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Objective: Growing evidence has highlighted that the immune and stromal cells
that infiltrate in pancreatic cancer microenvironment significantly influence tumor
progression. However, reliable microenvironment-related prognostic gene signatures are
yet to be established. The present study aimed to elucidate tumor microenvironment-
related prognostic genes in pancreatic cancer.

Methods: We applied the ESTIMATE algorithm to categorize patients with pancreatic
cancer from TCGA dataset into high and low immune/stromal score groups and
determined their differentially expressed genes. Then, univariate and LASSO Cox
regression was performed to identify overall survival-related differentially expressed
genes (DEGs). And multivariate Cox regression analysis was used to screen independent
prognostic genes and construct a risk score model. Finally, the performance of the risk
score model was evaluated by Kaplan-Meier curve, time-dependent receiver operating
characteristic and Harrell’s concordance index.

Results: The overall survival analysis demonstrated that high immune/stromal score
groups were closely associated with poor prognosis. The multivariate Cox regression
analysis indicated that the signatures of four genes, including TRPC7, CXCL10, CUX2,
and COL2A1, were independent prognostic factors. Subsequently, the risk prediction
model constructed by those genes was superior to AJCC staging as evaluated by
time-dependent receiver operating characteristic and Harrell’s concordance index, and
both KRAS and TP53 mutations were closely associated with high risk scores. In
addition, CXCL10 was predominantly expressed by tumor associated macrophages and
its receptor CXCR3 was highly expressed in T cells at the single-cell level.

Conclusions: This study comprehensively investigated the tumor microenvironment
and verified immune/stromal-related biomarkers for pancreatic cancer.
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INTRODUCTION

Pancreatic cancer is one of the most lethal solid tumors because
of the lack of early diagnosis and rapid progression that lead to
poor prognosis (Kamisawa et al., 2016). It has been ranked as the
third leading cause of cancer-related death in the United States
with a 5-year survival rate of < 10% (Siegel et al., 2018). In the
past several decades, great efforts have been made to investigate
the molecular pathogenesis of pancreatic cancer; however, the
advances made in the diagnosis and therapy of pancreatic
cancer have still not significantly improved patient outcome
(Neoptolemos et al., 2018).

One of the prominent features of pancreatic cancer is
the intense desmoplastic stroma reaction, which has been
considered to be an important reason for tumor progression
and chemoresistance by remodeling the unique tumor
microenvironment (TME) (Feig et al., 2012). TME consists
of immune cells, stromal cells, endothelial cells, numerous
cytokines and chemokines, and extracellular matrix molecules,
which play a key role in regulating both tumorigenesis and
development of cancer as well as treatment responses (Hinshaw
and Shevde, 2019). Activated non-tumor cells, especially
pancreatic stellate cells, produce much extracellular matrix
proteins to create dense interstitial pressure that causes
unavailability of nutrients and drugs (Sun et al., 2018; Thomas
and Radhakrishnan, 2019). Moreover, TME may undergo
dynamic changes during tumor progression depending on
the interactions of tumor cells and interstitial cells. Therefore,
it is critical to understand the molecular composition and
function of TME to predict the prognosis of patients with
pancreatic cancer.

Infiltrating immune and stromal cells are fundamental
elements in TME, and increasing evidence suggest that they
are closely related to tumor growth and metastasis, tumor
recurrence and chemoresistance, and immune evasion (Hinshaw
and Shevde, 2019). We have found that tumor-associated
macrophages can promote perineural invasion and distant
metastasis in pancreatic cancer (Zeng et al., 2014; Chen
et al., 2018; Huang et al., 2018). Pancreatic stellate cells are
also reported to play a critical role in the development and
maintenance of an immunosuppressive microenvironment in
pancreatic cancer (Sun et al., 2018). Hence, the investigation of
the infiltrating immune and stromal cell-related gene signatures
could provide novel insights and useful prognostic factors for
pancreatic cancer. Estimation of STromal and Immune cells in
Malignant Tumor tissues using Expression data (ESTIMATE)
is an algorithm designed to evaluate the immune and stromal
scores to predict both the infiltrated immune/stromal cells and
tumor purity based on single sample Gene Set Enrichment
Analysis (GSEA) (Yoshihara et al., 2013), and the gene list of
immune and stromal signatures was shown in Supplementary
Data 1. Since its development, the algorithm has been applied
to various neoplasms and has shown success as a novel
prognostic indicator (Wang et al., 2019; Yan et al., 2019;
Chen et al., 2020).

