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Alzheimer’s disease (AD) is a common neurodegenerative dementia in the elderly.

Although there is no effective drug to treat AD, proteins associated with AD have been

discovered in related studies. One of the proteins is mitochondrial fusion protein 2 (Mfn2),

and its regulation presumably be related to AD. However, there is no specific drug for

Mfn2 regulation. In this study, a three-tunnel deep neural network (3-Tunnel DNN) model

is constructed and trained on the extended Davis dataset. In the prediction of drug-target

binding affinity values, the accuracy of the model is up to 88.82% and the loss value is

0.172. By ranking the binding affinity values of 1,063 approved drugs and small molecular

compounds in the DrugBank database, the top 15 drug molecules are recommended

by the 3-Tunnel DNN model. After removing molecular weight <200 and topical drugs,

a total of 11 drug molecules are selected for literature mining. The results show that six

drugs have effect on AD, which are reported in references. Meanwhile, molecular docking

experiments are implemented on the 11 drugs. The results show that all of the 11 drug

molecules could dock with Mfn2 successfully, and 5 of them have great binding effect.

Keywords: Alzheimer’s disease, drug repositioning, prediction of binding affinity values, three-tunnel deep neural

network, molecular docking

1. INTRODUCTION

Alzheimer’s disease (AD) is a destructive nervous system disease, which is characterized by a
progressive dementia. The incidence of AD accounts for 50–70% of the total number of senile
dementias. It mostly occurs in middle or late life, and the psychological skills, cognitive function,
and physiological function of the patients have gradually lost (McKhann et al., 1984; Navarro et al.,
2020). With the increasing aging of the population, AD has become an important world problem
to be solved. However, the pathogenesis of AD is still unclear. The cascade hypothesis of amyloid β

protein (Aβ) is the most concerned. The hypothesis holds that the formation of senile plaques by a
large amount of Aβ in the brain is related to cognitive dysfunction and pathological changes of AD
(Lin Zhang et al., 2020). Abnormal deposition of Aβ is considered to be the vital pathogenesis of
AD. And Aβ in cerebrospinal fluid has been included as a diagnostic marker of AD (Jia and Wei,
2018; Cui et al., 2020). A variety of AD-targeted drugs are difficult to be used in clinical practice
because of poor efficacy or side effects in phase III clinical trials. More scholars focus on controlling
the progression of mild cognitive impairment. Consequently, the regulation mechanism of Aβ

production and clearance has become an important research direction (Cui et al., 2020).
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Mitochondria is the main site of cellular aerobic respiration.
And mitochondrial dysfunction has effect on the production
and toxicity of Aβ . Mitochondrial dynamics and mitochondrial
dysfunction caused by abnormal mitochondrial autophagy play
an important role in the pathogenesis of AD. The mitochondrial
fusion protein 2 (Mfn2) is a dynamic protein expressed in the
outer membrane of mitochondria. Mfn2 not only participates
in mitochondrial fusion but also affects cell metabolism by
regulating cell apoptosis, mitochondrial autophagy, and other
biological processes. At present, Mfn2 has been proved to be
closely related to the occurrence of many kinds of common
diseases. Although some specific mechanisms are still unclear,
Mfn2 is expected to become a new therapeutic target for some
diseases (Li et al., 2020). In addition, Mfn2 involved in the
regulation of protein homeostasis and pathogenesis of AD has
become a research hotspot.

The approved drugs are designed and developed based on the
concept of single target. Therefore, no drug has been specifically
developed for Mfn2 regulation till now. It takes 10–15 years
to implement the de novo drug design. In order to reduce the
cost of drug development and the risk in the process of drug
research, it has become an important strategy to repurpose
the approved drugs and explore their new functions. And
deep learning methods provide powerful technical supports in
computing the drug-target interactions (DTIs). The prediction
of DTIs is the focus of drug design and the key step of drug
repositioning. However, it is obviously not accurate to divide the
drug–target pairs (DT pairs) into effective and ineffective in the
classification method. Therefore, more attention has been paid
to the regression method, which directly predicts the binding
affinity values of drug–target (DT) pairs with dissociation
constant (Kd).

