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The pandemic of Coronavirus disease 2019 (COVID-19) has posed an enormous
threat to human health. According to observational studies, abnormal liver and kidney
functions and blood cell traits were associated with severe COVID-19, yet the causal
risk factors for COVID-19 severity and the underlying mechanism remained elusive. We
performed Mendelian randomization analyses to assess the potential causal role of eight
liver function biomarkers, one kidney function biomarker, and 14 hematological traits on
COVID-19 severity using genetic association summary statistics from Europeans. Our
findings showed that albumin, direct bilirubin, white blood cell count, neutrophil count,
lymphocyte count, and mean corpuscular hemoglobin are casually associated with the
risk of severe COVID-19. Notably, lymphocyte count and mean corpuscular hemoglobin
had an independent effect on severe COVID-19 risk. These causal evidences provide
insights into directions for the risk stratification of individuals with abnormal liver function
or blood cell indices and motivate more studies to unveil the roles of these abnormalities
in COVID-19 pathogenesis.

Keywords: white blood cells, mean corpuscular hemoglobin, COVID-19, risk factors, Mendelian randomization

INTRODUCTION

The pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has posed an enormous threat to human health. However,
the underlying pathophysiological mechanism still needs to be clarified. A systematic review found
that patients with lymphopenia have a threefold increased risk of severe COVID-19 (Zhao et al.,
2020). A separate study reported that elevated white blood cell count and decreased platelet and
lymphocyte counts were associated with severe COVID-19 (Henry et al., 2020). Also, observational
studies from multiple countries showed that abnormal liver and kidney functions were associated
with the risk of developing severe COVID-19. Specifically, decreased albumin (Aziz et al., 2020) and
elevated serum creatinine (Henry et al., 2020; Wynants et al., 2020) and direct bilirubin (Wynants
et al., 2020) were observed in severe patients. However, the causal relationship between the clinical
characteristics and COVID-19 severity could not be concluded owing to the inherent challenges
of residual confounding and potential reverse causation of observational studies. Determining
the causal relationship and underlying biological mechanisms between liver and kidney function
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biomarkers, blood cell traits and severe COVID-19 is vital
for studying the disease’s pathogenesis, identifying high-risk
populations, and developing treatment strategies for COVID-19.

Recently, advances of genome-wide association studies
(GWAS) and Mendelian randomization (MR) approaches have
enabled us to assess the causal role of traditional risk factors
on disease outcomes using genetic variants as the instrumental
variables. A twin study in the United Kingdom reports 19%–
48% heritability for self-reported symptoms of COVID-19 and
predictable disease onset (Williams et al., 2020). In addition,
multiple genetic loci have been identified to be associated with the
severity of COVID-19 (Pairo-Castineira et al., 2020; The Severe
Covid-19 GWAS Group, 2020), highlighting the possibility to
infer the causality between the clinical characteristics and severe
COVID-19 via MR analysis. In this study, we performed two-
sample MR analyses to evaluate the causal relationship between
eight liver function biomarkers, one kidney function biomarker,
and 14 blood cell traits with COVID-19 severity based on
the largest publicly available GWAS summary statistics in the
European population. Considering genetic correlations among
these traits, we additionally performed multivariable MR analysis
to estimate these risk factors’ independent causal effect on
COVID-19 severity.

MATERIALS AND METHODS

Data Collection
For the exposure, publicly available GWAS summary statistics for
eight liver and one kidney function biomarkers were obtained
from the United Kingdom Biobank cohort (Bycroft et al.,
2018), and 14 blood cell traits were obtained from the Blood
Cell Consortium (563,085 participants) (Vuckovic et al., 2020;
Table 1). For liver and kidney function biomarkers, we used
summary statistics from the Neale Lab at Broad Institute1, based
on 361,194 samples of white-British ancestry. For the blood
cell traits, summary statistics were retrieved from the discovery
stage due to inaccessible to the data in the replication stage.
For the outcome, we acquired genetic associations with COVID-
19 severity from the COVID-19 Host Genetics Initiative, with
6,492 hospitalized COVID-19 patients due to severe symptoms
and 1,012,809 population controls (the fourth release on October
2, 2020) (The Covid-Host Genetics Initiative, 2020). The
COVID-19 Host Genetics Initiative unites the human genetics
community to generate, share, and analyze data to uncover the
genetic determinants of COVID-19 susceptibility, severity, and
outcomes. Further information and new releases could be found
on the COVID-19 Host Genetics Initiative website. No ethics
approval or participant consent was required for the analysis
using publicly available data.