Recently, Pu et al. (2019) used the ESTIMATE algorithm
for the prognosis of pancreatic cancer, but no significant

difference was found between the immune/stromal scores
and overall survival. In our present study, to obtain more
insights into the immune/stromal-related prognostic genes,
we used the X-tile software to derive the best cutoff value
based on overall survival. Independent prognostic genes of
overall survival were screened by LASSO and multivariate
Cox regression survival analysis, and a prognostic risk
score model combining the prognostic gene signature and
clinical prognostic features was established. In conclusion,
our prognostic risk score model may contribute to
accurately predict the overall survival of patients with
pancreatic cancer.

MATERIALS AND METHODS

Database
The RNA-seq data of pancreatic cancer from The Cancer
Genome Atlas (TCGA) was downloaded from the UCSC
Xena platform1 (Vivian et al., 2017). Clinicopathological
information, including gender, age, differentiation grade,
TNM stage, and survival data were also retrieved from the
platform; patients who lacked complete information were
excluded. In total, expression profiles of 178 pancreatic cancer
samples were evaluated by the ESTIMATE algorithm to
calculate immune scores and stromal scores2 (Yoshihara et al.,
2013). The gene mutation data of TP53, KRAS, CDKN2A,
and SMAD4 were obtained from the cBioPortal website3

(Gao et al., 2013).

Identification of Differentially Expressed
Genes
All patients with pancreatic cancer were classified into low and
high score groups according to their immune/stromal scores
determined by X-tile software, which takes the cutoff value
based on overall survival (Camp et al., 2004). DEGs were
then determined using the R package edgeR. In our study,
genes with a |Log2FC (fold change)| > 2.5 and FDR adjusted
p-value < 0.001 were defined as DEGs. The intersected DEGs
were then screened among the immune and stromal score groups
by Venn 2.14.

Functional Enrichment Analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of the intersection genes
were performed with the R package clusterProfiler (Yu et al.,
2012), and a FDR adjusted p-value < 0.05 was used as the
cutoff value. The top 10 enriched GO terms and enrichment
pathways of the co-underexpressed and co-overexpressed DEGs
were ranked by FDR adjusted p-value. GSEA between the
high and low immune/stromal score groups was performed

1https://xena.ucsc.edu/
2https://bioinformatics.mdanderson.org/estimate/
3https://www.cbioportal.org/
4https://bioinfogp.cnb.csic.es/tools/venny/index.html
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in javaGSEA v. 4.0 based on “H: hallmark gene sets” from
the Molecular Signatures Database (Subramanian et al., 2005).
|NES| ≥ 2 and FDR adjusted p-value < 0.01 were considered to
be statistically significant.

Identification of Survival-Related DEGs
and Construction of a Risk Stratification
Model
The univariate Cox regression analysis was used to investigate
the association between the intersected DEGs and overall
survival of patients. DEGs with p-values < 0.001 were
considered as candidate prognostic genes to build the risk
stratification model. The LASSO algorithm was then applied
to identify candidate genes by the R package glmnet with
the number of lambda = 1,000 (Friedman et al., 2010).
Lambda.min is the threshold value that yields minimum mean
cross-validated error. Genes with the highest lambda values
were chosen for performing the multivariate Cox regression
analysis. DEGs with p-value < 0.05 were used to construct
the model of prognostic signature, and the risk score (RS)
formula was generated by the sum of products of the gene
expression level and its corresponding coefficients. Area under
the curve (AUC) of the time-dependent receiver operating
characteristic (ROC) curve and Harrell’s concordance index
(C-index) were used to evaluate the prognostic value of the
risk score model.

