Precision
Two graph objects — Assessment — = aSHD
Index of unique
graphs
FIGURE 2 | The four modules in the MRPC package. Inputs are listed on the left and outputs on the right. The inference module is at the center of the package,
which may take the correlation matrix from real or simulated data as input, and outputs a graph object, the core of which is the (asymmetric) adjacency matrix. For
genomic data, we require that the genotype (instrumental variable) nodes are placed in the data matrix before the phenotype nodes. Thus, the rows and columns of
the correlation matrix and the adjacency matrix also start with genotypes, followed by phenotypes. The simulation module can generate a data matrix from which the
correlation matrix may be derived and used as input to the inference module. A graph object, constructed directly or provided by the inference module, can be
passed through the visualization module for displaying the graph topology and for clustering nodes into modules. The difference between two graph objects (e.g.,
true and inferred graphs, graphs inferred by two different methods) may be evaluated by multiple metrics in the assessment module.
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conducts a series of statistical tests for pairs of nodes, testing for
marginal independence between two nodes, and then testing for
conditional independence between two nodes, given one other
node, two other nodes, and so on. An insignificant p-value leads
to the corresponding edge being removed and never tested again
in this step. The tests are similar to those in pcalg and include the
Fisher’s z transformation test for Pearson correlation and partial
correlation for continuous data, and the G? test for discrete data
(Kalisch et al., 2012).

However, pcalg and bnlearn do not control the overall error
rate but only the type I error rate for each individual test.
The number of total tests is also unknown beforehand: an
edge removed after a test eliminates the need for additional
tests for this edge. We implemented the LOND (determining
the significance Levels based On the Number of Discoveries)
method (Javanmard and Montanari, 2018) in order to control
the overall false discovery rate (FDR) in an online manner: for
each test, we use this method to calculate a p-value threshold.
Depending on how many tests have been performed and how
many rejections have been made, the p-value thresholds tend
to be large at the beginning and decrease as more tests are
performed (Badsha and Fu, 2019).

When outliers are present, MRPC further allows for the
estimate of robust correlation for continuous variables (Badsha
etal., 2013), which may substitute Pearson correlation.

Step II: Edge orientation

We design the following steps for edge orientation, which are
fundamentally different from existing methods implemented in
bnlearn and pcalg:

(1) If the data contain genotype information and there are
edges connecting a genotype node to a non-genotype
node, then the edge will always point to the non-genotype
node, reflecting the assumption in the PMR that genotypes
influence phenotypes, but not the other way around. An
edge connecting two genotype nodes is always undirected,
since it is meaningless to talk about causality between two
genetic variants.

(2) Next, we search for possible triplets (X—Y—Z) that may
form a v-structure (X—Y<Z), which does not have
Markov equivalent graphs and can therefore be uniquely
determined. We check the test results from Step I to see
whether X and Z are conditionally dependent given Y. If so,
then both edges are set to point to Y. Otherwise, we leave
the edges undirected.

If this conditional test has not been performed in Step I (e.g.,
the marginal test between X and Z may result in the removal of
the edge X-Z and eliminate the need for any conditional test for
X and Z), we conduct it now.

If the input does not contain genotype nodes or similar
instrumental variables, edge orientation will start from this step.

For undirected edges after steps (1) and (2), we look iteratively
for triplets of nodes with at least one directed edge and no more
than one undirected edge. We check which of the basic models
in Figure 1A is consistent with the test results from Step I, and
if one is found, we orient the undirected edge accordingly. It is

plausible that some undirected edges cannot be oriented, and we
leave them as undirected. Thus, the resulting graph may have
both directed and undirected edges.

Simulating Continuous and Discrete Data
With a known graph, we generate data first for the nodes without
parents from marginal distributions, for example, a normal
distribution:

X; ~ N (mj, 07), )

where X; represents the data observed at node i, m; is the mean
and o7 the variance. If a node has one or more parents, we
generate data from a conditional distribution; for example,

{X;:1€ P} ~N(yo+ZyIX1,cf), (3)

leP

Xj

where yo+ > ;cp VX is the linear model that describes the
dependence of X; on data at its parent nodes in the set P.

