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Reduced models are equivalent models to the full model that enable reduction in

the computational demand for solving the problem, here, mixed model equations for

estimating breeding values of selection candidates. Since phenotyped animals provide

data to the model, the aim of this study was to reduce animal models to those equations

corresponding to phenotyped animals. Non-phenotyped ancestral animals have normally

been included in analyses as they facilitate formation of the inverse numerator relationship

matrix. However, a reduced model can exclude those animals and obtain identical

solutions for the breeding values of the animals of interest. Solutions corresponding to

non-phenotyped animals can be back-solved from the solutions of phenotyped animals

and specific blocks of the inverted relationship matrix. This idea was extended to other

forms of animal model and the results from each reduced model (and back-solving)

were identical to the results from the corresponding full model. Previous studies have

been mainly focused on reduced animal models that absorb equations corresponding

to non-parents and solve equations only for parents of phenotyped animals. These

two types of reduced animal model can be combined to formulate only equations

corresponding to phenotyped parents of phenotyped progeny.

Keywords: animal model, phenotyped, reduced model, back-solve, relationship matrix

1. INTRODUCTION

Computational limitations have been a major challenge facing animal breeders, especially for
solving large mixed model equations, such as those including multiple traits and millions
of animals. Computational speed, power and technology have advanced, making most of the
computations that were impossible in the past, feasible. However, the amount of data is growing
rapidly, and the complexity of evaluation models are increasing. Henderson (1974) introduced
the concepts of equivalent models and reduced models to animal breeding. Any linear model can
be written in various forms of equivalent models yielding the same first and second moments of
the data (Henderson, 1985). A reduced model is an equivalent model to the full model, allowing
computational simplifications by reduction in the number of equations to be solved.

Limited by available memory to store the entire set of equations, Henderson (1974) proposed
an equivalent reduced model in which the equations for fixed herd effects were absorbed into the
equations for sire effects. The full model explicitly fitted herd and sire effects. Generally, absorption
is a model rank reduction (reduced number of equations to be solved), by which some effects get
absorbed into other effects with no influence on the solutions of the remaining effects in the model.

Reduced models that absorbed multiple-trait equations for random effects were first introduced
to animal models by Quaas and Pollak (1980), where they showed that the best linear unbiased
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predictions (BLUP) of parents (with phenotyped progeny) can
be obtained from a reduced model that only includes equations
for breeding values for parents. This was achieved by absorbing
equations of non-parent individuals (and parents with no
phenotyped progeny). The BLUP of breeding values for non-
parent individuals can then be back-solved given the BLUP of
breeding values for their parents. The concept of reduced models
was extended to animal models incorporating quantitative trait
loci, introduced by Fernando and Grossman (1989), and was
also based on absorbing equations corresponding to non-parent
individuals (Cantet and Smith, 1991; Hoeschele, 1993; Arendonk
et al., 1994; Saito and Iwaisaki, 1996, 1997).

Henderson (1986) proposed the estimation of variance
components in reduced (based on the methodology of Quaas
and Pollak, 1980) rather than full animal models for single
traits and single records, based on minimum variance quadratic
unbiased estimation (MIVQUE), restricted maximum likelihood
(REML) by iterated MIVQUE, and REML by the expectation-
maximization (EM, Dempster et al., 1977) algorithm. Providing
numerical examples, he showed that the reduced model can be
used for estimation of variances, converging to the same solutions
obtained by the full model.

This study revisited the reduced animal model from a
different perspective by only including equations corresponding
to phenotyped animals in the model. In a full model,
non-phenotyped parents do not contribute any phenotypic
information to the model, but make it easier to account
for similarity between animals with phenotypes when they
are included in the construction of the inverse numerator
relationship matrix. This form of reduced animal model that
absorbs the effects of non-phenotyped breeding values is first
explained in the context of a simple univariate animal model, and
then extended to several other forms of animal model. Numerical
examples and R scripts are provided to facilitate understanding.

2. METHODS

Animal models can be expressed and fitted in various forms
and combinations. In this section, some equivalent forms of
animal model, their size reduction (absorption) to phenotyped
animals (denoted as p), and approach to back-solve solutions
corresponding to non-phenotyped animals (denoted as n) are
presented.

2.1. Basic Animal Model
In its simplest commonly-used form (y = Xb + Zu +

e), an animal model contains the vectors of phenotypes (y),
fixed effects (b), random direct additive genetic effects [u ∼

N(0,Aσ 2
u ), representing breeding values] and random residuals

(e ∼ N(0, Iσ 2
e )), with σ 2

u and σ 2
e being the corresponding

known variances, andA being the numerator relationshipmatrix.
Matrices X and Z relate phenotypes to fixed effects and animals,
respectively. In matrix notation solutions to this single-trait
model are obtained by solving the equation system:

[

X′X X′Z

Z′X Z′Z+ λA−1

] [

b̂

û

]

=

[

X′y

Z′y

]

, (1)

where b̂ is a vector of solutions for fixed effects (b) and û is
the vector of best linear unbiased predictions for u (known as
estimated breeding values) and λ = σ 2

e /σ 2
u . Permuting rows

and columns of the sparse matrix A−1 so that non-phenotyped

animals appear before phenotyped animals, A−1 =

[

Ann Anp

Apn App

]

,

û′ =
[

û′n û′p
]

and Z =
[

0 Zp

]

, where 0 is a matrix with elements
equal to zero. Here, 0 has number of rows equal to the number
of phenotypes and number of columns equal to the number of
non-phenotyped animals. Then, Equation (1) can be written as:





X′X 0 X′Zp

0 λAnn λAnp

Z′
pX λApn Z′

pZp + λApp









b̂

ûn
ûp



 =





X′y

0

Z′
py



 . (2)

