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In the “personalized medicine” era, one of the most difficult problems is identification of
combined markers from different omics platforms. Many methods have been developed
to identify candidate markers for each type of omics data, but few methods facilitate
the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs)
is well known to affect only indirectly phenotypes by regulating mRNA expression
and/or protein translation. To take into account this knowledge into practice, we
suggest a miRNA-mRNA integration model for survival time analysis, called mimi-surv,
which accounts for the biological relationship, to identify such integrated markers more
efficiently. Through simulation studies, we found that the statistical power of mimi-
surv be better than other models. Application to real datasets from Seoul National
University Hospital and The Cancer Genome Atlas demonstrated that mimi-surv
successfully identified miRNA-mRNA integrations sets associated with progression-free
survival of pancreatic ductal adenocarcinoma (PDAC) patients. Only mimi-surv found
miR-96, a previously unidentified PDAC-related miRNA in these two real datasets.
Furthermore, mimi-surv was shown to identify more PDAC related miRNAs than other
methods because it used the known structure for miRNA-mRNA regularization. An
implementation of mimi-surv is available at http://statgen.snu.ac.kr/software/mimi-surv.

Keywords: statistical method, miRNA-mRNA integration, personalized medicine, pancreatic ductal
adenocarcinoma, The Cancer Genome Atlas

INTRODUCTION

MicroRNAs (miRNAs) are small, non-coding RNAs that function to regulate target messenger
RNAs (mRNAs), based on sequence complementarity. It is well known that miRNAs affect nearly
all developmental and pathological processes in animals, particularly in cell development, and
many cancer types are affected by miRNA regulation by downregulating their target mRNAs
(Ha and Kim, 2014).

Using a well-known regulation mechanism, many studies have focused on finding the target
mRNAs. The biological context of regulation mechanism between miRNA and target mRNA can be
easily explained by showing significant negative correlation between them and investigating their
relationship with the phenotypes (Enerly et al., 2011; Xu et al., 2019). For instance, hierarchical
clustering on miRNA expression profiles found that the expression levels of the tumor suppressor
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gene, TP53 are associated with specific clusters (Enerly et al.,
2011). When the number of target genes is small, this approach
is effective. However, it is more difficult to identify novel
combinations of miRNA and its target mRNAs that are
concurrently associated to the phenotype.

To perform an integrated analysis of miRNA and its target
mRNAs, two-step analysis has been commonly used in many
studies. The first step chooses miRNAs associated with specific
phenotypes. The second step further investigates expression
levels of known target mRNAs that are negatively correlated
with each miRNA (Enerly et al., 2011; Yonemori et al., 2017).
However, this approach only focuses on the relationship between
phenotypes and miRNAs without providing information about
how miRNAs and their inhibited mRNAs affect observed
phenotype together.

On the other hand, a hierarchical structured component
analysis of miRNA-mRNA integration (HisCoM-mimi) has
been recently proposed to investigate how miRNAs indirectly
affect the phenotype with biological relationships between the
miRNAs and their target mRNAs [5; 6]. HisCoM-mimi is a
component-based method that models biological relationships
as hierarchically structured “components,” to efficiently identify
miRNA-mRNA integration sets. HisCoM-mimi has an advantage
of handling many types of phenotypes from an exponential
family distribution under the framework of a generalized linear
model. While its application to cancerous vs. normal tissues
successfully identified more biologically plausible and intuitive
interpretations than other methods (Kim et al., 2018), it cannot
be applicable to the survival analysis which is one of prominent
interest among the cancer studies.

In this study, we propose a hierarchical structured component
analysis of miRNA-mRNA integration to survival phenotype,
called mimi-surv using a Cox Proportional Hazard (Cox-PH)
model (Cox, 1972; Kim, 2018; Kim et al., 2018). Like HisCoM-
mimi, mimi-surv is also a component-based analysis, such
as pathway models we developed for rare variant pathway
analysis (Lee et al., 2016, 2019). In this respect, the proposed
model introduces a latent variable for each miRNA and its
target mRNAs as a component and fits one augmented model
including all latent variables to determine the associations with
the survival phenotype.