TIMER
Tumor Immune Estimation Resource (TIMER5.) website is a
reliable platform for comprehensively investigate molecular
characterization of tumor-immune interactions based on
transcript per million reads (TPM) from TCGA contains
10,897 tumors across 32 cancer types (Li et al., 2017). In our
study, the Gene module was used to explore the correlation
between six major tumor-infiltrating immune subsets and
CXCL10 expression.

Statistical Analysis
Statistical analysis was performed with R package (version
3.6.1,6 and GraphPad Prism version 6 (GraphPad Software, La
Jolla, CA, United States). Categorical variables were analyzed
with Pearson’s chi-square test, while continuous variables
were compared with Student’s t-test or the Wilcoxon rank
sum test for two groups and one-way ANOVA for multiple
groups. The Kaplan-Meier survival curve was generated to
illustrate the correlation between differential factors and
overall survival, and the log-rank test was used to assess
the significant difference between the groups. Univariate and
multivariate Cox regression analyses were performed by the R
survival package. Time-dependent ROC curve was generated
with the TimeROC package, and the C-index was calculated
and analyzed with the survcomp package. Unless otherwise

5https://cistrome.shinyapps.io/timer/
6https://www.r-project.org/

mentioned, a two-sided p-value of < 0.05 was considered to be
statistically significant.

RESULTS

Association of Immune/Stromal Scores
With Pancreatic Cancer Pathology and
Prognosis
A total of 178 patients with complete gene expression profiles
and clinical information were included in our study from the
TCGA database. To determine the role of immune/stromal
scores in the prognosis of pancreatic cancer, we calculated
the immune/stromal scores using the ESTIMATE algorithm.
The immune and stromal scores ranged from −1,559.87 to
3,037.78 and from −1,843.32 to 2,179.19, respectively. The
association of the immune/stromal scores with pancreatic
cancer pathology was investigated by comparing the score
distributions among tumor differentiation grades and TNM
stages. Both immune and stromal scores roughly increased
with poor tumor differentiation grades (one-way ANOVA
test, p-value = 0.028 and 0.012 for immune and stromal
scores, respectively, Figure 1A). A significant relationship
was observed between immune scores and TNM stages (one-
way ANOVA, p-value = 0.025, Figure 1B), and a similar
result was also observed in T stages (t-test, p-value = 0.043,
Supplementary Figure 1A), whereas the stromal scores did
not show a significant relationship with TNM stages. In
addition, patients with lymph node metastasis had higher
immune/stromal scores, although it was not statistically
significant (Supplementary Figure 1B).

To determine the correlation between the immune/stromal
scores and overall survival, the patients were classified into
low and high score groups by using X-tile software. The
Kaplan-Meier survival curve indicated that the median overall
survival of patients with high immune scores was shorter
than that of patients with low scores (439 vs. 855 days,
p-value = 0.011, Figure 1C). Simultaneously, increased
stromal scores predicted shorter overall survival for patients
with pancreatic cancer (447 vs. 632 days, p-value = 0.024,
Figure 1C).

Identification of DEGs Based on the
Immune/Stromal Scores
To determine DEGs based on the immune/stromal scores,
gene expression profiles from 178 TCGA cases were analyzed.
We identified 707 genes to be immune score-related DEGs,
among which 155 genes were overexpressed and 552 genes
were underexpressed. Regarding stromal score-related DEGs,
767 genes were ascertained to be related to stromal scores,
including 233 overexpressed genes and 534 underexpressed
genes. These immune/stromal score-related DEGs were
visualized on the volcano plots (Figure 2A). Venn plots
showed 67 DEGs that were commonly overexpressed
in both the immune and stromal score groups, while
386 DEGs were found to be commonly underexpressed
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FIGURE 1 | The relationship between immune/stromal scores and pancreatic cancer clinical pathological features. (A,B) Distribution of immune/stromal scores in
tumor grades (A) and TNM stage (B). (C) Kaplan-Meier survival curves for overall survival in the high and low immune/stromal score groups.