Genetic Correlation
We performed cross-trait linkage disequilibrium score regression
(LDSC) analysis (Bulik-Sullivan et al., 2015) (v.1.0.0) to quantify
pairwise genetic correlation of these risk factors using summary

1http://www.nealelab.is/uk-biobank

TABLE 1 | Description of GWAS information for 23 risk factors and severe
COVID-19 in this study.

Trait Sample size
(cases/

controls)

Number of
IVs

Sample
overlap$

Data
source

References

TP 314,921 501 30.9% UKB Bycroft et al., 2018

Alb 360,564 378 35.4% UKB Bycroft et al., 2018

TBil 342,829 363 33.6% UKB Bycroft et al., 2018

DBil 292,933 258 28.7% UKB Bycroft et al., 2018

AST 342,990 506 33.6% UKB Bycroft et al., 2018

ALT 344,136 377 33.8% UKB Bycroft et al., 2018

ALP 344,292 1,003 33.8% UKB Bycroft et al., 2018

GGT 344,104 719 33.8% UKB Bycroft et al., 2018

SCr 344,104 702 33.8% UKB Bycroft et al., 2018

WBC 563,085 1,327 40.0% BCX Vuckovic et al.,
2020

Neutro 563,085 959 40.0% BCX Vuckovic et al.,
2020

Eosino 563,085 1,234 40.0% BCX Vuckovic et al.,
2020

Baso 563,085 309 40.0% BCX Vuckovic et al.,
2020

Mono 563,085 1,578 40.0% BCX Vuckovic et al.,
2020

Lym 563,085 1,310 40.0% BCX Vuckovic et al.,
2020

Plt 563,085 2,012 40.0% BCX Vuckovic et al.,
2020

RBC 563,085 1,515 40.0% BCX Vuckovic et al.,
2020

RDW 563,085 1,403 40.0% BCX Vuckovic et al.,
2020

Hb 563,085 1,140 40.0% BCX Vuckovic et al.,
2020

Ht 563,085 1,090 40.0% BCX Vuckovic et al.,
2020

MCV 563,085 1,990 40.0% BCX Vuckovic et al.,
2020

MCH 563,085 1,779 40.0% BCX Vuckovic et al.,
2020

MCHC 563,085 533 40.0% BCX Vuckovic et al.,
2020

Severe
COVID-
19

6,492/
1,012,809

– – COVID-
19
hg

The Covid-Host
Genetics Initiative,
2020

TP, total protein; Alb, albumin; TBil, total bilirubin; DBil, direct bilirubin;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline
phosphatase; GGT, γ-glutamyl transferase; sCr, serum creatinine; WBC, white
blood cell count; Neutro, neutrophil count; Eosino, eosinophil count; Baso,
basophil count; Mono, monocyte count; Lym, lymphocyte count; RBC, red blood
cell count; RDW, red cell distribution width; Hb, hemoglobin; Ht, hematocrit;
MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC,
mean corpuscular hemoglobin concentration; Plt, platelet count; UKB, the
United Kingdom Biobank; BCX2, the Blood Cell Consortium Phase 2; COVID-19
hg, the COVID-19 Host Genetics Initiative.
$ The overlapping sample size divided by the larger sample size of exposure and
outcome; UKB, United Kingdom Biobank; BCX, Blood Cell Consortium.

statistics of high-quality variants presented in the HapMap 3
reference panel (Altshuler et al., 2010). The European linkage
disequilibrium (LD) score reference was downloaded from the
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LDSC software website2. The major histocompatibility complex
(MHC) region (chromosome 6: 25–34 Mb) was excluded
from the analysis.