Permuting y so that animals are in the same order as App, Zp = I.
Then,





X′X 0 X′

0 λAnn λAnp

X λApn I+ λApp









b̂

ûn
ûp



 =





X′y

0

y



 . (3)

If we absorb the equations corresponding to breeding values
for non-phenotyped animals by modifying the equations
corresponding to breeding values for phenotyped animals,
Equation (3) is transformed to Equation (4), which contains
breeding values only for phenotyped animals:

[

X′X X′

X I+ λ8

] [

b̂

ûp

]

=

[

X′y

y

]

, (4)

where

8 = App − Apn(Ann)−1Anp. (5)

Derivation of 8 is provided later in this subsection. Considering
equations corresponding to breeding values for non-phenotyped
animals in Equation (3), we have the identity:

Annûn = −Anpûp. (6)

Thus, ûn can be back-solved from Ann, Anp, and ûp. Comparing
Equations (1) and (4), y = Xb + Zu + e is reduced to y =

Xb + up + e. Thus, phenotypes depend only on the genetic
merit of phenotyped animals and are independent from the
genetic merit of their non-phenotyped relatives. The reduced
model has a different structure of additive genetic variance (up ∼
N(0,8−1σ 2

u ) vs. u ∼ N(0,Aσ 2
u )).

Consider the typically dense matrix A =

[

Ann Anp

Apn App

]

. The

following mixed model equations are equivalent to Equation (1),
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but can only be used to directly predict b̂ and ûp, and it involves
no changes in model assumptions (Henderson, 1986):

[

X′X X′

X I+ λA−1
pp

] [

b̂

ûp

]

=

[

X′y

y

]

. (7)

The above representation of the model is useful to prove the
derivation of 8, but not computationally efficient, because App

is generally not sparse and it cannot be inverted using the
indirect inversionmethods of Henderson (1976) or Quaas (1976).
Equating row 3 of Equation (3) (Xb̂+λApnûn+(I+λApp)ûp = y)

and row 2 of Equation (7) (Xb̂ + (I + λA−1
pp )ûp = y) results in

λApnûn + (I + λApp)ûp = (I + λA−1
pp )ûp, which is rearranged

to Apnûn = (A−1
pp − App)ûp. Solving the obtained equation with

Equation (6):

{

Apnûn = (A−1
pp − App)ûp

Annûn = −Anpûp (Equation 6)

⇒

{

Apnûn = (A−1
pp − App)ûp

ûn = −(Ann)−1Anpûp

⇒− Apn(Ann)−1Anpûp = (A−1
pp − App)ûp

⇒Apn(Ann)−1Anp = App − A−1
pp

⇒App − Apn(Ann)−1Anp = A−1
pp

⇒8 = A−1
pp

Thus, forming and solving the mixed model equations using 8

will produce the same results as forming and solving the mixed
model equations using A−1

pp , but without the need to form A,
invert or store App.

We carried out a test to compare the computational time
between the full and the reduced animal model. Pedigree and
phenotypes of 10,000 animals were simulated using R package
pedSimulate (Nilforooshan, 2021). The pedigree was initiated
with 100 founder animals (generation 0) of both sexes (50
each) and continued to eight generations. Except 2,000 randomly
selected phenotypes from generations 6 to 8, other phenotypes
were set to missing. Phenotypes were randomly assigned to
five herds and the herd effect was added to phenotypes. The
R statistical software (R Core Team, 2019) was used to analyse
the data.

2.2. Multiple Trait Animal Model
The mixed model equations for a multiple trait animal model in
its simplest formwith no additional random effects other than for
breeding values can be represented as:

[

X′R
−1

X X′R
−1

Z

Z′R
−1

X Z′R
−1

Z+ A−1 ⊗ G−1

] [

b̂

û

]

=

[

X′R−1y

Z′R
−1

y

]

, (8)

where G is the t × t matrix of genetic covariances between the
traits, R is the matrix of residual covariances between all the
residuals on all the phenotyped animals, and ⊗ is the Kronecker
product (Horn and Johnson, 1991). Permuting rows and columns

ofA−1 so that animals that are non-phenotyped (for all the traits)
appear before animals that are phenotyped for at least one of the
traits, Z =

[

0 Zp

]

, Zp corresponds to animals phenotyped for at
least one of the traits, and:





X′R
−1

X 0 X′R
−1

Zp

0 Ann ⊗ G−1 Anp ⊗ G−1

Z′
pR

−1X Apn ⊗ G−1 Z′
pR

−1Zp + App ⊗ G−1









b̂

ûn
ûp





=





X′R
−1

y

0

Z′
pR

−1y



 . (9)

In the case of a 2-trait model, X =

[

X1 0

0 X2

]

and Zp =

[

Zp1 0

0 Zp2

]

. Zp1 and Zp2 contain columns for the same set of

animals (those phenotyped for either or both of the two traits).
Following the same procedure as for the single-trait animal

model, the model is reduced to fitting phenotyped animals for at
least one of the traits in the model:

[

X′R
−1

X X′R
−1

Zp

Z′
pR

−1X Z′
pR

−1Zp + 8 ⊗ G−1

] [

b̂

ûp

]

=

[

X′R
−1

y

Z′
pR

−1y

]

. (10)

Considering Equation (9), solutions for non-phenotyped animals
(ûn) can be back-solved as:

(Ann ⊗ G−1)ûn = −(Anp ⊗ G−1)ûp. (11)

2.3. Repeatability Animal Model
Repeatability animal models are employed for the analysis of
repeated phenotypes of the same trait on an animal. In the
simplest repeatability animal models, a genetic correlation of 1
and equal residual correlations are considered between repeated
records from an animal, and the same variances are applied to
all the phenotypes (Mrode, 2005). Repeatability animal models
are typically fitted including an additional random term for
permanent environmental effects (y = Xb + Zu + Wp + e). In
matrix notation:





X′X X′Z X′W

Z′X Z′Z+ λA−1 Z′W

W′X W′Z W′W+ αI









b̂

û

p̂



 =





X′y

Z′y

W′y



 , (12)

where p̂ is the vector of solutions for random permanent
environmental effects, W is the incidence matrix relating
phenotypes to permanent environmental effects), α = σ 2

e /σ 2
p ,

and σ 2
p is the permanent environment variance. Considering W

being already limited to phenotyped animals,W = Zp, and:
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







X′X 0 X′Zp X′W

0 λAnn λAnp 0

Z′
pX λApn Z′

pZp + λApp Z′
pW

W′X 0 W′Zp W′W+ αI

















b̂

ûn
ûp
p̂









=









X′y

0

Z′
py

W′y









.