(Figure 2B). Subsequently, we further analyzed these
intersected DEGs.

GO Term and KEGG Pathway Enrichment
Analyses of the Intersected DEGs
To investigate the potential biological function of the intersected
DEGs, we conducted GO and KEGG pathway enrichment
analyses. According to GO enrichment results, the overexpressed
DEGs were significantly enriched in inflammatory cell activation
and proliferation, and cytokine and chemokine receptor
activity, while the underexpressed DEGs were mainly involved
in transmembrane transporter activity and channel activity.
The top 10 function annotations for the overexpressed and
underexpressed DEGs are shown in Figures 2C,D, respectively.
Additionally, in the enrichment analysis of KEGG pathways,
the overexpressed DEGs were significantly associated with
inflammation cell pathways and cytokine receptor interaction,
while the underexpressed DEGs were mostly observed in
secondary messenger-related and drug-related signaling
pathways. The top 10 pathways selected for the overexpressed

and underexpressed DEGs in the enrichment analysis are shown
in Figures 2E,F, respectively.

Protein-Protein Interaction Network
Analysis
To further determine the interactions among the 67 commonly
overexpressed DEGs, protein-protein interaction (PPI) networks
were constructed using the STRING database and Cytoscape
software. As shown in Supplementary Figure 2A, the PPI
network comprised 58 nodes and 323 edges. We then performed
clustering analysis of the PPI network by using Cytotype
MCODE, and the modules that included at least 10 nodes were
selected. As shown in Supplementary Figure 2B, module 1
contained 13 nodes and 61 edges. The important hub genes
were associated with chemokines and their receptors, such as
CXCL9, CXCL10, CXCL13, CCR7, CXCR5, and CXCR2. In
addition, module 2 contained 14 nodes and 51 edges, and the vital
genes included CD19, PTPRC, CD79B, IL21R, TNFRSF13C, and
MS4A1 (Supplementary Figure 2C).
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FIGURE 2 | Comparison of gene expression profile with immune/stromal scores. (A) Volcano plots of DEGs from the low vs. high immune/stromal score groups.
|Log2FC (fold change)| > 2.5, FDR adjusted p-value < 0.001. (B) Commonly changed DEGs in immune/stromal score groups. (C,D) The top 10 GO terms for
commonly changed DEGs. (E,F) The top 10 KEGG enrichment pathways for commonly changed DEGs.
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FIGURE 3 | GSEA analysis was applied to identify the significant hallmark gene sets in the high immune/stromal score group.

GSEA
To elucidate the biological states or processes of the
immune/stromal scores, GSEA was conducted to search hallmark
gene sets. In the high immune score group, eight gene sets were
significantly enriched based on the criteria of |NES| ≥ 2 and
FDR adjusted p-value < 0.01, while nine gene sets were enriched
in the high stromal score group. Interestingly, they shared
the six gene sets, including INFLAMMATORY_RESPONSE,
KRAS_SIGNALING_UP, IL6_JAK_STAT3_SIGNALING,
TNFA_SIGNALING_VIA_NFKB, IL2_STAT5_SIGNALING,
and ALLOGRAFT_REJECTION (Figure 3), which were
associated with the regulation of the inflammatory process.