The DeepDTA model (Ozturk et al., 2018) considers the
sequence information of drug molecules and proteins in the
prediction of binding affinity values. Convolutional neural
network is used in the research. It is considered to be the state-of-
the-art model of predicting DTA (Huang et al., 2020). However,
the model fluctuates greatly when training for many times. The
GraphDTA model (Nguyen et al., 2020) uses graph convolution
neural network to represent the features of drug molecules.
Although its loss value is tiny, the calculation cost is too high.
Recurrent neural networks (RNNs) such as gated recurrent units
(GRU) (Cho et al., 2014) and long short-term memory units
(LSTM) (Hochreiter and Schmidhuber, 1997) are widely used
to capture temporal dependence in sequence-based data such
as time series and text (Chuang et al., 2020). Extending on the
use of a single RNN, the ensemble of RNNs with CNNs is a
common hybrid architecture in recent applications that seeks
to combine the ability of RNN in analyzing sequential data and
CNN on extracting local features (Cao et al., 2020). Nonetheless,
in the representation of drug molecules, the results are not better
than that of CNN. The latest DeepGS model (Lin et al., 2020)
inputs the sequence information and two-dimensional structure
information of drug molecules as well as the protein sequence
information into themodel for prediction. It also has the problem
of higher calculation cost. Moreover, information redundancy
is inevitable as drug molecules are encoded twice by different

encoding strategies. In addition, DeepPurpose (Huang et al.,
2020) provides a toolkit that integrates a variety of encoding
methods of drug molecules and protein amino acid sequences.
Two kinds of encoding methods are selected to input the model
to predict the binding affinity values of DT pairs. The toolkit
provides great convenience for future research.

In this study, we implement an approach that considers the
binding affinity information and negative samples of DT pairs
to reposition regulatory drugs Mfn2 as candidate medications
of AD. First, a three–tunnel deep neural network (3-Tunnel-
DNN) model is constructed and trained on the expanded
Davis dataset using drug–protein binding affinity information.
The three tunnels are protein sequences, drug molecules of
positive samples, and negative samples. The accuracy of the
3-Tunnel-DNN model is 0.8882 and the loss value is 0.172
in the test set. Finally, the well-trained model is used to
reposition 1,063 drugs/compounds from the DrugBank database
to Mfn2 regulatory. A total of 15 drugs are recommended
for Mfn2 regulation by ranking the binding affinity values of
drugs/compounds from the database with Mfn2. After removing
three molecules with molecular weight <200 and a topical drug,
a total of 11 drug molecules are selected for literature mining and
molecular docking experiments.

2. MATERIALS AND METHODS

2.1. The Extended Davis Dataset
Davis dataset contains the selective analysis of kinase protein
family and related inhibitors and their respective Kd values, and
it includes 30,056 binding affinity values of 442 proteins and 68
compounds (Ozturk et al., 2018; Davis et al., 2020). Negative
samples are expected to be considered in our model. Davis
dataset is widely used as training set in the field of drug-target
binding affinity prediction, such as DeepDTA (Ozturk et al.,
2018), DeepGS (Lin et al., 2020), GraphDTA (Nguyen et al.,
2020), etc. Therefore, binding affinity values of DT pairs in Davis
dataset are applied as training set in the 3-Tunnel DNNmodel as
well. Besides, information of negative samples is added into Davis
dataset to extend the dataset.

In the original Davis dataset, binding affinity data of DT pairs
are measured by Kd values. It ranges from 0 to 10,000. The
extended Davis dataset consists of four files, which are SMILES
sequences file of compounds, FASTA sequences file of proteins,
binding affinity values file of DT pairs, and SMILES sequences
file of negative samples. The original Davis dataset consists of the
first three files. The first and second files contain the sequence
information needed in the model training process. The third
file, in particular, is a 68 × 442 dimensional digital matrix [i.e.,
M(68×442)], in which each number [m(i,j)] represents the Kd value
of the i-th compound and the j-th protein. The fourth file is
a matrix [i.e., NM(68×442)] composed of SMILES sequences of
negative samples. Each element [nm(i,j)] represents the SMILES
sequence of the negative sample of the i-th compound and the
j-th protein. In the research, the Kd value of 50 is taken as
the boundary between positive and negative samples. It means
that for each protein, the compounds with binding affinity value
≤ 50 are positive samples, and the compounds with > 50
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are negative samples. The extended Davis dataset is given in
Supplementary Tables 1–4.