There are different ways to simulate data of genotypes. Here
we assume that each genetic variant is a biallelic single nucleotide
polymorphism (SNP); this means that the variant has two alleles
(denoted by 0 for the reference allele and 1 for the alternative
allele) in the population. The genotype at this variant may be 0 (or
00, which means homozygous for the reference allele), 1 (or 01,
heterozygous), or 2 (or 11; homozygous for the alternative allele).
Let g be the probability of allele 1 in the population. Assume that
the probability of one allele is not affected by that of the other
allele in the same individual (i.e., the genotypes are in Hardy-
Weinberg equilibrium). Then the genotype of the node V follows
a multinomial distribution:

Pr(V =0) = (1—q)%; Pr(V = 1) =2q (1—q); Pr(V =2) =¢*.

Other types of nodes in the graph can then be simulated
using the marginal and conditional normal distributions as in
Expressions (2) and (3).

Different approaches may be used to generate data for graphs
with an undirected edge. For My in Figure 1A, we consider that
the undirected edge is a mixture of the two possible directions
(Figure 1B). The nrefore, we generate data for T1—T»:

T; ~ N (vo+v1Vi,01): Ta ~ N (yo+y1Vi+y2T1, 03)
and separately for T} <T5:
Ty ~ N (yo+y1Vi+y2 T2, 0%); Ty ~ N (yo+y1V1, G%) .

We then randomly choose a pair of values with 50:50 probability
for each sample. In a larger graph (e.g., Figure 3A), where
many genotype nodes, denoted by Vj, have undirected edges
between them), we randomly pick a direction for each undirected
edge in simulation.

For discrete data, there may exist several approaches for
simulation. For the sample data in our R package, we first
generate continuous values and then discretize them into
multiple categories, as these sample data sets lack context and
are mainly for demonstrating the usage of other functions. More
appropriate methods for generating discrete data can be designed
when there is more knowledge of the data generative process.
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FIGURE 3 | Visualization of a complex graph in MRPC. (A) The true graph includes 14 genetic variants and 8 phenotype nodes. (B) The inferred graph. (C) The
dendrogram of the inferred graph with four modules identified when the minimum module size is set to 5. (D) Redrawing the inferred graph based on the
dendrogram. Nodes of the same color belong to the same module.
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Visualization
This module includes functions for generating three types of

plots:

(a)

(b)

(0)

A graph with variables represented by nodes and causal
relationships by directed edges. In cases where a causal
relationship is not possible to determine (e.g., see My in
Figure 1A), the graph will display a bidirected edge, which
is equivalent to an undirected edge.

A dendrogram of all the nodes in the causal graph based on
the distance (i.e., the number of edges) between two nodes.
The nodes may be clustered into modules according to the
dendrogram and the minimum module size, which is the
number of nodes in a module.

A graph with nodes in modules of different colors.
Generation of this graph uses the clustering results in the
dendrogram. For genomic data, the graph further displays
the genotype nodes in filled triangles and phenotype nodes
in filled circles.

Assessment of Inferred Graphs
We provide three metrics to compare an inferred graph with the
true one:

(a)

(b)

Recall and precision: Recall (i.e., power or sensitivity)
measures how many edges from the true graph a method
can recover, whereas precision (i.e., 1-FDR) measures how
many correct edges are recovered in the inferred graph. If
an edge is recovered but its direction is wrongly inferred or
not inferred, we down weigh the corresponding edge with
a default value of 0.5.