(13)
Equation (13) can be reduced to phenotyped animals (Equation
14) by absorbing the equations corresponding to breeding values
for non-phenotyped animals into the equations corresponding to
breeding values for phenotyped animals:





X′X X′Zp X′W

Z′
pX Z′

pZp + λ8 Z′
pW

W′X W′Zp W′W+ αI









b̂

ûp
p̂



 =





X′y

Z′
py

W′y



 . (14)

Back-solving solutions for non-phenotyped animals is done
according to Equation (6). If permanent environmental effect
solutions are not of interest, Equation (14) can be further
reduced by absorbing the equations for random permanent
environmental effects. Any random effect not correlated to other
random effects remaining in the model can be confounded with
the residual term (Quaas and Pollak, 1980).

2.4. Maternal Trait Animal Models
For some traits, dams not only influence the phenotypic
expression of their progeny via directly passed genes, but also
through maternal ability that influences the environment for
their progeny, such as the milk volume they provide to the
offspring (Mrode, 2005). Maternal ability is partly genetic and
partly environmental. Accordingly, there can be animal models
with maternal genetic effects, maternal permanent environment
effects, or both. Animal models with maternal permanent
environment effects have similar structure to repeatability
animal models with the differences that there might be no
repeated records per animal, W is the incidence matrix
relating phenotypes to the dams of phenotyped animals, and a
different variance than σ 2

p is involved (σ 2
mpe, maternal permanent

environment variance). Maternal permanent environmental
effect is already limited to phenotyped animals as the incidence
matrix used for this effect has rows corresponding to phenotypes
and columns corresponding to dams of phenotyped animals.

Animal models with maternal genetic effects (y = Xb+ Zu+

Sm + e) uncorrelated to direct additive genetic effects have the
variance structure:

var





u

m

e



 =





Aσ 2
u 0 0

0 Aσ 2
m 0

0 0 Iσ 2
e



 ,

where σ 2
m is the maternal genetic variance. In matrix notation:





X′X X′Z X′S

Z′X Z′Z+ λ1A
−1 Z′S

S′X S′Z S′S+ λ2A
−1









b̂

û

m̂



 =





X′y

Z′y

S′y



 . (15)

Given Z =
[

0 Zp

]

, S =
[

Sn Sp
]

and S′S =

[

S′nSn 0

0 S′pSp

]

,

Equation (15) can be re-written as:













X′X 0 X′Zp X′Sn X′Sp
0 λ1A

nn λ1A
np 0 0

Z′
pX λ1A

pn Z′
pZp + λ1A

pp Z′
pSn Z′

pSp
S′nX 0 S′nZp S′nSn + λ2A

nn λ2A
np

S′pX 0 S′pZp λ2A
pn S′pSp + λ2A

pp

























b̂

ûn
ûp
m̂n

m̂p













=













X′y

0

Z′
py

0

S′py













, (16)

where λ1 and λ2 are equal to σ 2
e /σ 2

u and σ 2
e /σ 2

m, respectively.
Considering equations corresponding to ûn in Equation (16),
Equation (6) is derived. Equation (16) can then be reduced to:





X′X X′Zp X′S

Z′
pX Z′

pZp + λ18 Z′
pS

S′X S′Zp S′S+ λ2A
−1









b̂

ûp
m̂



 =





X′y

Z′
py

S′y



 . (17)

Equations corresponding to m̂ cannot be reduced to equations
corresponding to m̂p. The reason is the non-zero Sn matrix.

Animal models with maternal genetic effects correlated to
direct additive genetic effects have the variance structure:

var





u

m

e



 =





Aσ 2
u Aσum 0

Aσmu Aσ 2
m 0

0 0 Iσ 2
e



 .

In matrix notation:





X′X X′Z X′S

Z′X Z′Z+ λ11A
−1 Z′S+ λ12A

−1

S′X S′Z+ λ21A
−1 S′S+ λ22A

−1









b̂

û

m̂



 =





X′y

Z′y

S′y



 , (18)

where

[

λ11 λ12
λ21 λ22

]

= σ 2
e G

−1, and G−1 =

[

g11 g12

g21 g22

]

=

[

σ 2
u σum

σmu σ 2
m

]−1

.