In fact, we compare the recommendation of Zeng et al. that
the boundary of positive and negative samples is set as 10 (Zeng
et al., 2019) with our boundary of 50 as well. The results show that
the Kd value of 50 as the boundary performs better. The results
are shown in Table 1.

In the training process, the Kd values converted into log space
(pKd) are used as the actual binding affinity values for easier
calculation of regression. The explanation is similar to Equation
(1) (Huang et al., 2020).

pKd = −log10(Kd × 10−9 + 10−10) (1)

The DrugBank database contains common compounds
(amino acids, polypeptides, choline, etc.), approved drugs
(azithromycin, etc.), and approved small molecular compounds
(5-fluorouridine, etc.). The first 1,063 drugs/compounds in the
DrugBank database are used here as potential candidates for
repositioning regulatory Mfn2. Particularly, SMILES sequences
of drugs are used for calculation. Mfn2 sequence of human
protein (Mfn2_Human) is used as the target protein for

TABLE 1 | Comparison list of consistency index (CI) and mean square error (MSE)

of different boundaries on test set.

Model Mse CI

CNN_CNN (boundary is set as 10) 0.878 0.261

CNN_CNN (boundary is set as 50) 0.881 0.245

3-Tunnel DNN (boundary is set as 10) 0.882 0.252

3-Tunnel DNN (boundary is set as 50) 0.888 0.172

Italic text indicates a better boundary between positive and negative samples. Bold text

represents the best performance.

repositioning. Mfn2_Human in form of FASTA sequence from
the UniProt database is used for binding affinity calculations.
The usage of data is shown in Figure 1.

2.2. Feature Extraction of Drug Molecules
and Proteins
Extended-connectivity fingerprints (ECFPs) are a novel class of
topological fingerprints for molecular characterization, which
is a 1,024-length bits vector (Rogers and Hahn, 2010). In the
study, n=2 (i.e., ECFP_2) is chosen as the circular radius that
encodes the substructure of drug molecules. RDKit (Bento et al.,
2020) is used to generate fingerprints of molecules. A multi-
layer perceptron (MLP) (Chuang et al., 2020) is then applied
on the binary fingerprint vector (Huang et al., 2020). In the 3-
Tunnel DNN model, MLP is constructed as a four-layer neural
network that the number of neurons is 1,024, 256, 64, and 256,
respectively, to extract feature representations of drug molecules.

For proteins, there are 25 unique characters in protein FASTA
sequence in Davis dataset (Ozturk et al., 2018). In our model,
the symbol “?” is filled in the beginning of each sequence
(Huang et al., 2020). Therefore, there are 26 unique characters
in FASTA sequences. Each character is mapper into a unique
integer, and the FASTA sequences are transformed into one-
dimensional vectors. After that, the vector is extended into square
data structure, in form of binary matrix with one-hot encoding
strategy. Themaximum length of FASTA sequences is set as 1,000
(Ozturk et al., 2018), so the matrix size of FASTA sequences is
“1,000 × 26.” In particular, if the length of FASTA sequence is
<1,000, the matrix is filled with 0. The matrix is input into the
convolutional neural network (CNN), which consists of three
layers of one-dimensional convolutional network and a global
maximum pooling layer. The convolutional kernel is 32 × 1,
32× 2, and 32× 3, respectively (Ozturk et al., 2018; Huang et al.,
2020). The activation function is Rectified Linear Unit (ReLU)

FIGURE 1 | The use of data in the model. Binding affinity values of DT pairs in the extended Davis dataset are used for training set. The 1,063 drugs/compounds from

the DrugBank database and Mfn2_Human from the UniProt database are used for external test set. Binding affinity values among drugs and Mfn2_Human are

predicted using the well-trained model to recommend repositioning regulatory drugs to Mfn2_Human.
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FIGURE 2 | Structure diagram of the 3-Tunnel DNN model. (A) Diagram of triplet loss and (B) flowchart of the 3-Tunnel DNN model.

(Nair and Hinton, 2010). And then, the representation vector of
the features is generated.

The feature extraction methods are shown in Figure 2B.