Construction and Validation of a
Prognostic Risk Model
To screen the prognostic significance of the identified DEGs
described above, the univariate Cox regression analysis was
performed. We chose 68 of the 453 intersected DEGs with
p-value < 0.001 for further analysis. The LASSO regression
model was then used to discriminate key prognosis-related
genes by using the R package glmnet. After calculation and
verification, the results showed that the model consisted
of 12 genes with the minimum partial likelihood deviance
(Figures 4A,B), which included BTB domain containing
17 (BTBD17), BMP/retinoic acid-inducible neural specific
2 (BRINP2), PNMA family member 3 (PNMA3), transient
receptor potential cation channel subfamily C member
7 (TRPC7), transmembrane protein 178B (TMEM178B),
ATPase plasma membrane Ca2+ transporting 2 (ATP2B2),
serine/arginine repetitive matrix 4 (SRRM4), chromosome 19
open reading frame 81 (C19orf81), C-X-C motif chemokine
ligand 10 (CXCL10), cut-like homeobox 2 (CUX2), collagen
type II alpha 1 chain (COL2A1), and kinesin family member
19 (KIF19). Lastly, these 12 genes were fit into the multivariate
Cox regression analysis model to determine the independent
risk genes. The results showed that four genes, including

TRPC7 (HR 0.82, p-value = 0.037), CXCL10 (HR 1.23,
p-value = 0.003), CUX2 (HR 0.67, p-value < 0.001), and
COL2A1 (HR 0.72, p-value = 0.003), were identified as
independent prognostic indicators (Figure 4C). Therefore,
we constructed a prognostic risk model by computing
the sum of the products of the expression level of the
abovementioned four genes and their corresponding
coefficients. The risk score (RS) formula was as follows:
(−0.1998 × expression level of TRPC7) + (0.2074 × expression
level of CXCL10) + (−0.3961 × expression level of
CUX2)+ (−0.3281× expression level of COL2A1).

We grouped the 178 patients with complete clinical
information from the TCGA dataset into the high-RS group and
the low RS group according to the median score (Figure 4D). The
high RS group showed a higher frequency of poor overall survival
than the low RS group (417.5 vs. 504.5 days, p-value = 0.0015,
Figure 4E). Moreover, we validated the risk score model in
stage I and stage III/IV, because the majority of patients with
pancreatic cancer in the TCGA cohort were in stage II. Similarly
to the entire cohort, patients with high RS had significantly
poorer overall survival than those with low RS (424 vs. 859 days,
p-value = 0.011, Figure 4F). Time-dependent ROC and C-index
were used to evaluate the prognostic value of the risk score model
in comparison with the AJCC stage (Figures 4G–I). The AUCs
of the risk score model at 3- and 5-year overall survival were
0.760 and 0.804, respectively, and both were superior compared
to that of the AJCC stage (0.619 and 0.699 for 3- and 5-year,
respectively). The risk score model [95% confidence interval
(CI), 0.652 to 0.770] showed higher C-index than the AJCC stage
(95% CI, 0.468 to 0.550).

To determine the relationship between the risk score level
and gene mutation status in pancreatic cancer, we selected
the four leading mutation genes (KRAS, TP53, SMAD4, and
CDKN2A) for further analysis. The results demonstrated that
patients with KRAS and TP53 mutant genes had significantly
higher risk score level than those with wild-type genes (p-
value = 0.020 and 0.017 for KRAS and TP53, respectively)
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FIGURE 4 | Selection of microenvironment related DEGs and construction the risk score model. (A) Trend graph of LASSO coefficients. (B) Partial likelihood
deviation map. (C) Forest plot of hazard ratios showing the results of multivariate Cox regression analysis. The four genes (TRPC7, CXCL10, CUX2, and COL2A1)
were identified as the independent risk factors. (D) Distribution of adjusted risk scores. (E) Kaplan-Meier survival curves for overall survival in the high and low risk
score groups in all stages. (F) Kaplan-Meier survival curves for overall survival in the high and low risk score groups in stage I and stage III/IV. (G) Time-dependent
ROC analysis of risk score model. (H) Kaplan-Meier survival curves for overall survival in different AJCC stage. (I) Time-dependent ROC analysis of AJCC stage.
(J) Distribution of risk scores for the four genes (KRAS, TP53, SMAD4, and CDKN2A) with mutant or wildtype status.
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(Figure 4J). However, no significant difference was found in
SMAD4 and CDKN2A mutations.