Adjusted Structural Hamming Distance (aSHD): The
SHD, as implemented in pcalg and bnlearn, counts how
many differences exist between two directed graphs. This
distance is 1.0 if an edge exists in one graph but missing in
the other, or if the direction of an edge is different in the
two graphs. The larger this distance, the more different the
two graphs are. We adjust the SHD, reducing the penalty
on the wrong direction to 0.5.
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Relationship to Existing Methods and

Implementations in R

We compare MRPC to the pc function from the pcalg package
(Kalisch et al., 2012) and several methods implemented in
the bnlearn package. Among those methods from bnlearn
(Scutari, 2010), we focus on four functions: pc.stable, which also
implements the same method as the function pc in pcalg; mmpc,
another constraint-based method; hc (Hill Climbing), a score-
based method; and mmhec, which is the hybrid version of mmpc
and hc.mmhc also consists of two steps: learning the neighbors
(parent and child nodes) of a node, and finding the graph that
is consistent with the data and the neighbors identified from the
first step (Tsamardinos et al., 2006).

There are several differences among these methods. First,
although pc, pc.stable, and mmpc conduct statistical tests, they do
not adjust for multiple testing and instead control the type I error
rate only for each individual test. On the other hand, the default
method in MRPC is the LOND method that controls the overall
FDR. Second, whereas mmhc estimates a DAG with all edges
being directed, the other methods considered here (including our
MRPC method) estimate the Markov equivalence class of the
DAG. Third, functions in bnlearn can restrict the direction of the
edges involving genetic variants (with the “blacklist” argument),
similar to our method under the PMR. The pc function in pcalg,
however, cannot restrict only the direction of an edge but instead
can include or exclude the entire edge (with the “fixedEdges”
argument to include certain edges and “fixedGaps” to exclude
edges).Fourth, pc and MRPC can take the correlation matrix,
which is derived from the data matrix, as the input, whereas
bnlearn requires the entire data matrix as the input.

RESULTS

An Example
We use a graph of 22 nodes to demonstrate the functionalities of
our package. Among the 22 nodes, 14 are genetic variants and 8
are phenotype nodes. Figure 3 shows the true graph, the graph
inferred by MRPC, the dendrogram of the nodes, and the graph
with color-coded modules identified from clustering the branches
in the dendrogram. The R code for producing this figure is below:

library (MRPC) # MRPC

# Figure 3 (A)

plot (data_examplesS$ScomplexS$Scont$withGv
Sgraph)

# Figure 3 (B)

data < - data_examplesS$complexScontSwith
GVsSdata

n < - nrow (data) # Sample size

V < - colnames (data) # Node labels

# Calculate Pearson correlation

suffStat < - list (C = cor (data),
n = n)

# Infer the graph by MRPC

MRPC.fit < - MRPC (data,
suffStat, GV = 14, FDR = 0.05,
indepTest = ’"gaussCItest’, labels =V,
FDRcontrol = TRUE, verbose = FALSE)

# Plot the inferred graph
plOt (MRPC.fit, main = "")

The Supplementary Material contains the R code above as
well as the code for reproducing all the other analyses in Results.

V-Structure Identification

In this and the next section, we compare our package
with five implementations: the pc function from the pcalg
package, and several methods (pc.stable, mmpc, hc, and mmhc)
implemented in the bnlearn package. Additional simulations
and method comparison may be found in our earlier work
(Badsha and Fu, 2019).

Since a v-structure can be uniquely determined, it is critical to
correctly identify them in the data. However, pc, he, and mmhc
may wrongly identify v-structures when there is not one. With
pc, the false v-structure is due to incorrect interpretation of the
lack of the edge X—Z. Specifically, with a candidate v-structure
that has the graph skeleton X—Y—Z, pc examines the separation
set for X and Z, denoted S(X, Z). If S(X, Z) contains Y, it means
that XLZ | Y and X—Y—Z will not form a v-structure. When S
does not contain Y, however, there may be two explanations: (i)
a conditional test has been conducted for X and Z given Y, and
the null hypothesis is rejected, which implies a v-structure; and
(ii) the edge X—Z may have been removed due to earlier tests.
As a result, the conditional test is never performed, and there is
no evidence for or against a v-structure. However, pc always uses
the first interpretation and claims a v-structure even when there
is not one. It is unclear why hc and mmhc also falsely identify
v-structures, though. To resolve the problem with pc, we have
made the following improvement in MRPC in Step II (2): when
determining whether a candidate triplet is a v-structure, we test
conditional independence between X and Z given Y, if this test
has not been performed in Step 1.