2.3. 3-Tunnel DNN Model
Information of negative samples is expected to be considered in
the process of model training. Therefore, on the basis of two
tunnels of drug molecules and proteins amino acid sequences,
the third tunnel is added to process the data of negative samples
to accurately reposition the drugs. The amino acid sequence of
the protein is set as the anchor input (Anc_Input), the positive
samples of the extended Davis dataset are taken as positive
input (Pos_Input), and negative samples are set as negative input
(Neg_Input). In the process of learning feature representations,
triplet loss (Davis et al., 2020) is used to minimize the distance
between Anc_Input and Pos_Input, and maximize the distance
between Anc_Input and Neg_Input. The triplet loss is explained
in Equation (2).

L = max(‖f (X
Anc_input
i )− f (X

Pos_input
i )‖22 − ‖f (X

Anc_input
i )

−f (X
Neg_input
i )‖22 +M, 0) (2)

where f (X
Anc_input
i ) represents the feature representation of

the ith protein amino acid sequence, f (X
Pos_input
i ) represents

the feature representation of the ith positive sample, while
f (X

Neg_Input
i ) represents the feature representation of the ith

negative sample. In addition, ‖f (X
Anc_input
i ) − f (X

Pos_input
i )‖22

means the square of the Euclidean distance between the vectors
of the ith Anc_Input and Pos_Input. Similarly, ‖f (X

Anc_input
i ) −

f (X
Neg_input
i )‖22 means the square of the Euclidean distance

between the vectors of the ith Anc_Input and Neg_Input. And
M is a hyperparameter, which is set to 1 in the manuscript.

The three tunnels are used to process the FASTA sequences
of proteins, the SMILES sequences of positive samples, and
negative samples of drug molecules, respectively. The triplet
loss (Schroff et al., 2015) is used here to obtain more accurate
feature representations by maximizing the distance between
proteins and negative samples and minimizing the distance
between proteins and negative samples (Figure 2A). And then,
three feature representations are concatenated together and input
into the fully connected layers to make nonlinear changes to
these extracted feature representations. In particular, the first
two fully connected layers are followed by a dropout layer,
respectively, which randomly “delete” hidden neurons to prevent
over fitting, and finallymap to the output space. The output of the
model is the predicted binding affinity values of DT pairs. The
3-Tunnel DNN model is based on the MLP_CNN model (MLP
for drugs encoding, CNN for proteins encoding) in DeepPurpose
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toolkit (Lin et al., 2020), and its topologic structure is shown in
Figure 2B.

The 30,056DT pairs from the extendedDavis dataset are taken
as training set, which are divided into three subsets in the ratio
of 7:1:2 (Huang et al., 2020). It means that 70% of the data are
used for training, 10% for validation, and 20% for testing. We use
256 small batch data to update the weights of neural networks.
The number of epochs of the 3-Tunnel DNN model is 100, as
well Adam optimization algorithm (with learning rate of 10−4) is
applied to optimize the model.

2.4. Drug Reposition of Mfn2 by
Well-Trained 3-Tunnel DNN Model
After the well-trained 3-Tunnel DNN model is saved, 1,063
SMILES sequences of drugs/compounds from the DrugBank
database and Mfn2_human protein sequence in the form of
FASTA sequence from the UniProt database are input into the
well-trained model. These predicted values are ranked to get the
drug recommendation list. After removing the molecules with
molecular weight <200 and topical drugs, a total of 11 drug
molecules are recommended to regulate Mfn2. Literature mining
and molecular docking experiments are implemented to verify
the effectiveness of these molecules.

2.5. Molecular Docking
A total of 11 structures of recommended drug molecules and
Mfn2 are analyzed by molecular docking experiments. The X-
ray crystal structure of Mfn2 (PDB code: 6JFK, Resolution:
2.00 Å) is downloaded from RCSB Protein Data Bank
(http://www.rcsb.org) in PDB format, and the first conformation
is chosen as the receptor structure. The three-dimensional
structures of recommended molecules are downloaded from the
DrugBank database (https://www.drugbank.ca) in PDB format
as well. UCSF Chimera software (Pettersen et al., 2004) is used
to prepare receptor protein binding sites, establish the three-
dimensional structure of molecules, and minimize the energy.