We applied the proposed approach, mimi-surv, to two
real datasets from pancreatic ductal adenocarcinoma (PDAC)
patients. It is noted that PDAC is one of the most lethal
gastrointestinal malignancies. Despite improvements in
perioperative outcomes, PDAC has a poor prognosis, with
a 5-year survival rate of only 6%, worldwide (Greither et al.,
2010). Because most patients are diagnosed in the advanced
stages, and effective systemic therapies are lacking. Consequently,
many researchers have focused on developing novel prognostic
markers of PDAC. For example, several studies have identified
cell-free miRNAs as prognostic markers of PDAC among which
high expression of miR-21 was shown to have a significant effect
on overall survival time (Frampton et al., 2015). We considered
two real PDAC datasets; one is a microarray-based dataset from
PDAC patients from Seoul National University Hospital (SNUH),
and the other is high-throughput sequencing data, obtained

from The Cancer Genome Atlas (TCGA). From those datasets,
we tried to find prognostic factors for survival after surgery of
PDAC by survival analysis on integrated miRNA-mRNA sets,
using mimi-surv.

In spite of that some prognostic miRNAs have been identified,
their precise roles in the progression of PDAC have not been easy
to interpret due to absence of overall grasp of vast network of
miRNA-mRNA interaction. In this article, we demonstrated how
well our hierarchical component-based approach can embrace
such a biological concept. Moreover, the proposed mimi-surv was
compared with many other survival analysis methods throughout
the simulation studies.

MATERIALS AND METHODS

The Mimi-Surv Model
Figure 1 shows the schematic plot for mimi-surv model. For
survival data analysis, the Cox-PH model is used (Cox, 1972).
miRNA-mRNA integration set contains the miRNA, mRNA
affected by the miRNA, and miRNA integration latent variable.
The miRNA-mRNA integration set shows that the miRNA’s
direct and indirect effects on the phenotype are coming from
target mRNAs. Each miRNA-mRNA integration set consists
of one miRNA (zij), and mRNAs (xij1, xij2, . . ., xijGj) which
were regulated by the miRNA. miRNA-mRNA integration set
j is summarized by the latent variable fij which is a linear
combination of zij and xij1, xij2, ..., xijGj. Thus, the effect
of miRNA-mRNA integration set j on the hazard rate is
computed by βj. Detailed fitting approaches for mimi-surv are
described as follows.

Adjusting mRNA Expression by miRNA
Regulation Information
The mimi-surv model consists of three parts. First, the miRNA-
mRNA part estimates effect of miRNA on target mRNAs. Second,
the miRNA integration latent part models overall effect of each
miRNA. Finally, the phenotype-latent part associates all latent
variables with the target phenotype. In the miRNA-mRNA part,
a simple linear combination relationship is constructed between
miRNA and target mRNAs, as shown in the following Equation 1:

X̂ijk = xijk − γjkzij, i = 1, · · · ,N, j = 1, · · · , J, k = 1, · · · ,Gj,
(1)

where xijk is the ith individual’s mRNA expression of the kth

gene, which is inhibited by jth miRNA, zij is the ith individual’s
jth miRNA expression, γjk is the inhibition coefficient for the
jth miRNA for the kth gene, and Gj is the number of inhibited
mRNAs by the jth miRNA. By estimating the miRNA inhibition
coefficients γjk, the kth gene’s mRNA expression after adjusting
the inhibition effect of the jth miRNA can be obtained.

Latent Structures
The proposed mimi-surv models an aggregated effect of both
miRNA and mRNA as a latent variable fij. As defined in Equation
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FIGURE 1 | Schematic diagram of mimi-surv model. Rectangles and circles indicate observed and latent variables, respectively. Arrows indicate conceptualized
directions of effects between the variables. Each miRNA-mRNA integration set consists of one miRNA and its target mRNAs. Each miRNA-mRNA integration set j is
summarized by the latent variable fj which is linear combination of zj and its adjusted mRNA expressions.