To assess inference accuracy, we simulated data under Models
M; (not a v-structure) and M, (a v-structure) from Figure 1A,
and summarized the mean and standard deviation of recall and
precision in Table 1. MRPC and mmpc perform similarly and
do well under both models in general, although they have some
problems recovering a v-structure when the signal strength is low
(v =0.2). When the signal strength is low in the v-structure (V;—
T <T,), the partial correlation between V; and T, conditioned
on T; tends to be weak and statistically insignificant. MRPC
therefore tends to conclude conditional independence between
V) and T, given Tj, and infers an M; model instead of a
v-structure. hc and mmhc have lower recall than MRPC and
mmpc at a weak signal strength under M;. pc recovers M, well,
and correctly infers M; as V;-T;-T, at moderate or strong
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TABLE 1 | Comparison of inference accuracy without and with a v-structure.

Model My in Figure 1A (V41— T;—T>)

y = 1.0 (strong signal)

y = 0.5 (moderate signal)

y = 0.2 (weak signal)

Recall Precision Recall Precision Recall Precision
MRPC 1.00 (0.02) 1.00 (0.05) 1.00 (0.01) 1.00 (0.02) 0.96 (0.18) 0.97 (0.12)
pc 0.50 (0.00) 0.49 (0.03) 0.50 (0.00) 0.49 (0.04) 0.71 (0.09) 0.71 (0.10)
pc* 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50(0.00) 0.50 (0.02) 0.50 (0.02)
pc.stable 0.99 (0.06) 0.97 (0.11) 1.00 (0.05) 0.98 (0.09) 0.77 (0.09) 0.76 (0.09)
mmpc 0.99 (0.06) 0.97 (0.11) 1.00 (0.05) 0.98 (0.09) 0.97 (0.10) 0.97 (0.11)
hc 0.89 (0.12) 0.78 (0.24) 0.99 (0.02) 0.99 (0.04) 0.89 (0.16) 0.90 (0.14)
mmhc 0.99 (0.03) 0.98 (0.06) 1.00 (0.02) 1.00 (0.02) 0.89 (0.16) 0.89 (0.14)

Model M3 in Figure 1A (V1—T1«Ty)
y=1.0 y=05 y=02

Recall Precision Recall Precision Recall Precision
MRPC 0.99 (0.08) 0.99 (0.08) 0.99 (0.06) 0.99 (0.07) 0.73(0.11) 0.74 (0.06)
pc 0.97 (0.12) 0.96 (0.16) 0.97 (0.11) 0.96 (0.15) 0.97 (0.13) 0.97 (0.14)
pc* 0.97 (0.10) 0.97 (0.10) 0.97 (0.11) 0.97 (0.11) 0.97 (0.11) 0.97 (0.11)
pc.stable 0.98 (0.06) 0.97 (0.12) 0.98 (0.06) 0.97 (0.11) 0.98 (0.10) 0.98 (0.10)
mmpc 0.98 (0.06) 0.97 (0.12) 0.98 (0.06) 0.97 (0.11) 0.78 (0.10) 0.77 (0.10)
hc 0.98 (0.06) 0.96 (0.13) 0.99 (0.02) 0.99 (0.03) 0.89 (0.16) 0.91(0.13)
mmhc 0.99 (0.06) 0.99 (0.07) 0.99 (0.02) 0.99 (0.04) 0.90 (0.16) 0.91 (0.10)

Mean (with standard deviation in parentheses) of recall and precision of MPRC, pc (v2.6-2), pc.stable, mmpc, hc, and mmhc (the last four are from the bnlearn package
v4.4.1) across 1,000 data sets with a sample size of 1,000 are reported. Regression coefficient y (see Equation 3) indicates the signal strength. For the functions from
bnlearn, we restricted the direction of possible edges involving the genetic variant V1 using the “blacklist” argument. Calculation of recall and precision uses all the edges
in an inferred graph, except for the results for pc*, where edges involving the genetic variant V; are excluded. Highest mean values in each column are in bold.