Before the formal docking experiments, it is necessary to
prepare the documents of receptor protein, binding sites, protein
surface, and drug molecules. For the receptor protein, all
structures of ligands and hydrogens are deleted first. Dock Prep
module is used to supplement the parameters of the receptor
protein. Hydrogens, AMBER ff14SB force field, and AM1-BCC
charges (Jakalian et al., 2000, 2010) of receptor and ligand are
added, respectively. After that, the results are saved to a file in
mol2 format. Then all hydrogens are deleted again and saved
in PDB format. For the binding sites in the receptor, the same
operation is implemented and the result is saved in the format of
mol2. The DMS tool in UCSF Chimera (Pettersen et al., 2004) is
used to generate the surface of the receptor using a probe atom
with a 1.4 Å radius, which is saved as the file in the format of
dms. Similarly, for drug molecules, hydrogenation, and charging
operations are performed, and the results are saved as a file in the
format of mol2 as well.

For each binding site, the Sphgen module is used to generate
a spherical collection around the active site. The grid file
is generated by the Grid module, which is used for grid-
based energy assessment. Then, the semi-flexible docking is

implemented with the program of Dock6.8 (Lang et al., 2009;
Mukherjee et al., 2010), and 1,000 different orientations are
generated. In particular, some drug molecules (e.g., adinazolam,
pyrimethamine, and carbamazepine) are implemented rigid
molecular docking to evaluate whether the receptor can
accommodate the conformation. After that, the van der Waals
force and electrostatic interaction between the ligand and the
binding site are obtained, and the grid scores are also calculated.
Finally, the best conformation is obtained by using cluster
analysis (RMSD threshold is 2.0 Å) in semi-flexible docking, and
in rigid docking, only one conformation is obtained.

3. RESULTS

3.1. Results of Model Training
In the training process, consistency index (CI) (Pahikkala et al.,
2014) is used to evaluate the training performance, and mean
square error (MSE) (Kansal et al., 2019) is used as the loss
function to measure the error of each epoch.

We compare the performance of boundary with the K_d
value of 10 (Zeng et al., 2019) and 50 as positive and negative
samples. The performance of CNN_CNNmodel (CNN for drugs
encoding, CNN for proteins encoding) and the 3-Tunnel DNN
model at different boundaries are compared primarily. The
results are shown in Table 1 and Figure 3. The results show that
the K_d value of 50 as the boundary of positive and negative
samples makes the model perform better. And our 3-Tunnel
DNNmodel performs better than CNN_CNNmodel.

The 3-Tunnel DNNmodel is compared with the performance
with the state-of-the-art model at present, such as DeepDTA
(Ozturk et al., 2018), GraphDTA (Nguyen et al., 2020), and
the latest DeepGS (Lin et al., 2020) model. At the same
time, the original CNN_CNN model (Huang et al., 2020) and
other models obtained in the DeepPurpose toolkit using our
extended Davis dataset, such as CNN_CNN, CNN+LSTM_CNN
(CNN+LSTM for drugs encoding, CNN for proteins encoding),
and CNN+GRU_CNN (CNN+GRU for drugs encoding, CNN
for proteins encoding) model, are also compared with the 3-
Tunnel DNN model. The performances of these models are
shown in Table 2.

According to results of the 3-Tunnel DNNmodel, the value of
CI on test set is 0.888 and that of MSE is 0.172, which performs
best among these models. The CI value of the 3-Tunnel DNN
model is improved by 0.6% compared with DeepGS model (Lin
et al., 2020), that is, with best accuracy. And the MSE value is
improved by 7.3% compared with GraphDTA model (Nguyen
et al., 2020), that is, with minimum loss. In addition, we also find
that the MSE value of models using the extended Davis dataset as
the training set is significantly smaller thanmodels trained on the
original Davis dataset, except for CNN+GRU_CNNmodel.

3.2. Results of Recommended
Repositioning Regulatory Drugs to Mfn2
For repositioning regulatory drugs to Mfn2, the well-trained 3-
Tunnel DNN model is used to calculate the binding affinity
value of each pair of potential drug-Mfn2 pairs. The SMILES of
potential drugs are the 1,063 approved drugs in the DrugBank
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FIGURE 3 | Comparison diagram of different boundaries in CNN_CNN model and MLP_CNN model. (A) Diagram of the accuracy on validation set and (B) diagram of

the loss on validation set.