Selection of Instrumental Variable
The flowchart summarizing our MR analyses is shown in
Figure 1. For each exposure (e.g., total protein), we first
extracted independent (r2 < 0.05) and genome-wide significantly
associated genetic variants from corresponding GWAS summary
datasets, using the clumping algorithm (window size = 1 Mb)
implemented in PLINK v.1.90 (Chang et al., 2015). We chose
the conventional significance threshold of 5 × 10−8 for liver
and kidney function biomarkers and the reported threshold of
5× 10−9 for blood cell traits (Vuckovic et al., 2020), respectively.
The 1000 Genomes Project Phase 3 European datasets (n = 503)
were utilized as the LD reference panel (1000 Genomes Project
Consortium, 2015). Second, for these genetic variants, we
separately extracted their association statistics with the exposure
and severe COVID-19, and removed potential pleiotropic genetic
variants that showed suggestive association (P < 10−5) with
severe COVID-19. Removing such pleiotropic variants could
affect the statistical power due to some causal signals might be
removed, but would not affect the false positive rate or biasedness
(Zhu et al., 2018). Third, we harmonized the genetic associations
for each exposure-outcome pair to ensure that effect estimates
align with the same allele. Ambiguous SNPs with non-concordant
alleles (e.g., A/C vs. A/G) were removed. Finally, we applied an
outlier test from the MR pleiotropy residual sum and outlier
(MR-PRESSO) method (Verbanck et al., 2018) to detect and
remove IVs with potential horizontal pleiotropy (genetic variants
affecting severe COVID-19 via a separate molecular pathway
from the exposure). The remaining SNPs were taken as valid IVs
to conduct MR analyses.

We computed the proportion of variance in the exposure
explained by each IV (PVE) with PVE = 2× EAF × (1−
EAF)× β2, where EAF represents the effect allele frequency of
the IV and β represents the effect size of the IV on the exposure.
We then computed the F statistic for each IV to quantitatively
verify whether it was strong instrument via the formula F =
PVE2

×(N−2)
1−PVE2 , where N represents the effective sample size in the

exposure GWAS (Burgess et al., 2016). For multiple IVs, we took
the mean of the F statistic of individual IV as the F statistic and
estimated its 95% confidence interval (CI) with 10,000 bootstraps
(Burgess et al., 2016).

Statistical Analyses
The principal two-sample MR analyses were conducted with the
inverse variance weighted (IVW) method under a multiplicative
random effects model (Bowden et al., 2017). The IVW method
combines the effect estimates from each IV (computed as the
variant effect on severe COVID-19 divided by the variant effect
on the exposure) and provides unbiased causal estimation when
all IVs are valid (Bowden et al., 2016). The valid IV assumption
that genetic variants only affect severe COVID-19 through

2https://alkesgroup.broadinstitute.org/LDSCORE/

the exposure, may not hold in practice due to the ubiquity
of pleiotropy. However, the IVW method’s estimator is still
statistically unbiased as long as the pleiotropy is balanced (the
average of the pleiotropic effects of each IV on severe COVID-19
is equal to zero) (Bowden et al., 2016).

We also applied the following methods to estimate the causal
effect size: the Bayesian weighted Mendelian randomization
(BWMR) method (Zhao J. et al., 2019), the MR-PRESSO
method, and the robust adjusted profile score (RAPS) method
(Zhao Q. et al., 2019). These approaches provide an unbiased
estimator of the true causal effect under different assumptions
on IVs. The BWMR method considers the balanced pleiotropy
and addresses the horizontal pleiotropy under the Bayesian
weighting scheme. By implementing a sampling strategy, the
MR-PRESSO method constructs a global test for the detection
of horizontal pleiotropy and an outlier test to identify specific
genetic variants with horizontal pleiotropy. Then the IVW
method is applied to estimate causal effect after the removal
of horizontal pleiotropic outlier variants. The RAPS method
provides a RAPS estimator to comply with the measurement
error of the genetic effect on the exposure, the balanced
pleiotropy, and the horizontal pleiotropy. RAPS could improve
the accuracy of causal estimation by leveraging information from
weak instruments (Zhao Q. et al., 2019).