signal. However, at weak signal, pc tends to infer a v-structure,
due to the reason explained above, which results in higher recall
and precision than at stronger signal, as the edge V;— T is now
correctly inferred. Also as expected, even when we use only the
edge T1-T, to evaluate recall and precision, the metrics do not
change much (see pc* in Table 1). pc.stable from bnlearn does
not appear to have the same problem as pc from pcalg: pc.stable
performs well under both models, with reduced accuracy only at
weak signal under M;.

Inference Accuracy of Different Methods
on a Graph of 22 Nodes

We are interested in how our and other methods perform on
larger graphs such as the one in Figure 3A, which contains
22 nodes and several M; and M, subgraphs. Similar to the
previous section, we simulated 1,000 independent data sets for
this graph at different signal strengths, and calculated the mean
and standard deviation of recall and precision (Table 2). Since
14 of the nodes are genetic variants, we applied the blacklist
argument again when running the functions from bnlearn. Recall
that MRPC always infers an edge between two genetic variants
to be bidirected (or undirected). Other methods, however, do
not make this assumption. When calculating recall and precision
for other methods, we adjusted the inferred graphs such that the
direction of any edge between two genetic variants is ignored.
With moderate and strong signal, MRPC and mmhc perform
similarly, in mean recall and precision, both being better than

other methods. MRPC further has smaller variance in recall and
precision than all the other methods. When the signal is weak,
mmhc and hc still perform well on both metrics. MRPC retains a
high precision (higher than other methods, except for mmhc and
hc), but its ability to recover the true edges is significantly reduced
(i.e., lower recall). By contrast, all the other methods have higher
recall but lower precision.

Node-Ordering Independence

Network inference algorithms are often sensitive to how the
nodes are ordered in the input and may infer the graph differently
simply because the node ordering is different. In this simulation,
we generated 200 data sets for each graph with a strong signal
(y = 1.0) and a sample size of 1,000. For each data set, we
permuted the order of the nodes to generate permuted data
sets, applied all the methods (restricting edge direction wherever
necessary and possible), and counted the number of uniquely
inferred graphs. We then calculated the quantiles of the number
of uniquely inferred graphs across the 200 data sets. MRPC is
the most stable, whereas hc and mmhc are the most sensitive
to node ordering, especially on the complex graph (Table 3).
Other methods are much more stable than hc or mmhc but not
as stable as MRPC.

Runtime

Kalisch and Bithlmann established that the computational
complexity of the classical PC algorithm is at most polynomial
in the number of nodes on sparse DAGs, but is exponential
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TABLE 2 | Comparison of inference accuracy on the complex graph in Figure 3A.

y = 1.0 (strong signal)

y = 0.5 (moderate signal)

y = 0.2 (weak signal)

Recall Precision Recall Precision Recall Precision
MRPC 0.98 (0.00) 0.98 (0.00) 0.97 (0.01) 0.98 (0.00) 0.66 (0.06) 0.85 (0.03)
pc 0.95 (0.01) 0.93 (0.03) 0.95 (0.02) 0.89 (0.05) 0.90 (0.04) 0.76 (0.06)
pc* 0.91 (0.04) 0.90 (0.05) 0.91 (0.04) 0.89 (0.06) 0.77 (0.11) 0.74 (0.11)
pc.stable 0.97 (0.06) 0.95 (0.04) 0.97 (0.01) 0.91 (0.05) 0.92 (0.04) 0.78 (0.06)
mmpc 0.97 (0.01) 0.95 (0.03) 0.98 (0.01) 0.91 (0.05) 0.87 (0.04) 0.74 (0.06)
hc 0.99 (0.01) 0.92 (0.05) 0.99 (0.01) 0.91 (0.05) 0.95 (0.03) 0.89 (0.05)
mmhc 0.98 (0.01) 0.97 (0.03) 0.98 (0.01) 0.95 (0.04) 0.94 (0.04) 0.90 (0.05)