For an efficient model reduction, it is important that all A−1

occurrences in Equation (18) are converted to the samematrix. In
order to do that, the definition of n and p are changed to p being
phenotyped animals or non-phenotyped dams, and n being other
animals. That enables both Zn and Sn being zero matrices. Then,
permuting rows and columns of A−1 so that animals n appear
before animals p, Equation (18) can be written as:
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











X′X 0 X′Zp 0 X′Sp
0 λ11A

nn λ11A
np λ12A

nn λ12A
np

Z′
pX λ11A

pn Z′
pZp + λ11A

pp λ12A
pn Z′

pSp + λ12A
pp

0 λ21A
nn λ21A

np λ22A
nn λ22A

np

S′pX λ21A
pn S′pZp + λ21A

pp λ22A
pn S′pSp + λ22A

pp

























b̂

ûn
ûp
m̂n

m̂p













=













X′y

0

Z′
py

0

S′py













. (19)

Reducing the above equation to phenotyped animals, equations
corresponding to ûn are absorbed in equations corresponding to
ûp, and equations corresponding to m̂n are absorbed in equations
corresponding to m̂p, resulting to:





X′X X′Zp X′Sp
Z′
pX Z′

pZp + λ118 Z′
pSp + λ128

S′pX S′pZp + λ218 S′pSp + λ228









b̂

ûp
m̂p



 =





X′y

Z′
py

S′py



 . (20)

ûn and m̂n are back-solved given ûp, m̂p, A
nn, Anp, and G−1. For

the proof, consider rows 2 and 4 in Equation (19):

{

λ11A
nnûn + λ11A

npûp + λ12A
nnm̂n + λ12A

npm̂p = 0

λ21A
nnûn + λ21A

npûp + λ22A
nnm̂n + λ22A

npm̂p = 0

⇒

{

Ann(λ11ûn + λ12m̂n) = −Anp(λ11ûp + λ12m̂p)
Ann(λ21ûn + λ22m̂n) = −Anp(λ21ûp + λ22m̂p)

⇒

{

Ann(g11ûn + g12m̂n) = −Anp(g11ûp + g12m̂p)
Ann(g21ûn + g22m̂n) = −Anp(g21ûp + g22m̂p)

⇒
(

Ann ⊗ G−1
)

[

ûn
m̂n

]

= −
(

Anp ⊗ G−1
)

[

ûp
m̂p

]

(21)

2.5. Animal Models With Genetic Groups
The idea of sire models with genetic groups (Quaas and Pollak,
1981) was extended to animal models by Westell and Van
Vleck (1987), where grouping stems from the fact that unknown
parents belonging to different genetic backgrounds and periods
of time have different genetic means. An animal model with
genetic groups and no additional random effect other than
breeding values is written as y = Xb+ Zu+ ZQg+ e. In matrix
notation:





X′X X′Z X′ZQ

Z′X Z′Z+ λA−1 Z′ZQ

Q′Z′X Q′Z′Z Q′Z′ZQ









b̂

û

ĝ



 =





X′y

Z′y

Q′Z′y



 , (22)

where ĝ is the vector of solutions for genetic groups and Q is the
matrix relating genetic groups to animals. Permuting rows and
columns of A−1 so that non-phenotyped animals appear before

phenotyped animals and phenotyped animals appear in the same
order in y and App, Z =

[

0 Zp

]

, Q′ =
[

Q′
n Q′

p

]

, ZQ = ZpQp,
and Zp = I. Thus, Equation (22) can be written as:









X′X 0 X′ X′Qp

0 λAnn λAnp 0

X λApn I+ λApp Qp

Q′
pX 0 Q′

p Q′
pQp

















b̂

ûn
ûp
ĝ









=









X′y

0

y

Q′
py









. (23)

Absorbing the equations corresponding to ûn in the equations
corresponding to ûp, the above model is reduced to:





X′X X′ X′Qp

X I+ λ8 Qp

Q′
pX Q′

p Q′
pQp









b̂

ûp
ĝ



 =





X′y

y

Q′
py



 . (24)

Back-solving ûn is done using Equation (6) and the breeding
value of animals are calculated as û+Qĝ. FormingQ to calculate
breeding values outside of the animal model is an additional
computational step. To avoid that step, Quaas and Pollak (1981)
transformed the mixed model equations so that the solution for
the breeding value includes the genetic group effect:





X′X X′Z 0

Z′X Z′Z+ λA−1 −λA−1Q

0 −λQ′A−1 λQ′A−1Q









b̂

û+Qĝ

ĝ



 =





X′y

Z′y

0



 . (25)

Let’s consider:

3−1 =

[

A−1 −A−1Q

−Q′A−1 Q′A−1Q

]

=

[

A−1 Anpg

Agpn Agg

]

=





Ann Anp Ang

Apn App Apg

Agn Agp Agg



 ,

where g corresponds to genetic groups in a larger numerator
relationship matrix (i.e., 3 is larger than A). Then, Equation (25)
can be written as:









X′X 0 X′Zp 0

0 λAnn λAnp λAng

Z′
pX λApn Z′

pZp + λApp λApg

0 λAgn λAgp λAgg

















b̂

ûn +Qnĝ

ûp +Qpĝ

ĝ









=









X′y

0

Z′
py

0









.

Considering Zpg =
[

Zp 0
]

, in which 0 is a matrix of zeros with
columns corresponding to genetic groups:









X′X 0 X′Zpg

0 λAnn λ
[

Anp Ang
]

Z′
pgX λ

[

Apn

Agn

]

Z′
pgZpg + λ

[

App Apg

Agp Agg

]

















b̂

ûn +Qnĝ

ûp +Qpĝ

ĝ









=





X′y

0

Z′
pgy



 . (26)
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Applying the same technique used to reduce Equation (3) to
Equation (4), Equation (26) is reduced to Equation (27):

[

X′X X′Zpg

Z′
pgX Z′

pgZpg + λ8

]





b̂

ûp +Qpĝ

ĝ



 =

[

X′y

Z′
pgy

]

, (27)

where extending Equation (5) to include genetic groups:

8 =

[

8pp 8pg

8gp 8gg

]

=

[

App Apg

Agp Agg

]

−

[

Apn

Agn

]

(Ann)−1

[

Apn

Agn

]′

(28)

and extending Equation (6) to include genetic groups:

Ann
(

ûn +Qnĝ
)

= −
[

Anp Anp
]

(

ûp +Qpĝ

ĝ

)

. (29)