2, the latent variable fij represents the global effect of the
miRNA’s activity, as measured by a linear combination of both
the inhibition effects (wjk) of its target mRNA(s) expression and
the direct effect (γj0) of the miRNA expression value.

fij = γj0zij +
Gj∑

k = 1

X̂ijkwjk (2)

The latent variables are finally associated to the target
phenotype using a Cox-PH model (Cox, 1972) as shown in
Equation 3, under the assumption that the hazard rate is
proportional to the risk factors over time.

h
(
yi|Fi

)
= h0

(
yi
)

exp

 J∑
j = 1

γj0zj +
Gj∑

k = 1

X̂ijkwjk

 βj

 =
h0 (Y) exp

 J∑
j = 1

fijβj

 , (3)

where yi denotes the survival time, Y denotes the vector of yi,
and h

(
yi
∣∣ F) denotes the hazard function of the ith sample. In

addition, h0(Y) is a baseline hazard function, and βj represents
the effect of fij on the hazard rate, as a risk factor. Then, the partial
likelihood function, Lp, is defined as follows:

Lp =

∏
i:Ci = 1 exp

(∑J
j = 1 fijβj

)
∑

q:yq = yi exp
(∑J

j = 1 fqjβj
) ,

Ci =

 0
(
ith individual is censored

)
1
(
ith individual is deceased

) (4)

Model Fitting
In model fitting, we estimate the parameters of mimi-surv by
adopting the algorithm of HisCoM-mimi which is based on the
alternating least squares (ALS) algorithm for the penalized log-
likelihood function, with penalty parameters (Kim et al., 2018).
In the mimi-surv model, the objective function to be maximized
is expressed as follows:

φ =
∑

i:ci = 1

 J∑
j = 1

fijβj − log
∑

q:yq = yi

exp

 J∑
j = 1

fqjβj

−
1
2
λm

J∑
j = 1

Gj∑
k = 1

Pλmm(wjk)−
1
2
λmm

J∑
j = 0

Pλm(βj). (5)

Here, the first sum consists of the partial likelihood from
a Cox-PH model and the remaining term consists of two
penalization parts with tuning parameters of λm and λmm.
These two λs are so-called the tuning parameters of both the
miRNA-mRNA pairs and the integrated latent components to
adjust the strength of the penalty function (Cox, 1972). Pλmm
and Pλm denote penalty functions for w and β, respectively.
Any regularization function can be used. For example, for β it
can be defined as

∑J
j = 1 β2

j for ridge,
∑J

j = 1
∣∣βj∣∣ for lasso, and(

1
2
∑J

j = 1 β2
j +

∑J
j = 1

∣∣βj∣∣) for Elastic-Net.
We used the ALS algorithm to maximize the objective function

by the two-step algorithm. The first part of the ALS algorithm
is maximizing the objective function, φ, with the conditioning
set of fqj, and finding solutions for a set of βj. The second
part of algorithm is, maximizing the objective function, with a
conditioning set of βj, as calculated in the previous step, and

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 634922

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-634922 June 29, 2021 Time: 11:1 # 4

Kim et al. mRNA-miRNA Integration Set Survival Analysis

updating the set of f values. Then these two steps are iterated until
the solution is converged.

In the mimi-surv model, βj indicates the effect size of jth
miRNA-mRNA integration set and wjk indicates the effect size
of kth mRNA inhibited by jth miRNA. In this study, we find
the significant integrated effects of miRNA and its inhibited
mRNAs, and we used mimi-surv to test βj, which summarized
mRNA-miRNA integration set.

We performed a simple permutation scheme to test the
statistical significance of βj and computed p-values and their
q-values for the multiple testing adjustment (Ma et al., 2014).
The number of permutations was set to 1,000. However, it can
be increased easily to improve the accuracy of p-values. If one
of the penalty functions is pre-specified, mimi-surv provides
the corresponding p-values. However, if the choice of a penalty
function is not given, mimi-surv can use a simple approach that
picks the maximum estimate from multiple penalties, namely
maxT. Through permutations, the null distribution of maxT is
generated from which the p-value can estimated.