Additionally, we performed multivariable MR analysis to
estimate the independent effect by considering all the significant
risk factors in two-sample MR analysis. Robust causal effects
and standard errors based on the MM-estimation method
(Croux et al., 2003) were obtained with R-based package of
“robustMVMR”.

Besides, we estimated the potential bias due to sample overlap
in the GWAS of exposures and COVID-19 (Burgess et al.,
2016). We used scatter plot and funnel plot to visualize the
effect estimates and possible horizontal pleiotropy, respectively.
Also, we performed the Cochran’s Q test to assess potential
heterogeneity among the effect estimates from different IVs.
Odds ratios (ORs) were expressed as per standard deviation
increase in genetically determined levels of the risk factor. We
used an online tool named mRnd3 to calculate the statistical
power given a significance level of 0.05 and the estimated OR
from the IVW method (Brion et al., 2013). A causal effect of an
exposure on severe COVID-19 is concluded if the effect estimates
agree in direction and magnitude among all four two-sample MR
methods and pass the significance threshold of 0.05 in the IVW
method. All analyses were performed with TwoSampleMR and
MR-PRESSO packages in R version 4.0.0 (Hemani et al., 2018;
Verbanck et al., 2018; R Core Team, 2020).

RESULTS

The F statistics for all risk factors were >10 (range 64.40-
588.77, Supplementary Table 25), implying sufficiently strong
instruments were utilized in our analysis. The causal estimates
of 23 risk factors on COVID-19 risk are displayed graphically in

3http://cnsgenomics.com/shiny/mRnd/

Frontiers in Genetics | www.frontiersin.org 3 May 2021 | Volume 12 | Article 647303

https://alkesgroup.broadinstitute.org/LDSCORE/
http://cnsgenomics.com/shiny/mRnd/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-647303 May 27, 2021 Time: 11:42 # 4

Wang et al. Clinical Biomarkers and Severe COVID-19

FIGURE 1 | The analysis flowchart of this study. IVW, the inverse variance weighted method with a multiplicative random effects model; BWMR, the Bayesian
weighted Mendelian randomization method; MR-PRESSO, the Mendelian randomization pleiotropy residual sum and outlier method; RAPS, the robust adjusted
profile score method.

Figure 2 and Supplementary Figure 1. For the liver and kidney
function biomarkers (Left panel of Figure 2), we observed that
higher levels of albumin have a protective effect [OR from IVW
method, 0.85 (95% CI: 0.73–0.98), P = 0.024] and higher levels
of direct bilirubin have a risk effect [1.10 (1.01–1.19), P = 0.023]

on severe COVID-19, and the other three MR methods revealed
consistent results. Among the blood cell traits (Middle and right
panels of Figure 2), we found that decreased white blood cell
count [0.90 (0.83, 0.98), P = 0.014], neutrophil count [0.88 (0.79,
0.97), P = 0.009], lymphocyte count [0.89 (0.82, 0.97), P = 0.008],
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FIGURE 2 | Causal effects on severe COVID-19 estimated by two-sample MR analysis for 23 liver and kidney function biomarkers and blood cell traits. Effect sizes
are represented by OR per SD increment in the exposure. The horizontal bars represent 95% CI. Significant P values (<0.05) are highlighted in red. TP, total protein;
Alb, albumin; TBil, total bilirubin; DBil, direct bilirubin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; GGT, γ-glutamyl
transferase; sCr, serum creatinine; WBC, white blood cell count; Neutro, neutrophil count; Eosino, eosinophil count; Baso, basophil count; Mono, monocyte count;
Lym, lymphocyte count; RBC, red blood cell count; RDW, red cell distribution width; Hb, hemoglobin; Ht, hematocrit; MCV, mean corpuscular volume; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; Plt, platelet count.

and elevated mean corpuscular hemoglobin [1.07 (1.01, 1.14),
P = 0.017] were associated with a higher risk of COVID-19
severity. The significant causal estimates were supported by other
MR methods (Figure 2).