TABLE 2 | Comparison list of consistency index (CI) and mean square error (MSE)

of different models on test set.

Model Mse CI

CNN_CNN (boundary is set as 10) 0.878 0.261

DeepDTA (Davis dataset) (Ozturk et al., 2018) 0.878 0.261

GraphDTA (Davis dataset) (Nguyen et al., 2020) 0.881 0.245

DeepGS (Davis dataset) (Lin et al., 2020) 0.882 0.252

CNN_CNN (Davis dataset) (Huang et al., 2020) 0.879 0.254

CNN_CNN (our extended Davis dataset) 0.87 0.209

CNN+LSTM_CNN (our extended Davis dataset) 0.86 0.234

CNN+GRU_CNN (our extended Davis dataset) 0.834 0.263

3-Tunnel DNN (our extended Davis dataset) 0.888 0.172

Bold text represents the best performance.

database, and Mfn2 is the amino acid sequence of human
in the form of FASTA sequence from the UniProt database.
According to the ranking of predicted values, the 11 drugs
recommended by 3-Tunnel DNN model are shown in Table 3

after removing drugs with molecular weight <200 (niacin,
ethionamide, and acetohydroxamic acid) and an anesthetic
(dyclonine). In particular, although dyclonine is reported to be
effective for targets of AD in the reference (Zhang et al., 2019), it
is still removed from the results because of topical drug.

We search the keywords “Alzheimer; Drug name” and find
that 6 drugs have supported references. Names, DrugBank ID,
original functions, and description of supported references of
these drugs are shown in Table 3.

It is reported that neuroleptic medication appears to have
modest efficacy in controlling behavioral symptoms in dementia
patients (Lemke, 1995). And the three drugs (adinazolam,
fluphenazine, and carbamazepine) are related to mental illness.
In addition, anti-tumor drugs, anti-epilepsy drugs, anti-infection
drugs, and drugs for the treatment of hypertension are included
in the recommended list.

3.3. Results of Molecular Docking
Dock6.8 program (Lang et al., 2009; Mukherjee et al., 2010) is
used to predict the binding patterns of 11 drug molecules in
Mfn2. The value of Grid_Score is used to evaluate the molecular
docking results, which represents the sum of van der Waals force
and electrostatic interaction. The negative value of Grid_Score
indicates that the drug molecule is bound to the target, while
the positive value indicates no binding. And the smaller the
Grid_Score, the stronger binding of drug molecules to Mfn2.
Generally, the value of Grid_Score>−40 kcal/mol indicates poor
binding, the value between −40 and −50 kcal/mol indicates
medium binding, and the value <−50 kcal/mol indicates great
binding (Liu et al., 2018). The Grid_Score values of each drug
molecule binding to Mfn2 are shown in Table 4.

According to the results of molecular docking, the binding
effect of bosentan and Mfn2 is the best, and it is supported by the
reference (Elesber et al., 2006) as well. In addition, the Grid_Score
of imatinib and pemetrexed are <−50 kcal/mol, and they also
have strong binding with Mfn2. Pemetrexed is not supported
by any reference, but its binding capacity to Mfn2 is slightly
lower than bosentan. And sulfametopyrazine and fluphenazine
have medium binding with Mfn2. However, lamotrigine,
voriconazole, and nabumetone have poor binding with Mfn2
in the experiments of semi-flexible docking. Lamotrigine, in
particular, has the lowest score among these drug molecules,
although it is supported by reference (Tsolaki et al., 2000). In
addition, the Grid_Scores of adinazolam, pyrimethamine, and
carbamazepine are not satisfactory. We speculate that it is caused
by the rigidmolecular docking. Since atomic bonds cannot rotate,
there is only one conformation in the rigid docking.

4. DISCUSSION

In this study, we construct a 3-Tunnel DNN model based on
the original drug-target binding affinity prediction model to
consider the influence of negative samples. The binding affinity
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TABLE 3 | Recommended drugs by the three-tunnel deep neural network (3-Tunnel DNN) model.