Identification of CXCL10 as an Important
Chemokine in Pancreatic Cancer
Microenvironment
To confirm the potential roles of each gene from the risk
score model in overall survival, we performed the Kaplan-
Meier survival analysis. High expression level of CXCL10 was
negatively associated with overall survival, while high expression
level of CUX2 and TRPC7 was positively correlated with overall
survival; no significant difference was observed for COL2A1
(Figure 5A). Subsequently, the expression levels of the four genes
were validated through the Gene Expression Profiling Interactive
Analysis (GEPIA) online website7 (Tang et al., 2017). Only the
mRNA expression level of CXCL10 was remarkably increased in
pancreatic cancer tissue compared to that in normal pancreatic
tissues from the Genotype-Tissue Expression (GTEx) project
(Figure 5B); this project was considered for comparison because
there are few normal pancreatic tissues in the TCGA database.
Furthermore, we investigated the expression level of CXCL10
in other solid tumors by using the TIMER online website8 (Li
et al., 2017) and the Oncomine database9 (Rhodes et al., 2004).
The results showed that the expression level of CXCL10 was
upregulated in most solid tumors, including bladder cancer,
breast cancer, colorectal cancer, head and neck cancer, and liver
cancer (Figures 5C,D). We also found that the metastatic lesions
of skin cutaneous melanoma had higher expression level of
CXCL10 than the primary lesions (Figure 5C).

To determine the correlation between CXCL10 and tumor-
infiltrated immune cells, we performed a correlation analysis
by using the TIMER online website. TIMER website is a
comprehensive resource which allow us to explore the correlation
between six major tumor-infiltrating immune subsets (B cells,
CD4 + T cells, CD8 + T cells, Neutrophils, Macrophages,
and Dendritic cells) and gene expression. The results showed
that the expression level of CXCL10 positively correlated with
macrophages, CD8+ T cells, neutrophils, and dendritic cells
(Figure 6A). In contrast, it negatively correlated with tumor
purity. Moreover, the expression level of CXCL10 showed a
significant positive correlation with the immune checkpoint-
related proteins such as PCCD1, CD274, CTLA4, LAG3, TIGIT,
and HAVCR2 (Figure 6B).

To identified the main source of CXCL10, we downloaded an
available human pancreatic cancer single-cell RNA-sequencing
(scRNA-seq) data (Peng et al., 2019) from the Genome Sequence
Archive in the BIG Data Center, Chinese Academy of Sciences
under accession code CRA00116010 (Members, 2018). Uniform
Manifold Approximation and Projection (UMAP) and key
lineage marker gene analyses were carried out for cell type
identification (Figures 7A,B). Then we analyzed the RNA
expression of CXCL10 and its receptor CXCR3 at single-cell

7http://gepia.cancer-pku.cn/
8https://cistrome.shinyapps.io/timer/
9https://software.oncomine.com/resource/main.html
10https://bigd.big.ac.cn/bioproject/browse/PRJCA001063

level in pancreatic cancer. Both UMAP plot and violin plot
demonstrated that tumor associated macrophages were more
likely the main source of CXCL10 and its receptor CXCR3 was
highly expressed in T cells (Figures 7C–F). These findings were
largely consistent with House’ findings (House et al., 2019) that
macrophage secreted abundant CXCL10 and CXCL9 to promote
the infiltration of CD8 + T cell in pancreatic cancer following
immune checkpoint blockade.

DISCUSSION

A pathological characteristic of pancreatic cancer is the dense
desmoplastic reaction in the tumor stroma, resulting in shaping
of the unique TME. Several studies have proven that TME
is involved in pancreatic cancer initiation, progression, and
response to therapies, especially tumor immunotherapy. Immune
and stromal cells are the major non-tumor cells in the TME,
and they may provide new perspectives in cancer research. In
the present study, we attempted to determine the infiltration
level of immune/stromal cells in pancreatic cancer by calculating
their scores with the ESTIMATE algorithm. The Kaplan-Meier
survival analysis revealed that both low immune scores and
low stromal scores predicted a favorable prognosis in patients
with pancreatic cancer. In addition, the immune scores were
associated with differentiation grades and TNM stage, while high
stromal scores were also related to poor differentiation.