See the legend for Table 1. Calculation of recall and precision uses all the edges in an inferred graph, except for the results for pc*, where edges involving the genetic

variants are excluded. Highest mean values in each column are in bold.

without the sparsity constraint (Kalisch and Bithlmann, 2007).
Since MRPC uses a similar procedure to PC, the computational
complexity is similar. The R implementation of MRPC builds
on the pc function in the pcalg package, thus we expect
that the runtime of MRPC should also be similar to pc.
Additionally, whereas MRPC and pcalg are implemented in

TABLE 3 | Summary statistics of the counts of uniquely inferred graphs with node
permutation.

Vi->T1->Ty—T;3

1st Quartile Median 3rd Quartile Max
MRPC 1 1 1 1
pc 1 1 1 2
pc.stabe 1 1 1 2
mmpc 1 1 1 1
hc 2 2 3 3
mmhc 2 2 2 2

Vi->T1<To—>T;s

1st Quartile Median 3rd Quartile Max
MRPC 1 1 1 1
pc 1 1 1 1
pc.stable 1 1 1 2
mmpc 2 2 2 2
hc 2 2 2 3
mmhc 2 2 2 2

Complex Graph in Figure 3A

1st Quartile Median 3rd Quartile Max
MRPC 1 1 1 1
pc 1 2 4 39
pc.stable 1 1 1 5
mmpc 1 1 1 2
hc 42 43 45 49
mmhc 35 37 39 44

We generated 200 data sets for each graph and then permuted the order of the
nodes in each data set. We then applied the methods and counted the number of
uniquely inferred graphs among the permuted data sets. We then calculated the
quantiles of the number of uniquely inferred graphs across the 200 data sets.

R, bnlearn implements the core functions in C, which may
further reduce the runtime of the functions from bnlearn.
Here, we ran each method on 1,000 independent data sets
for three graphs and reported the average runtime (Table 4).
As expected, MRPC and pc have similar runtime, and
both of them are slightly slower than the bnlearn methods
on small graphs M; and M;. On the complex graph, all
the implementations have comparable runtime, except that
pc.stable is slower.

Robustness in the Presence of Outliers

When the data are suspected to contain outliers, our MRPC
package allows for calculation of a robust correlation matrix from
the data (Badsha et al., 2013). Our current implementation of
the robust correlation calculation is limited to continuous data
for all the columns if there is no genotype information, and
for the phenotype columns if there is genotype information.
In the robust correlation calculation, each sample in the data
matrix is assigned a weight. Outliers tend to receive a weight
near 0, thus limiting their contribution to correlation. Both
MRPC and pc can take the robust correlation matrix as
the input for graph inference, whereas the functions in the
bnlearn package do not allow for such input and therefore
do not deal with outliers. As our simulation results show,
when the data do not contain outliers, all the methods infer
the graph mostly accurately (Figures 4A,B). However, when
the data contain outliers, each of these methods infers one
or more extra edges using Pearson correlation (Figure 4C).
Using robust correlation, however, MRPC and pc manage to

TABLE 4 | Average runtime (in seconds) of each method for three graphs.

MRPC pc pc.stable mmpc hec mmhc
Model M4 0.007  0.006 0.002 0.002 0.002 0.003
(Figure 1A)
Model My 0.006  0.005 0.002 0.003 0.002 0.003
(Figure 1A)
The complex graph 0.048 0.032 0.073 0.047 0.038 0.039
(Figure 3A)

For each graph, 1,000 independent data sets were simulated with a sample size of
500 and signal strength of 0.5.All jobs were run on a Mac computer with a CPU of
2.2 GHz and RAM of 16 GB.
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FIGURE 4 | Impact of outliers on graph inference. (A) The true graph under
which data of sample size 1,000 with and without outliers were simulated.

(B) Inference by MRPC, pc, pc.stable, mmpc, hc, and mmhc on the simulated
data that do not contain outliers, using Pearson correlation as input.