Drug name Drug ID Disease treated with the drug References & Descriptions

Imatinib DB00619 Antineoplastic It is confirmed that imatinib-mediated

control of neprilysin could indeed be

accounted for its effect on activation

induced cell death (Bauer et al., 2011)

Lamotrigine DB00555 Antiepileptic The study shows that lamotrigine is

an effective and safe monotherapy in

patients with cognitive disorders and

AD (Tsolaki et al., 2000)

Sulfametopyrazine DB00664 The treatment of respiratory,

urinary tract infections, and

malaria

Adinazolam DB00546 Anxiolytic, anticonvulsant,

sedative, and antidepressant

Pyrimethamine DB00205 Antimalarial or the treatment

of toxoplasmosis

Bosentan DB00559 The treatment of pulmonary

hypertension

The study shows that bosentan can

play a pathophysiological role in the

endogenous endothelin system of

AD (Elesber et al., 2006)

Voriconazole DB00582 Antifungal

Fluphenazine DB00623 The treatment of psychoses Fluphenazine and other depot

neuroleptics are used in AD

patients to treat behavioral

disorders (Gottlieb et al., 1988)

Pemetrexed DB00642 Antineoplastic

Nabumetone DB00461 Anti-inflammatory It provides a method for treating

and preventing dementia such as

AD, which comprises administering

an effective, nontoxic amount of

nabumetoneor 6MNA (Clark, 1997)

Carbamazepine DB00564 Anticonvulsant and analgesic The result shows that carbamazepine

may be useful to treat agitated AD

patients (Gleason and Schneider, 1990)

values of DT pairs are trained on the extended Davis dataset
(i.e., the positive and negative samples are divided by the K_d
value of 50 on the original Davis dataset). Then, the binding
affinity values of 1,063 drug molecules with Mfn2 protein are
predicted using a well-trained deep learning model. Literature
mining and molecular docking experiments are implemented
on the recommended 11 molecules. The values of accuracy and
loss of the model are obviously better than the existing models,
especially the loss value is 0.172. Six of the 11molecules have been
reported by other researchers. The results of molecular docking
show that all of the 11 drug molecules can dock with Mfn2
successfully. And five drug molecules have medium or strong
binding force. In particular, bosentan has the best performance
of molecular docking, which is also supported by the reference
(Elesber et al., 2006). In addition, pemetrexed and imatinib are
prospect drugs as well. Specially, pemetrexed has not been used
in the treatment of AD, and its molecular docking result is just
tiny lower than bosentan. In the following work, we will evaluate
the pharmacology and toxicology of pemetrexed, and in vitro
experiments could be prepared to verify its effectiveness.

Although we find that positive and negative samples in Davis
dataset with the K_d value of 50 as the boundary is better

TABLE 4 | Results of molecular docking.

Drug name Drug ID Grid score Is supported by references

Imatinib DB00619 −51.678650 Yes

Lamotrigine DB00555 −28.860310 Yes

Sulfametopyrazine DB00664 −43.703491 No

Adinazolam DB00546 −29.337458 No

Pyrimethamin DB00205 −31.183176 No

Bosentan DB00559 −55.177814 Yes

Voriconazole DB00582 −39.047768 No

Fluphenazine DB00623 −49.189960 Yes

Pemetrexed DB00642 −54.729557 No

Nabumetone DB00461 −38.957726 Yes

Carbamazepine DB00564 −34.177979 Yes

Bold text shows the drugs with Grid_Score< −50 kcal/mol, and italic text represents rigid

molecular docking.

than 10, its specific value is still worthy to study. In addition,
other datasets (such as KIBA and BindingDB) are expected
to be extended and implemented in the model in our future
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work. And, it is a promising research to add gene information
(Chen et al., 2013; Zhang et al., 2013; Shi et al., 2014; Tan
et al., 2014) into the drug–target relationships and explore the
relationships between genes (Li et al., 2015, 2016; Shi et al., 2015)
and drugs. Furthermore, the training speed and accuracy of the
feature representations of drug molecules extracted by molecular
fingerprint is obviously better than that of SMILES sequences. For
further research, a better feature extraction method for protein
characteristics is expected to be obtained. And spiking neural P
systems (Song et al., 2013, 2015a,b; Song and Pan, 2015) is also
considered to be implemented in the future.
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