2.6. Animal Models With a Genomic

Relationship Matrix (GBLUP)
In the previous sections, animal models with pedigree-based
relationship matrices were discussed. With the availability of
genomic data, various forms of genomic relationship matrix (e.g.,
VanRaden, 2008; Hickey et al., 2013) are used in animal models.
Replacing A with the genomic relationship matrix G in Equation
(1) results in:

[

X′X X′Z

Z′X Z′Z+ λG−1

] [

b̂

û

]

=

[

X′y

Z′y

]

. (30)

However, it should be noted that unlike Equation (1), Equation
(30) is limited to genotyped animals. Due to efficient methods for
deriving A−1 without calculating and inverting A (Henderson,
1976; Quaas, 1976), Equation (4) is preferred over Equation
(7). However, those methods are not applicable to G, and this
form of the equations requires G to be calculated and directly
inverted. As a result, the reduced method of choice is equivalent
to Equation (7):

[

X′X X′

X I+ λG−1
pp

] [

b̂

ûp

]

=

[

X′y

y

]

. (31)

Therefore, only Gpp needs to be formed and inverted. If the
calculation of Gpp requires allele frequencies, estimation of allele
frequencies should not be limited to phenotyped animals. Then,
ûn can be derived indirectly by, first back-solving marker effects
(â) from ûp (Strandén and Garrick, 2009), and then summing
up marker effect solutions over all markers for non-phenotyped
animals (ûn = Mnâ (Meuwissen et al., 2001), whereMn contains
rows of M for non-phenotyped animals, and M is the genotype
matrix with coefficients−1, 0, and 1).

2.7. Animal Models With an Augmented

Pedigree-Genomic Relationship Matrix

(ssGBLUP)
Aguilar et al. (2010) and Christensen and Lund (2010) introduced
an animal model for simultaneous genetic evaluation of

genotyped and non-genotyped animal, using a pedigree-genomic
augmented inverse matrix (H−1) to be used instead of A−1 in the
mixed model equations, where

H−1 =

[

H11 H12

H21 H22

]

=

[

A11 A12

A21 A22 + G−1 − A−1
22

]

, (32)

H11 corresponds to the block for non-genotyped animals, and
H22 corresponds to the block for genotyped animals. Though,

it is possible to partition H−1 to

[

Hnn Hnp

Hpn Hpp

]

and reduce

the model to phenotyped animals (similar to the procedures
already explained), perhaps a more practical approach would
be to split animals into three groups of “non-phenotyped and
non-genotyped” animals (4), “phenotyped and non-genotyped”
animals (3), and genotyped animals (2):

H−1 =





H44 H43 H42

H34 H33 H32

H24 H23 H22



 =





A44 A43 A42

A34 A33 A32

A24 A23 H22



 .

Grouping phenotyped or genotyped animals together (5):

H−1 =

[

A44 A45

A54 H55

]

,H55 =

[

A33 A32

A23 H22

]

,A54 =

[

A34

A24

]

.

Then, an animal model like the following:

[

X′X X′Z

Z′X Z′Z+ λH−1

] [

b̂

û

]

=

[

X′y

Z′y

]

(33)

can be reduced to:

[

X′X X′Z5

Z′
5X Z′

5Z5 + λ2

] [

b̂

û5

]

=

[

X′y

Z′
5y

]

, (34)

where 2 = H55 −A54(A44)−1A45 and Z5 contains columns of Z
corresponding to group 5 of animals. After obtaining û5, û4 can
be back-solved by solving

A44û4 = −A45û5. (35)

3. RESULTS

Results from numerical examples are provided. The numerical
examples were chosen from small datasets used in Mrode (2005)
for different animal models. R scripts for producing the data
and the analyses are available in the data repository. Files for
any given filename in this study are also available in the data
repository. Back-solving were done by direct solving of Equations
(6), (11), (21), and (29). Where solving these equations for
large pedigree is computationally challenging, preconditioned
conjugate gradient method (Strandén and Lidauer, 1999) can
be adopted.
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3.1. Basic Animal Model
Data from Example 3.1 of Mrode (2005) was used
(Supplementary Table 1). The data can be produced using
e31data.R in the data repository. Equation (1) is coded in
function “BLUP” in e31.R. The following code produces the
data and solutions.

# Create data
source("e31data.R")
# Call the solver function
source("e31.R")
# Solve the full model
sol1 = BLUP(X, y, Z, lambda, Ai)

Applying Equation (4) instead of Equation (1) requires data
transformation. Matrices 8, Ann and Anp are obtained using
function “getPhi” coded in getPhi.R. Solutions of the reduced
model are obtained as:

# Call the function to create Phi matrix
source("getPhi.R")
# Define phenotyped animals
phe=4:8
# Create Phi and back-solving matrices
mats = getPhi(Ai,phe)
# Solve the reduced model
sol2 = BLUP(X, y, Z=Z[,phe], lambda,
Ai=mats$Phi)

Following Equation (6), ûn are back-solved using the
following code:

u_n = solve(mats$Ann, mats$Anp %*%
-sol2[-2:-1])

The following command confirms that solutions from the full
(Equation 1) and the reduced models (Equation 4) are identical.

source("check.R") # Call the function
check(sol1, c(sol2[1:2], u_n, sol2[3:7]))

We run a test to compare the computational time for the full
and the reduced animalmodel for a pedigree of 10,000 animals, of
which 2,000 animals had been phenotyped. The runtime were 10
and 8.8 s for the full and the reduced animal model, respectively.
Additionally, it took 2 s for the reduced animal model to calculate
8. Matrix 8 was considerably denser than the A−1 matrix.

3.2. Multiple Trait Animal Model
Data from Example 5.3 of Mrode (2005) was used
(Supplementary Table 2). The data can be produced using
e53data.R in the data repository. Equation (8) is coded in
function “BLUP” in e53.R. The following code produces the
data and solutions.