Comparative Models
We compared the performance of mimi-surv with various types
of Cox-PH models, including a single miRNA Cox-PH model
(single) and multiple penalized Cox-PH regression models with
different penalties such as ridge, lasso, Elastic-Net (EN), and
group lasso (grplasso) (Lee and Silvapulle, 1988; Tibshirani, 1996;
Zou and Hastie, 2005; Meier et al., 2008)]. The objective function
for multiple penalized Cox-PH model is given as follows:

φ1=
∑

i:ci = 1

 J∑
j = 1

δjzij − log
∑

q:yq ≤ yi

exp

 J∑
j = 1

δjzqj

− Pθ

(
δj
)
,

(6)
where Pθ

(
δj
)

denotes regularization function, which can be
defined as θ

∑J
j = 1 δ2

j for ridge,θ
∑J

j = 1
∣∣δj∣∣ for lasso, and

θ
(

1
2
∑J

j = 1 δ2
j
∑J

j = 1
∣∣δj∣∣) for EN. Here θ is the tuning parameter

to adjust the strength of the penalty function.
For a grplasso Cox-PH model (Meier et al., 2008), using the

group information from the miRNAs and mRNAs, the following
regression model is given:

h (Y) = h0 (Y) exp

 J∑
j = 1

δjzj +
J∑

j = 1

Gj∑
k = 1

λjkx̂jk

,

subject to

∣∣δj
∣∣+ Gj∑

k = 1

∣∣λjk
∣∣ ≥ t. (7)

To find the optimal tuning parameter θ, we performed
10-fold cross-validation and then determined the value of
θ, which minimizes the value of the objected function for
the validation set.

SNUH and TCGA Datasets
The SNUH dataset consists of 95 PDAC patients in which the
average of age was 65.2 years with a standard deviation 9.4 years.
There were 46 male and 49 female patients. The median survival
time after surgery was 795 days, which is indicated by a red
vertical line in a Kaplan-Meier plot as shown in Figure 2A.

mRNA expression data was produced by the Human Gene
1.0 ST array (Affymetrix, Santa Clara, CA, United States). For
background correction, the expression values were processed
by Robust Multi-array Averaging (RMA), using the Affymetrix
console, followed by quantile normalization. For the same
patient, miRNA expression was obtained from the GeneChip
miRNA 3.0 array (Affymetrix, Santa Clara, CA, United States).
miRNA expression values were normalized by RMA, and only the
human-derived miRNA targets were selected. The normalization
of the background correction of the jth human probe of the
ith sample (xij) was done using the other species’ probes as
background intensities as shown in Equation 8.

xij (norm) = xij −median
(
xij, j ∈ non− human miRNA

)
(8)

On the other hand, TCGA PDAC dataset were downloaded
from the Genomic Data Commons (GDC) data portal of
the U.S. National Cancer Institute1 (Cancer Genome Atlas
Research Network, Weinstein et al., 2013). To normalize mRNA-
seq and miRNA-seq datasets, Fragments Per Kilobase Million
(FPKM) was measured for each read count. For miRNA
expression profiling, Illumina HiSeq (Illumina Inc., San Diego,
CA, United States) was used. We collected 185 TCGA PDAC data
sample for analysis. The read counts were log-transformed after
adding a pseudo count of 0.5. In survival analysis, we excluded
25 non-PDAC samples and 47 PDAC samples whose follow-up
time was less than 3 months because the cause of their deaths is
not clear. After excluding these cases, we have 112 samples that
consist of 48 males and 64 females. The mean age was 63.9 years
with a standard deviation 11.1 years. Furthermore, the median
survival time was 585 days as indicated by a red vertical line in a
Kaplan-Meier plot in Figure 2B.

Identification of miRNA-mRNA
Integration Set
For miRNA-mRNA integration analysis, we generated miRNA-
mRNA integration sets which collected miRNAs and their
target mRNAs satisfying two conditions as follows: (i) Reported
target mRNAs by sequence-based target prediction results
from TargetScan 7.1 (Agarwal et al., 2015) and (ii) significant
negative correlation coefficients between miRNAs and mRNAs
from SNUH dataset.

From the miRNA-mRNA pairs from TargetScan using SNUH
dataset, we calculated Pearson’s correlation and performed one-
sided t-test to select the pairs with significant (p< 0.05) negative
correlation. For those using TCGA dataset that contains many
zero read counts, we first filtered out spurious pairs of miRNA-
mRNA by performing one-sided t-test to test whether the average
mRNA expression of the samples with zero miRNA read count

1https://portal.gdc.cancer.gov/
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FIGURE 2 | Kaplan-Meier curves of (A) 95 samples of SNUH dataset and (B) 112 samples of TCGA dataset. Red vertical lines indicate median survival times (795
and 652 days SNUH and TCGA, respectively).