We confirmed that these causal estimates do not suffer from
sample overlap with all bias <0.001 and have sufficient statistical
power with all power >80% (Supplementary Table 25). Also,
no obvious evidence of horizontal pleiotropy was indicated
by the funnel plot (Supplementary Figure 2), despite some
heterogeneity found for albumin, white blood cell count, and
neutrophil count (Cochran’s Q test P < 0.05 in Supplementary
Figure 1). In addition, monocyte count was suggested to have a
protective effect by the RAPS method [0.93 (0.86, 1.00), P = 0.045,
Power = 65%], and the mean corpuscular volume was suggested
to have a risk effect by the BWMR method [1.07 (1.00, 1.13),
P = 0.042, Power = 90%] on severe COVID-19 (Supplementary
Figure 2). In contrast, we found no evidence of causality between
serum creatinine, other liver biomarkers or blood cell traits and
severe COVID-19 (Figure 2).

We observed strong genetic correlation for the pairs of white
blood cell count with neutrophil count (rg = 0.91, P < 0.001),
and mean corpuscular hemoglobin with mean corpuscular
volume (rg = 0.95, P < 0.001) (Figure 3A). Thus, to avoid
the collinearity issues, we only included neutrophil count, mean
corpuscular hemoglobin, albumin, direct bilirubin, lymphocyte
count, and monocyte count in the multivariable MR analysis.

We found lymphocyte count and mean corpuscular hemoglobin
have independent causal effects on severe COVID-19, with
corresponding ORs being 0.89 (0.82–0.97, P = 0.006) and 0.94
(0.89–1.00, P = 0.037), respectively. In contrast, the causal effect
of albumin, direct bilirubin, neutrophil count, and monocyte
count were attenuated to null (Figure 3B).

DISCUSSION

Our findings supported the protective role of white blood
cell count, in particular neutrophil, monocyte, and lymphocyte
counts, against severe COVID-19. Neutrophil count, monocyte
count, and eosinophil count could be the mediators between
genetic locus 3p21.31 and severe COVID-19, evidenced by a
phenome-wide association study and polygenic score analysis
(Zhou et al., 2020). Neutrophils, accounting for approximately
40∼70% of all WBC, are essential to human’s innate immunity.
Neutropenia indicates the individual’s immunity is severely
weakened and is at a higher risk of being attacked by SARS-
CoV2. In addition, a recent study showed that pre-existing
lymphocytopenia before any possible exposure to SARS-CoV-2
is associated with an increased risk of dying from COVID-
19 (Burack et al., 2020). Beyond confirming the previous MR
findings of the negative causality between white blood cell count
and COVID-19 severity (Sun et al., 2020), we extended these
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FIGURE 3 | Genetic correlation for eight risk factors and causal effects on
severe COVID-19 estimated by multivariable MR analysis. (A) Pair-wise
genetic correlations with significance at P < 0.05, P < 0.01, and P < 0.001
are marked with a single asterisk (*), double asterisk (**), and triple asterisk
(***), respectively. (B) In multivariable MR analysis, we exclude white blood cell
and mean corpuscular volume from this analysis because white blood cell is
highly correlated with neutrophil count (rg = 0.91, P < 0.001) while mean
corpuscular volume is highly correlated with mean corpuscular hemoglobin
(rg = 0.95, P < 0.001).