# Create data
source("e53data.R")
# Call the solver function
source("e53.R")
# Solve the full model
sol3 = BLUP(X, y, Z, Ri, Gi, Ai)

Applying Equation (10) instead of Equation (8) requires data
transformation. Matrices 8, Ann and Anp are obtained using
function “getPhi” coded in getPhi.R. Solutions of the reduced
model are obtained as:

# Call the function to create Phi matrix
source("getPhi.R")
# Define phenotyped animals
phe=4:9
# Create Phi and back-solving matrices
mats = getPhi(Ai,phe)
# Solve the reduced model
sol4 = BLUP(X, y, Z=Z[,c(phe,phe+n)],
Ri, Gi, Ai=mats$Phi)

Following Equation (11), ûn are back-solved using the
following code:

u_n = solve(kronecker(Gi, mats$Ann),
kronecker(Gi, mats$Anp) %*%
-sol4[-4:-1])

The following command confirms that solutions from the full
(Equation 8) and the reduced models (Equation 10) are identical.

source("check.R") # Call the function
check(sol3, c(sol4[1:4], u_n[1:3],
sol4[5:10], u_n[4:6], sol4[11:16]))

3.3. Repeatability Animal Model
Data from Example 4.1 of Mrode (2005) was used
(Supplementary Table 3). The data can be produced using
e41data.R in the data repository. Equation (12) is coded in
function “BLUP” in e41.R. The following code produces the
data and solutions.

# Create data
source("e41data.R")
# Call the solver function
source("e41.R")
# Solve the full model
sol5 = BLUP(X, y, Z, W, Va, Vpe, Ve, Ai)

Applying Equation (14) instead of Equation (12) requires data
transformation. Matrices 8, Ann and Anp are obtained using
function “getPhi” coded in getPhi.R. Solutions of the reduced
model are obtained as:

# Call the function to create Phi matrix
source("getPhi.R")
# Define phenotyped animals
phe=4:8
# Create Phi and back-solving matrices
mats = getPhi(Ai,phe)
# Solve the reduced model
sol6 = BLUP(X, y, Z=Z[,phe], W, Va,
Vpe, Ve, Ai=mats$Phi)
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Following Equation (6), ûn are back-solved using the
following code:

u_n = solve(mats$Ann, mats$Anp %*%
-sol6[5:9])

The following command confirms that solutions from the
full (Equation 12) and the reduced models (Equation 14)
are identical.

source("check.R") # Call the function
check(sol5, c(sol6[1:4], u_n,
sol6[5:14]))

3.4. Maternal Trait Animal Models
Data from Example 6.1 of Mrode (2005) was used
(Supplementary Table 4). This example includes maternal
genetic and maternal permanent environment effects. The data
can be produced using e61data.R in the data repository. The
equation system is coded in function “BLUP” in e61.R. The
following code produces the data and solutions.

# Create data
source("e61data.R")
# Call the solver function
source("e61.R")
# Solve the full model
sol7 = BLUP(X, y, Z, W, S, G, Vmpe,
Ve, Ai)

Applying the reduced model requires data transformation.
Matrices 8, Ann, and Anp are obtained using function “getPhi”
coded in getPhi.R. Solutions of the reduced model are
obtained as:

# Call the function to create Phi matrix
source("getPhi.R")
# Define phenotyped animals
phe=5:14
# Define dams
dams = c(2,5:7)
# Find being phenotyped or dam
pheORdam = sort(unique(c(phe, dams)))
# Create Phi and back-solving matrices
mats = getPhi(Ai,pheORdam)
# Solve the reduced model
sol8 = BLUP(X, y, Z=Z[,pheORdam],
W=W[,pheORdam],
S, G, Vmpe, Ve, Ai=mats$Phi)

Following Equation (21), ûn and ûn are back-solved using the
following code:

Gi = solve(G)
sol_n = solve(kronecker(Gi, mats$Ann),

kronecker(Gi, mats$Anp) %*%
-sol8[5:26])

# Separate direct and maternal genetic
back-solved solutions

u_n = sol_n[1:3]
m_n = sol_n[-3:-1]

The following command confirms that solutions from the full
and the reduced models are identical.

source("check.R") # Call the function
check(sol7, c(sol8[1:4], u_n[1],
sol8[5], u_n[2:3],

sol8[6:15], m_n[1], sol8[16],
m_n[2:3], sol8[17:30]))

3.5. Animal Models With Genetic Groups
Data from Example 3.4 of Mrode (2005) was used
(Supplementary Table 5). The data can be produced using
e34data.R in the data repository. Equation (25) is coded in
function “BLUP” in e34.R. The following code produces the
data and solutions.

# Create data
source("e34data.R")
# Call the solver function
source("e34.R")
# Solve the full model
sol9 = BLUP(X, y, Z, lambda, Ai, Q)

Applying Equation (27) instead of Equation (25) requires data
transformation. Matrices 8, Ann, and Anp are obtained using
function “getPhi” coded in getPhi.R. Solutions of the reduced
model are obtained using function “BLUP” coded in e31.R, and
the following code.

# Call the function to create Phi matrix
source("getPhi.R")
# Call the solver function for the

reduced model
source("e31.R")
# Define phenotyped animals
phe=4:8
# Create Z matrix for the reduced model
Z = Z[,phe]
Z = cbind(Z, matrix(0,nrow(Z),ncol(Q)))
# Make extended A^-1 including genetic
groups

tmp = cbind(diag(nrow(Q)), -Q)
Ai2 = crossprod(tmp, Ai) %*% tmp
# Create Phi and back-solving matrices
# Reduction to phenotyped animals and
genetic groups

mats = getPhi(Ai=Ai2, c(phe,9))
# Solve the reduced model
sol10 = BLUP(X, y, Z, lambda,
Ai=mats$Phi)

Following Equation (29), ûn + Qnĝ are back-solved using the
following code:

u_n = solve(mats$Ann, mats$Anp %*%
- sol10[-2:-1])

The following command confirms that solutions from the
full (Equation 25) and the reduced models (Equation 27)
are identical.
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source("check.R") # Call the function
check(sol9, c(sol10[1:2], u_n,
sol10[3:8]))

3.6. Animal Models With a Genomic

Relationship Matrix (GBLUP)
Data from Example 3.1 of Mrode (2005) was used
(Supplementary Table 1). The data can be produced using
e31data.R in the data repository. Rather than using the
A−1 matrix produced by e31data.R (data repository), a G−1

matrix was used, created by makeGi.R (data repository). The
following code creates the data and solutions. The solutions are
obtained using the function “BLUP” in e31.R.