TABLE 1 | List of causal miRNAs and the numbers of target mRNAs used in simulation.

miRNA # target mRNAs Regulated mRNAs in SNUH data

miR-2121,2,3 425 PAX5, SHISA9

miR-2191,2,3 445 HMGA2, EGR3

miR-200b2,3 9 SLIT2, BNC2, CDH11

miR-322,3 172 PRKAB2, SNX2

miR-3622,3 125 PLAT, SMAD2, CHRDL1

miR-2043 56 GRIN2B, HMGA2, ARNTL2, ACADL, TDRD6

miR-2173 449 LHX1, NR4A2, PKP1, SHOX, TRIM71, CAMK2A

miR-12973 285 MCL1, RLF, RAB5IF, EDEM3

miR-4963 149 FLRT2, PAX6, SDHC, SERAC1, SYT5, UBXN2A

miR-6703 550 FRAS1, ANKRD50, LIN28B, PDE7A, SLC4A4, TP53INP1, TRIB2, CD248

1miRNAs used in the simulation with two causal miRNAs.
2miRNAs used in the simulation with five causal miRNAs.
3miRNAs used in the simulation with ten causal miRNAs.

was larger than that of the samples with non-zero miRNA read
counts (p < 0.05). For those significant pairs, we then tested
whether a correlation between target mRNAs and miRNAs was
less than 0, using the samples with nonzero miRNA read counts.

Simulation Study and Real Data Analysis
To compare which method had a better power to discover
the true signal miRNA-mRNA pair, we performed simulation
studies to compute type I errors and power of mimi-surv and
the compared methods, using the miRNA expression values of
the SNUH PDAC dataset that consists of 64 miRNAs and 6,226
significant miRNA-mRNA pairs. Among those miRNA-mRNA
pairs, we selected two, five and ten causal miRNAs to simulate
phenotypes. Table 1 lists those miRNAs and their regulated
mRNAs. To generate a simulation dataset, we used the same
simulation settings as we did for our previous HisCoM-mimi
analysis (Kim et al., 2018).

We assumed a true model for generating simulated phenotype,
as given in Equation 9. We considered that all causal miRNA-
mRNA sets, having an effect size of β. Also, we considered
regulated target mRNAs of the miRNA-mRNA sets, having the
common effect size, w11 = w1p, and their regulating miRNA

TABLE 2 | The number of mRNAs included in the miRNA-mRNA integration set.

miRNA # overlapped # mRNAs (SNUH) # mRNAs (TCGA)

miR-105 41 331 51

miR-133b 3 10 281

miR-141 28 469 37

miR-192 1 47 1

miR-200b 2 4 9

miR-200c 10 336 15

miR-206 8 50 114

miR-211 60 461 119

miR-372 7 24 207

miR-429 3 32 14

miR-488 13 43 62

miR-524 4 50 17

miR-670 2 8 131

miR-96 3 36 43

having the effect size γ10. We then considered three scenarios
with different number of causal miRNAs (2, 5, and 10). For the
scenario with two causal miRNAs, miR-212 and miR-219 were
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used to generate phenotypes. In the scenario with five causal
miRNAs, miR-200, miR-32, miR-362 were considered, in addition
to the aforementioned two miRNAs. Lastly, five miRNAs (miR-
204, miR-217, miR-1297, miR-496, miR-670) were additionally
used in the scenario with ten causal miRNAs (see Table 1
and section “Results”). The statistical powers were computed as
the proportion of replicates whose empirical p-values of causal
miRNAs are nonzero and significant.

h(Y|X,Z) = h0 (Y) exp

(
β

(
γ10z1 +

K∑
k = 1

w1kx̂k

))
(9)

In the real data analysis, to deal with the multiple testing
problem, we used Benjamini-Hochberg procedure to calculate
False Discovery Rate (FDR) and calculated the q-value. The
threshold of q-value was set to 0.1.