findings by implementing multiple well-established MR methods
and assessing >2-fold GWAS sample size of COVID-19 patients
(6,492 in our study vs. 3,199 in the prior report), and discovered
that lymphocyte count have an independent causal role in the
etiology of COVID-19 severity. The underlying mechanisms
may involve complex immune responses. Three major types of
lymphocytes (B cells, CD4+ T cells, and CD8+ T cells) constitute
the adaptive immune system and respond to SARS-CoV-2
in a coordinated manner to develop virus-specific protective
immunity (Rydyznski Moderbacher et al., 2020). Scarcity of
naive T cells could result in increased risk of severe COVID-
19, because early innate immune evasion by SARS-CoV-2 could
interfere with T cells expansion or directly induce immune-
mediated destruction of lymphocytes, and further exacerbate
the uncoordinated adaptive immune response to COVID-19
(Zhao et al., 2020). For example, older individuals, who were
more likely to have disrupted coordination of SARS-CoV-
2 antigen-specific immune responses, are at higher risk for

COVID-19 (Rydyznski Moderbacher et al., 2020). We also found
the independent risk effect of mean corpuscular hemoglobin
on COVID-19 severity, consistent with a recent genetic
study (Zhou et al., 2020). The underlying pathophysiological
mechanism warrants further investigation from genetics and
clinical perspectives.

Consistent with our findings, observational studies have
reported a negative correlation between serum albumin and
the risk of severe COVID-19 (Aziz et al., 2020), and elevated
direct bilirubin could predict worse prognostics of COVID-
19 (Wynants et al., 2020). As a vital inverse acute phase
reactant, serum albumin could maintain plasma redox state and
protect against the cytokine storm and organ failure, which
are often observed in severe COVID-19 patients (Violi et al.,
2020). Notably, colloid therapy with serum albumin could
improve oxygenation in patients with acute respiratory distress
syndrome (Uhlig et al., 2014). The therapeutic efficacy of serum
albumin in sepsis and cirrhosis also demonstrates its essential
role in modulating inflammation, oxidative stress, and the
plasma volume expansion (Soeters et al., 2019). Moreover, serum
albumin may reduce the risk of severe COVID-19 by modulating
on the levels of lymphocyte count or mean corpuscular
hemoglobin, indicated by the data from multivariable MR. In
contrast, we found no causal evidence of serum creatinine on
severe COVID-19, suggesting that the observational associations
(Henry et al., 2020; Wynants et al., 2020) could be attributed to
reverse causation or confounding.

Notably, our study included more confident causal
relationships that are concluded using randomly allocated
genetic variants as IVs. We have evaluated the causal associations
between liver and kidney function biomarkers, blood cell
traits and COVID-19 severity by MR analyses with the largest
GWAS data. The current study also has some limitations. We
did not consider the corrections for multiple comparisons,
which may yield some false-positive results. With the main
findings being cross-validated by multiple MR methods and
multivariable MR analysis, the false-positive issues might not
be serious in our study. In addition, this study utilized data
from Europeans and focused on severe COVID-19, hence
more caution needs to be taken when generalizing the causal
relationship to other populations or patients with asymptomatic
to moderate COVID-19.

In conclusion, by leveraging large-scale GWAS summary
statistics, we applied a two-sample MR analysis strategy with
four robust MR methods to explore the causal relationship
between liver and kidney function biomarkers, blood cell traits
and severe COVID-19. Our findings have revealed the risk
role of direct bilirubin and mean corpuscular hemoglobin,
and the protective role of albumin, white blood cell count,
neutrophil count, and lymphocyte count on severe COVID-
19 in the European population. The independent causal effect
of lymphocyte count and mean corpuscular hemoglobin on
COVID-19 severity were further evidenced by multivariable
MR analysis. These findings could help to optimize the risk-
stratification of individuals with abnormal liver function or
decreased blood cell counts. Furthermore, the genetic evidence of
liver function biomarkers and blood cell traits causally associated
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with severe COVID-19 motivate more studies into their roles in
COVID-19 pathogenesis.
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