# Create data
source("e31data.R")
# Call the solver function
source("e31.R")
# Make a G^-1 matrix
source("makeGi.R")
# Solve the full model
sol11 = BLUP(X, y, Z, lambda, Ai=Gi)

Applying Equation (31) instead of Equation (30) requires data
transformation. Solutions of the reduced model are obtained as:

# Define phenotyped animals
phe=4:8
# Define non-phenotyped animals
nonphe = which(! 1:nrow(ped) %in% phe)
# Make G for phenotyped animals
(reduced model)

G = tcrossprod(M[phe,]-2*P[phe,])/
(2*sum(p*(1-p))) +

diag(length(phe))/10
# Invert G
Gi2 = solve(G)
# Solve the reduced model
sol12 = BLUP(X, y, Z=Z[,phe], lambda,
Ai=Gi2)

Following Equation (6) (substituting A to G), ûn are back-
solved using the following code:

u_n = solve(Gi[nonphe,nonphe],
Gi[nonphe,phe] %*% -sol12[-2:-1])

The following command confirms that solutions from the
full (Equation 30) and the reduced (Equation 31) models
are identical.

source("check.R") # Call the function
check(sol11, c(sol12[1:2], u_n,
sol12[3:7]))

3.7. Animal Models With an Augmented

Pedigree-Genomic Relationship Matrix

(ssGBLUP)
Data from Example 3.1 of Mrode (2005) was used
(Supplementary Table 1). The data can be produced using

e31data.R in the data repository. It was considered that
animals 3, 7, and 8 are genotyped and a 3 × 3 arbitrary
(G−1 − A−1

22 ) matrix was considered for genotyped animals. An
H−1 matrix was created (Equation 32) to be used instead of A−1.
The following code creates the data and solutions. The solutions
are obtained using the function “BLUP” in e31.R.

# Create data
source("e31data.R")
# Call the solver function
source("e31.R")
# Define genotyped animals
geno = c(3,7,8)
# Make an arbitrary G^-1 - A_22^-1
GimA22i = matrix(c(50,2,-5,2,40,6,-5,6,
60)/100, nrow=3)
# Create H^-1
Hi = Ai
Hi[geno, geno] = Ai[geno, geno]
+ GimA22i

# Solve the full model
sol13 = BLUP(X, y, Z, lambda, Ai=Hi)

Applying Equation (34) instead of Equation (33) requires data
transformation. Solutions of the reduced model are obtained as:

# Define phenotyped animals
phe=4:8
# Define phenotyped or genotyped
animals

pheORgeno = sort(union(phe, geno))
# Define non-phenotyped and
non-genotyped animals

nonpheANDnongeno = setdiff(1:nrow(Ai),
pheORgeno)

# Create H^55
H55 = Hi[pheORgeno, pheORgeno]
# Create A^44
A44 = Ai[nonpheANDnongeno,
nonpheANDnongeno]
# Create A^45
A45 = Ai[nonpheANDnongeno, pheORgeno]
# Create Theta matrix (Eq. 34)
Theta = H55 - crossprod(A45,solve(A44))
%*% A45

# Solve the reduced model
sol14 = BLUP(X, y, Z=Z[,pheORgeno],
lambda, Ai=Theta)

Following Equation (35), solutions for non-phenotyped and
non-genotyped animals are back-solved using the following code:

u_n = solve(A44, A45 %*% -sol14[-2:-1])

The following command confirms that solutions from the
full (Equation 33) and the reduced (Equation 34) models
are identical.

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 637626

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Nilforooshan and Garrick Reduced Animal Models

source("check.R") # Call the function
check(sol13, c(sol14[1:2], u_n,
sol14[3:8]))

4. DISCUSSION

Genetic evaluation centers around the world deal with tight
deadlines for delivering breeding value predictions of animals
to the industry. The amount of data to be dealt with usually
contains millions of animals and that can make restraints
around computational time and resources. Often, there are many
historical or ancestral animals as well as inactive (culled) breeding
animals, for which breeding values are not routinely needed.
Computational demand can be reduced by applying reduced
animal models that are equivalent to the full animal models.

Several forms of animal model were reduced to comprise
equations for breeding values only for phenotyped animals, and
extension to other forms of animal model can be done following
the same logic. The efficiency of these models depends on several
factors, such as the proportion of phenotyped animals in the
population being evaluated, sparseness of 8, and the number
of effects in common between the full and the reduced model.
There is also a trade-off between the number of phenotyped
and non-phenotyped animals. The smaller the proportion of
phenotyped animals the smaller the size of MME, but the greater
the computational cost of calculating8 as a result of a largerAnn.
The sparsity of8, which itself depends on the sparsity ofAnn [the
sparser the Ann, the sparser the (Ann)−1] can heavily reduce the
efficiency of the reduced animal model. Depending on the size of
8, it might have more non-zero elements than the A−1 matrix.
This might erode any computational benefit from the reduced
model compared to the full model. We suggest two solutions
for this problem. One is discarding non-phenotyped animals
that have little or no relatedness with phenotyped progeny (i.e.,
a few generations distant from any phenotyped descendant),
and the other is re-ordering Ann to obtain two diagonal blocks,
one very sparse (Ass) and the other (Add) relatively dense
(

Ann =

[

Ass Asd

Ads Add

])

. Then, Add, Asd, and Ads are appended to

App, Anp, and Apn. This also requires appending rows of 0 to
X and columns of 0 to Z (corresponding to the appended non-
phenotyped animals). A pedigree-only-based back-solving (such
as for BLUP and for ssGBLUP dividing animals to “phenotyped
or genotyped” and “non-phenotyped and non-genotyped”) can
be done efficiently for millions of animals.