RESULTS

miRNA-mRNA Pairs Extraction
We first extracted miRNA-mRNA pairs using the SNUH and
TCGA datasets. For the SNUH dataset, TargetScan provided
370,075 pairs of miRNA-mRNA for 503 unique miRNAs. Our
filtering strategy (see Methods) narrowed down the initial
370,075 set of pairs to 6,226 pairs that resulted in 54 unique
miRNAs. For the TCGA dataset, TargetScan provided 51,014
pairs of miRNA-mRNA for 69 unique miRNAs. Unlike SNUH
microarray dataset, we found that only 133 pairs of miRNA-
mRNA from nine unique miRNAs were left when Pearson
correlation tests were used. As noted in the Methods, the two-
side filtering step resulted in 1,456 pairs with 23 unique miRNAs
having at least one significant mRNA.

While two datasets showed generally concordant patterns
of miRNA-mRNA selection as shown in Table 2, the number
of mRNAs in each integration set has dataset-specific patterns.
While miR-211 integration set has the greatest number of
overlapped mRNAs when combining those of SNUH and TCGA,
the greatest number from each of SNUH and TCGA was miR-141
and miR-133b, respectively.

Simulation Results
The simulation was conducted using the SNUH dataset with
54 miRNAs and their 6,226 miRNA-mRNA pairs, with the
following parameters: two censoring fractions (δ = 0.15 and
0.3), three miRNA effect sizes (γ = 0.2, 0.3, and 0.4), three
mRNA effect sizes (w = 0.5, 0.6, and 0.7). Effect of miRNA-
mRNA integration set β was fixed to 1 for simplicity. The
significance level α was set to 0.05. First, we estimated the
type I error of each method by setting all parameters to 0
with the censoring fraction as δ. As shown in Figure 3, type
I errors were controlled at α = 0.05 in all models, except
grplasso (Meier et al., 2008) model which showed slightly inflated
type I errors. In addition, mimi-surv models generally showed
slightly smaller standard deviations of type I errors than the
compared methods (±0.009∼0.01 for mimi-surv,±0.013∼0.014
for the other models). Note that the type I errors of both
mimi-surv and the compared methods were not affected by
the zero proportion of miRNA expression (zero proportion
10, 30, and 50%). In addition, we also checked an effect of
penalty selection in the simulation. Since the selection of optimal
penalty is challenging in Cox-PH regression (Benner et al.,
2010; Ojeda et al., 2016), we applied a simple strategy that
combines the three penalties by selecting the maximum of the
estimates from three different penalties (lasso, ridge, and EN),
namely maxT. Simulation results showed that mimi-surv with the
proposed maxT approach successfully controlled type I errors

FIGURE 3 | Result of type I error evaluation. Bars indicate estimated type I error rate with given parameters (censoring fraction δ). Note that the type I errors were
evaluated by fixing all parameters to 0.

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 634922

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-634922 June 29, 2021 Time: 11:1 # 7

Kim et al. mRNA-miRNA Integration Set Survival Analysis

FIGURE 4 | Statistical powers of mimi-surv and the compared methods with different miRNA effect sizes (γ = 0.2, 0.3, and 0.4). The phenotypes were generated
from two, five and ten causal miRNA-mRNA integration set and censoring fraction of 0.15 and 0.3.

with significance level of 0.05 (0.049 ± 0.014 for mimi-surv), as
shown in Figure 3.

Second, we assessed the statistical powers of seven methods
(mimi-surv with three different penalties, grplasso, lasso, ridge,
and EN). Here, we generated 200 replicates of simulated
phenotypes to assess the power. When variable selection methods
(lasso, EN, grplasso, mimi-surv with lasso, and EN penalties)
produced zero coefficients, their effects were regarded as non-
significant. Figure 4 depicts statistical powers of the compared
methods with different miRNA effect sizes (0.2, 0.3, and 0.4)
and two censoring fractions (0.15 and 0.3). Note that other non-
causal miRNAs or mRNAs were also included to the analysis,
but they actually did not contribute to the phenotypes at
all. In this case, mimi-surv with ridge penalty and grplasso
showed the first and second largest powers, regardless of the
miRNA effect sizes. Lasso, EN, mimi-surv with EN and lasso
penalties had smaller power than the other methods. While
the powers generally increased with the miRNA effect size,

their ranks vary widely (Figure 4). Higher censoring rate
yielded generally lower power. Note that those tendencies
were maintained even if γ, w, or the number of connected
mRNAs were changed.