(C) Inference by the five functions on the simulated data that contain 10
outliers, using Pearson correlation as input. In (B) and (C) the blacklist
argument in pc.stable, mmpc, hc, and mmhc was used to disallow edges

pointing to a genetic variant. (D) Inference by MRPC and pc on the simulated
data with 10 outliers using robust correlation as input.

downweigh the outliers and produce a graph closer to the
truth (Figure 4D).

Dealing With Confounding in Causal
Inference for Genomic Data

We provide a few examples of dissecting the regulatory
relationships among multiple genes associated with the same
genetic variants, accounting for (observed) confounding under
the assumption of causal sufficiency [Figure 5; also see Badsha
and Fu (2019)]. The gene expression data are provided by
the GEUVADIS (Genetic EUropean VAriation in DISease)
consortium (Lappalainen et al, 2013), which measured the
genome wide gene expression levels in lymphoblastoid cell
lines (LCLs) in a subset of samples from the 1,000 Genomes

Without PC

With PC

FIGURE 5 | Examples of the GEUVADIS data analysis accounting for
confounding variables. Each of the five sets in (A-E) contains an eQTL and
multiple genes. These genes have been identified by GEUVADIS to be
significantly associated with the corresponding eQTL. We derived the principal
components (PCs) from the whole-genome gene expression matrix and
identified the PCs that are significantly associated with the eQTLs or genes.
We applied MRPC to the eQTL-gene set without and with the associated
PCs. The PCs can have diverse relationships with the genes.

Project (The 1000 Genomes Project Consortium, 2015). The
gene expression data have been normalized with the PEER
[Probabilistic Estimation of Expression Residuals (Stegle et al.,
2012)] normalization method by the GEUVADIS consortium;
this method reduces potential impact from demographic
variables and batch effect. We then performed Principal
Component Analysis (PCA) on the genomewide gene expression
matrix and extracted the top 10 PCs. The genotype data on
these 373 Europeans are available through the 1,000 Genomes
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Project. We identified genes associated with the same expression
quantitative trait loci (eQTLs), and for each eQTL-gene set, we
used our function IdentifyAssociatedPCs() to identify associated
PCs, using the q-value method (Storey and Tibshirani, 2003) to
adjust for multiple testing. We included these PCs (FDR = 5%)
as additional variables to the eQTL-gene set when we ran MRPC.
The resulting causal graphs show that the PCs can have diverse
relationships with the eQTL or the genes (Figure 5). The presence
of the PCs did not affect the graph structure in four of the five
examples here (Figures 5A-D). In the last example (Figure 5E),
the edge between AL355075.3 and PIP4P1 is removed after
accounting for the two PCs, although the p-value (0.0008) for
the test is only a little larger than a rather stringent significance
threshold (0.0005) with our online FDR control method.

DISCUSSION

Through simulation, we demonstrate that our MRPC method
is stable and accurate on relatively small graphs. However, this
method still needs much work for large graphs. In our earlier
work (Badsha and Fu, 2019), we examined the performance
of MRPC on large networks simulated in the Fifth Dialog
on Reverse Engineering Assessment and Methods (DREAMS5)
Systems Genetics Challenge A. These networks (Net 1) contain
1,000 SNPs and 1,000 genes, each with around 2,000 edges
(directed and undirected) and three different sample sizes (100,
300 and 999 individuals). We have improved the implementation
of MRPC since then. However, it remains highly conservative in
its inference of such large graphs and tends to infer fewer edges
than there should be, similar to its performance on the 22-node
graph (Table 2). On the DREAM5 networks, even at an FDR of
30%, the recall was 0.15 and the precision 0.55 for the sample
size of 999, indicating that MRPC tends to retain fewer edges
for which the data provide stronger evidence. MRPC performed
2-2.5 million tests on these data sets for Net 1, which took 4.6-
7.5 hours on a NVIDIA Titan RTX GPU with 24 GB GPU RAM.
The large number of sequential tests remains a challenge for
efficiency and accuracy.
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