Solutions for non-phenotyped animals can be back-solved
after the solutions for phenotyped animals are obtained.
Generally, back-solving is more efficient and faster than solving
the mixed model equations, and that is due to the known
structure of A−1. Usually, breeding values of only a small
proportion of non-phenotyped animals are of interest (e.g.,
active non-phenotyped breeding animals). Consequently, the
back-solving procedure can be omitted by explicitly including
those animals together with phenotyped animals in the reduced
animal model.

The same reduction technique is applicable to BLUP using
the genomic relationship matrix (GBLUP). That would reduce
the computational demand to form and invert G by limiting
it to phenotyped animals only, and the computational demand
to solve a smaller set of mixed model equations. Note that the
computational cost of invertingG is cubic to its dimension unless
it is not full rank because it was formed with fewer markers than
the number of genotyped animals, where an equivalent model
(Fernando et al., 2016) can be used or it uses a reduced rank
approximation, such as the algorithms introduced by Misztal
(2016) and Mäntysaari et al. (2017). Though, back-solving is
possible, it is discouraged as it involves the availability of the
blocks of G−1 among non-phenotyped animals and between
non-phenotyped and phenotyped animals. Because most of the
computational complexity of GBLUP is due to forming and
inverting G, it is recommended to form and invert G for
phenotyped animals together with non-phenotyped animals of
interest. However, it is assumed that either the allele frequencies
in the whole population are known or allele frequencies in
the individuals present in the reduced model are not different
from the allele frequencies in the whole population. Also, as it
was mentioned earlier, another way of back-solving for non-
phenotyped animals is through back-solving of marker effects.
There are other forms of reduced GBLUP proposed by other
studies (Cantet and Smith, 1991; Hoeschele, 1993; Arendonk
et al., 1994; Saito and Iwaisaki, 1996, 1997). Comparing the
efficiency of these methods and possibly combining them with
the reduced GBLUP presented in this study are yet to be
investigated. The computational efficiency of the reduced GBLUP
presented in this study heavily depends on the proportion of
animals not included in the reduced model (genotyped and
non-phenotyped animals whose evaluation is not of interest).

There are two possibilities for ssGBLUP; dividing animals to
phenotyped and non-phenotyped animals or dividing animals
to “phenotyped or genotyped” and “non-phenotyped and non-
genotyped” groups. The latter is preferred as it makes back-
solving independent from H22 (block of H−1 corresponding to
genotyped animals) and dependent to blocks of A−1 between the
two groups of animals and among “non-phenotyped and non-
genotyped” animals. Blocks of A−1 are much easier to calculate
and keep in the memory, because of its sparsity.

Variance components can be estimated using reduced animal
models (e.g., Henderson, 1986; Besbes et al., 1992; White et al.,
2006; Guy et al., 2009). Restricted maximum likelihood (REML,
Patterson and Thompson, 1971) has been a popular method
for variance components estimation. Generalized inverses of
coefficient matrices of mixed model equations are required
under both the full and the reduced animal models (Henderson,
1986). Reduced animal models have considerably smaller
order coefficient matrix and consequently less computational
complexity of variance components estimation. Henderson
(1986) estimated variances for the reduced model based on the
method of Quaas and Pollak (1980). Parents with phenotyped
progeny are evaluated in this reduced model. To account
for Mendelian sampling and for the genetic contribution of
unknown parents, there is an additional component (compared
to the full model) to the variance of residuals (Henderson, 1986).
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The introduced reduction method in this study evaluates all the
phenotyped animals and no extra assumption or component is
required to hold the assumption on var(y). The matrices used
in the reduced model do not make any deviation from the
assumptions on variance components. Also, creating theZmatrix
for the reduced model in this study is trivial (if the vector of
phenotypes is ordered by the order of animals in the pedigree, Z
is an identity matrix with the order of the number of phenotypes;
for a repeatability model, it is still an incidence matrix with
coefficients 0 and 1, relating phenotypes to animals). Creating
the Z matrix for the reduced model of Quaas and Pollak (1980)
requires pedigree information.

The presented reduced animal models can further be reduced.
This can be achieved by a “2-fold” model reduction, which
involves reducing themodel to equations for phenotyped animals
followed by reducing the model to parents of phenotyped
animals (Quaas and Pollak, 1980). Such 2-fold reduced animal
model contains equations corresponding to phenotyped parents
of phenotyped animals. A 2-fold reduced animal model also
requires a 2-fold back-solving procedure, in which the solutions
of non-phenotyped parents are back-solved from the solutions
of phenotyped parents, and then the solutions of non-parents
(and parents of non-phenotyped progeny) are back-solved
from the solutions of parents. This 2-fold back-solving can
be omitted or reduced to a 1-fold back-solving by putting
together a group of animals of interest to phenotyped parents
with phenotyped progeny. Further research is required on
this subject.

Finally, depending on the size of the data and the number of
traits and effects in the model, the equation system of the reduced
animalmodelmay become small enough that direct solving of the

mixed model equations might become faster and more efficient

than iterative procedures for solving mixed model equations
(Schaeffer and Kennedy, 1986; Berger et al., 1989; Strandén and
Lidauer, 1999).
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