Figure 5 shows the barplots comparing the power of each
method for a fixed miRNA effect size (γ = 0.2) and various
mRNA effect sizes with censoring fractions of 0.15 and 0.3.
Similarly, mimi-surv with ridge penalty showed the largest
power. Unlike the results from Figure 4, mimi-surv with EN
and lasso showed comparable power to grplasso when the
number of causal miRNA increases. The same tendency was
observed for various values of γ and w. In addition, the power
differences between the results from various values of γ and
w were small.

SNUH Dataset Analysis Result
In order to identify miRNA-mRNA integration sets, 54 miRNA-
mRNA integration sets were selected to which mimi-surv along
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FIGURE 5 | Statistical powers of mimi-surv and the compared methods with different mRNA effect sizes (w = 0.5, 0.6, and 0.7). The phenotypes were generated
from two, five and ten causal miRNA-mRNA integration set and censoring fraction of 0.15 and 0.3.

with other methods was applied to identify significant miRNA-
mRNA integration sets. In this analysis, we focused on comparing
the lists of significant miRNAs obtained from single, ridge, lasso,
EN, grplasso, and mimi-surv (Lee and Silvapulle, 1988; Tibshirani,
1996; Zou and Hastie, 2005; Meier et al., 2008).

Figure 6 shows a Venn diagram displaying the number of
miRNAs identified by each method, in which the number without
brackets shows the number of miRNAs reported in other studies,
and those within brackets show the total number of miRNAs
found significant by each method. Note that the largest number
of miRNAs was detected by single marker analysis. Interestingly,
about half (6 out of 14) overlapped with other methods. Of
these, mimi-surv detected a total of six miRNAs, in which four
miRNAs were reported in other PDAC analyses (Ma et al., 2014;
Tanaka et al., 2014; Debernardi et al., 2015; Li et al., 2015; Cheng
et al., 2017). In general, the penalized Cox-PH methods identified
relatively fewer miRNAs than other methods, but ridge penalty

had the largest detection rate. Note that all methods commonly
detected miR-204, which is known for the differential expression
relationship between PDAC stage I and stage II-IV samples
(Debernardi et al., 2015). In addition, miR-204 has been used
to distinguish solid pseudo-papillary tumors from pancreatic
malignancies (Li et al., 2015).

TCGA Dataset Analysis Result and
Comparison
For the analysis of TCGA data, 23 miRNA-mRNA integrations
pairs were constructed. Table 2 shows information for the
miRNAs detected in the TCGA dataset analysis. For the TCGA
data analysis, all the compared methods including single marker
analysis and penalized regression methods failed to identify any
significant miRNAs. However, mimi-surv detected five significant
miRNAs with their significant genes, using various types of
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FIGURE 6 | Venn diagram for the number of miRNAs detected by each method in analysis of PDAC data from SNUH. The numbers without brackets show the
numbers of miRNAs found in other PDAC analyses, while those within brackets show the number of miRNAs not previously identified.

TABLE 3 | Results of statistically significant miRNA and its significant mRNAs from both datasets using mimi-surv.