To investigate the potential mechanism of the difference
in immune/stromal scores, we identified DEGs between the
high and low score groups used for the functional enrichment
analysis. A total of 453 overlapping DEGs, including 67
overexpressed and 386 underexpressed genes, were determined.
The GO term analysis showed that these DEGs were mainly
enriched in the cytokine receptor activity, chemokine receptor
activity, G protein-coupled receptor activity, and transmembrane
transporter activity. The KEGG pathway enrichment analysis
showed that the DEGs were predominantly clustered in the
cytokine-cytokine receptor interaction pathway, chemokine
signaling pathway, and T/B cell receptor signaling pathway.
Cytokines and chemokines are important inflammatory
mediators in TME, and they are involved in regulating tumor
formation and progression through binding to specific receptors
on the surface of target cells (Atretkhany et al., 2016). The
GSEA enrichment analysis showed that the high immune and
stromal score group shared six gene sets including IL6 and
TNF-α signaling, which were closely related to the inflammatory
process. IL6 trans-signaling promotes pancreatic intraepithelial
neoplasia to progress to pancreatic cancer (Lesina et al., 2011)
and drives niche formation in liver metastasis (Thomas, 2019).
In contrast, the inhibition of IL6 signaling reduces pancreatic
cancer growth and recurrence in xenograft models (Goumas
et al., 2015). Furthermore, IL6 antibody blockade enhances
the efficacy of anti-PD-L1 therapy in patients with pancreatic
cancer (Mace et al., 2018). TNF-α has been shown to increase
the antitumor activity of gemcitabine in pancreatic cancer
(Murugesan et al., 2009); however, its curative effect does not
seem to be perfect due to the activation of the NF-κB signaling
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FIGURE 5 | CXCL10 expression levels in human cancers. (A) Kaplan-Meier survival curves for overall survival based on the four gene expression levels. (B) The four
gene expression levels in pancreatic cancer (from TCGA database) and normal pancreas (from GTEx database) were analyzed by GEPIA online website. (C) CXCL10
expression levels in different cancers (from TCGA database) were determined by TIMER website. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001.
(D) CXCL10 expression levels in data sets of different cancers in the Oncomine database. The four genes: TRPC7, CXCL10, CUX2, and COL2A1.

pathway (Egberts et al., 2008). Hence, Li et al. (2010) used
maslinic acid to potentiate the antitumor activity of TNF-α
by suppressing NF-KB activation. In addition, a recent study
demonstrates that activated macrophage-derived TNF-α can
upregulate PD-L1 expression in pancreatic cancer cells, which
leads to poor prognosis (Tsukamoto et al., 2019).

To identify the independent prognostic TME-related genes,
we used the LASSO and multivariate Cox regression analyses

to screen the gene signatures among the 453 DEGs. We then
constructed a risk score prediction model consisting of TRPC7,
CXCL10, CUX2, and COL2A1. The survival analysis showed that
the high RS group was correlated with poor overall survival.
Compared with AJCC stage, the AUC and C-index confirmed
that the risk score model was superior in predicting 3- and
5-year overall survival; this finding suggested that the risk
score model could improve the prediction accuracy of AJCC
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FIGURE 6 | Correlation between the expression of CXCL10 and the infiltration of immune cells (A) or the expression of immune checkpoints (B), were analyzed by
TIMER website.

stage in pancreatic cancer. A previous study reported that
the combination of immune scores in TME and AJCC stage
had better prognostic value than AJCC stage alone in patients
with gastric cancer (Jiang et al., 2018). Moreover, we found a
significant increase in risk scores in patients with KRAS and
TP53 mutation. KRAS is the most frequently mutated oncogene
in pancreatic cancer, and recent studies have verified that the
activation of KRAS in cancer cells affects the properties and
functions of the surrounding microenvironment (Dias Carvalho
et al., 2018). The TP53 mutation was also found to be strongly
associated with the immune microenvironment in hepatocellular
carcinoma (Long et al., 2019), and it can significantly enhance the
expression of immune checkpoint-related proteins and serve as a
predictor of immunotherapy in lung cancer (Dong et al., 2017).