miRNA # mRNAs # significant mRNAs (names) βmimi pmimi qmimi Penalty

S N U H miR-204 5 N/A −0.018 0.015 0.690 Ridge

1 (GRIN2B) −0.179 0.004 0.221 Lasso

1 (GRIN2B) −0.142 0.031 0.490 EN

N/A −0.179 0.021 0.382 maxT

miR-93 901 9 −0.406 0.012 0.319 Lasso

7 −0.544 0.003 0.178 EN

N/A −0.544 0.005 0.259 maxT

miR-212 2 1 (PAX5) 0.015 0.045 0.690 Ridge

1 (PAX5) 0.008 0.033 0.601 Lasso

miR-96 34 2 (GPM6B, EPHA3) 0.209 0.017 0.462 EN

N/A 0.209 0.020 0.382 maxT

miR-497 189 2 (LRRC14, PHF13) −0.252 0.036 0.490 EN

N/A −0.252 0.046 0.620 maxT

miR-339 46 N/A 0.024 0.045 0.690 Ridge

T C G A miR-133b 281 2 (ELFN1, KCNJ12) 0.679 0.010 0.218 EN

N/A 0.679 0.002 0.044 maxT

miR-200c 15 2 (BASP1, LPAR1) 0.131 0.038 0.154 Lasso

N/A 0.131 0.029 0.167 maxT

miR-506 109 2 (OXSR1, RAB43) 0.023 0.040 0.249 Ridge

miR-206 115 N/A 0.018 0.018 0.142 maxT

miR-96 43 2 (FRMD4A, SH3BP5) 0.419 0.021 0.244 EN

N/A 0.419 0.004 0.046 maxT

The replicated miRNA (miR-96) has embolden, and the significant mRNAs after the multiple testing adjustment (miR-96 and miR-133b) has underlined.

penalties. Among those results, we successfully replicated one
miRNA miR-96, which was identified in the analysis of SNUH
dataset. miR-96 is a well-known marker as a suppressor of
the KRAS signaling pathway (Tanaka et al., 2014). Among
our detected miRNAs, miR-200c, miR-506, and miR-96 were

previously reported in other PDAC studies (Mees et al., 2010;
Bryant et al., 2012; Tanaka et al., 2014; Cheng et al., 2016; Pan
et al., 2018; Zhuo et al., 2018).

Table 3 lists the significant miRNAs and their significant target
mRNAs detected by mimi-surv from both datasets. Interestingly,
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using the proposed maxT approach, mimi-surv successfully
identified two significant miRNAs (miR-96 and miR-133b) after
the multiple testing adjustment (FDR q-value < 0.05), and one of
those miRNAs (miR-96) was the replicated miRNA. In addition,
our approach successfully showed the advantage of penalization
approach. For instance, miR-93 has more than 901 target mRNAs,
therefore the significance level after multiple testing adjustment
can be dramatically small. However, only 7 mRNAs were found
significant by EN, and only 9 mRNAs were found significant
by lasso. As a result, by using mimi-surv, we could reduce the
number of candidate miRNA-mRNA sets.

DISCUSSION

In this study, we proposed mimi-surv which is a novel approach
to identifying significant miRNA-mRNA sets associated with
survival time, reflecting the nature of biological process between
miRNA and mRNA. The objective of our analysis is to propose an
integrative method for using an additional information of mRNA
to the analysis of miRNA. Thus, we investigated how much the
integrative analysis of miRNAs and mRNAs performs better than
the other integrative methods using both miRNAs and mRNAs
and the model using only miRNAs.

Through simulation studies, we compared the performance
of mimi-surv, with various methods such as a single Cox-PH
model, penalized Cox-PH methods with ridge, lasso, EN penalties
and grplasso, including selection of optimal penalties. From
the simulation results, it was shown that mimi-surv with ridge
penalty outperformed other methods, in terms of the statistical
power. The analysis of two real datasets of PDAC patients
from SNUH and TCGA on which mimi-surv showed superior
performance in identifying miRNA-mRNA integration sets for
survival time. Moreover, mimi-surv successfully replicated one
miRNA (miR-96) from TCGA dataset with statistical significance
(q-value < 0.01), despite difference of the generation platform
(Affymetrix chip vs. Illumina sequencing).

Our study remains with some limitations. First, although
our simulation study based on the real SNUH dataset and
simulated phenotypes showed that performance of mimi-surv
with ridge penalty had better power than other penalties, mimi-
surv with maxT approach or EN penalty detected more miRNAs
in real PDAC data analysis. It is well known that selection
of optimal penalty is challenging for Cox-PH model (Benner
et al., 2010; Ojeda et al., 2016). For real data application, we
recommend trying all applicable penalties to the dataset and
select the penalty with less excessive shrinkage and lower dataset
dependency. Although some additional simulation studies are

required to evaluate performance, the maxT approach can be
alternatively used. Finally, our permutation strategy requires an
intensive computational burden to compute p-values. Thus, in
future studies, we will derive a statistical distribution of the
beta coefficient in mimi-surv, to avoid permutation procedures.
Nonetheless, our mimi-surv remains promising for associating
survival time with the expression of miRNAs and small non-
coding RNAs whose misexpression is now widely accepted.
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