Notably, among the four genes signature, only the CXCL10
gene was involved in tumor immunity; however, few studies
have been conducted in oncology for the other three genes
(TRPC7, CUX2, and COL2A1). Hence, further research on these
three genes is needed, particularly in pancreatic cancer. We
then focused our attention on CXCL10. The expression level
of CXCL10 in pancreatic cancer tissue was higher than that in
normal pancreatic tissue, and high expression level of CXCL10
was correlated with shorter overall survival. In addition, both
TIMER online website and the Oncomine database confirmed the
correlation of the high expression level of CXCL10 with many
malignancies. Because CXCL10 is involved in regulating immune
cell migration, differentiation, and activation, we examined the
correlation between CXCL10 and immune cells in TIMER by
using Spearman’s correlation analysis. The results showed that
CXCL10 was negatively correlated with tumor purity; this finding
suggested that the main source of CXCL10 was stromal cells
but not cancer cells. Lunardi et al. (2015) showed that CXCL10
is highly expressed by pancreatic stellate cells in the presence
of pancreatic cancer cells, and its expression is associated with
the infiltration of regulatory T cells (Tregs) and poor overall
survival. In our present study, we found that the expression level

of CXCL10 correlated with the infiltration of various immune
cells, especially dendritic cells. CD103+ dendritic cells can secrete
abundant CXCL9/10 to recruit effector T cells into the TME
to repress tumor immune escape in melanoma (Spranger et al.,
2017). However, we found that CXCL10 was predominantly
expressed by tumor associated macrophages and its receptor
CXCR3 was highly expressed in T cells at the single-cell level
in pancreatic cancer. It seems that CXCL10 exerted different
effects in different malignant tumors and played an important
role in TME. CXCL10 promotes tumor growth and metastasis
in colon cancer (Zipin-Roitman et al., 2007; Wightman et al.,
2015) and liver cancer (Ling et al., 2014; Li et al., 2016);
however, it inhibits melanoma invasiveness and lung metastasis
(Mirzaei et al., 2018) and improves therapeutic effect in breast
cancer (House et al., 2020). We also found that the expression
level of CXCL10 was positively correlated with several immune
checkpoint-related proteins, which implied that CXCL10 could
be used as an effective predictor of immunotherapy. Recently,
(House et al. (2020) reported that CXCL9/10 is predominantly
expressed by macrophages after dual PD-1/CTLA4 blockade to
enhance patient response. In short, a better understanding of
CXCL10 in TME is required to understand its role in tumor
progression and treatment.

Our present study had a major limitation. Because all cases
were selected from the TCGA public database, the underlying
selection bias could not be avoided; therefore, the TME-related
prognostic genes should be further validated to determine their
regulatory mechanism. To exclude the bias, we intend to test their
effectiveness in clinical specimens and conduct further in vitro
and in vivo research to testify the findings of this study.

CONCLUSION

In conclusion, an integrated bioinformatics analysis of pancreatic
cancer dataset from the TCGA was performed using the
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FIGURE 7 | The gene expression analysis from published scRNA-seq profiling of pancreatic cancer. (A) Depiction of UMAP dimensional reduction. Ten major cell
types were identified. (B) Dotplot for expression of key lineage marker genes across the ten cell types. (C,D) Expression levels of CXCL10 and CXCR3 for all
identified cell types were visualized on the UMAP plot. (E,F) Violin plots of CXCL10 and CXCR3 expression in all identified cell types. Black dots showed the
expression level of CXCL10 or CXCR3 for each cell.
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ESTIMATE algorithm, and we constructed a risk score model
comprising four DEGs to provide a better method for predicting
survival condition than AJCC stage. Further studies on these
genes are required to gain further insight into their molecular
mechanism in pancreatic cancer initiation and progression.
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