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Bayesian regression models are widely used in genomic prediction for various species.
By introducing the global parameter τ, which can shrink marker effects to zero, and
the local parameter λk, which can allow markers with large effects to escape from the
shrinkage, we developed two novel Bayesian models, named BayesHP and BayesHE.
The BayesHP model uses Horseshoe+ prior, whereas the BayesHE model assumes
local parameter λk, after a half-t distribution with an unknown degree of freedom. The
performances of BayesHP and BayesHE models were compared with three classical
prediction models, including GBLUP, BayesA, and BayesB, and BayesU, which also
applied global–local prior (Horseshoe prior). To assess model performances for traits
with various genetic architectures, simulated data and real data in cattle (milk production,
health, and type traits) and mice (type and growth traits) were analyzed. The results of
simulation data analysis indicated that models based on global–local priors, including
BayesU, BayesHP, and BayesHE, performed better in traits with higher heritability and
fewer quantitative trait locus. The results of real data analysis showed that BayesHE was
optimal or suboptimal for all traits, whereas BayesHP was not superior to other classical
models. For BayesHE, its flexibility to estimate hyperparameter automatically allows the
model to be more adaptable to a wider range of traits. The BayesHP model, however,
tended to be suitable for traits having major/large quantitative trait locus, given its nature
of the “U” type-like shrinkage pattern. Our results suggested that auto-estimate the
degree of freedom (e.g., BayesHE) would be a better choice other than increasing the
local parameter layers (e.g., BayesHP). In this study, we introduced the global–local prior
with unknown hyperparameter to Bayesian regression models for genomic prediction,
which can trigger further investigations on model development.
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INTRODUCTION

The genomic prediction has been widely applied in animal
and plant breeding. The statistical method being used is one
of the critical factors for the accuracy of genomic estimated
breeding value and consequently impacting the genetic gain
achieved by genomic prediction. Models commonly used for
predicting genomic estimated breeding value can be divided
into two categories: (i) methods based on the framework of
best linear unbiased prediction (BLUP), such as GBLUP (Habier
et al., 2007; VanRaden, 2008); (ii) a set of Bayesian regression
models – such as BayesA and BayesB (Meuwissen et al., 2001),
which are also called as “Bayesian alphabet” models (Gianola
et al., 2009). GBLUP assumes that the effects of all genetic
markers are normally distributed and share the same variance,
thus fitting well for traits with polygenic inheritance. In Bayesian
methods, the marker effects are relevant to the choice of the prior
probability distribution. By giving different priors, the Bayesian
models can fit well for traits with different genetic architectures.
For example, the widely used BayesA and BayesB models allow
effects of genetic markers to follow a heavy-tailed distribution and
therefore in line with the real distribution of marker effects for
traits with large quantitative trait locus (QTL).

Bayesian regression models can be further classified into a
one-group model and a two-group model from the perspective
of the number of groups of genetic markers being used when
estimating marker effects. The one-group model is generally
a variable shrinkage model that shrinks the effects of some
markers toward zero, such as BayesA (Meuwissen et al., 2001).
The two-group model (or spike-and-slab model), can also be a
multigroup model, is generally a variable selection model that
only selects a subset of markers to be included in the model
and assumes the remaining markers to have zero effects, such
as BayesB (Meuwissen et al., 2001) and BayesC (Habier et al.,
2011). The shrinkage process and the selection process can also
be combined in a Bayesian regression model. In such a model, a
subset of markers was selected to be included in the model, and
then, the effects of some selected markers were further shrunk
toward zero. BayesCπ (Habier et al., 2011) is an example of this
type of model. Compared with BayesB and BayesC, BayesCπ

can estimate the proportion of genetic markers with a non-zero
effect based on the data. However, BayesCπ could be challenged
by problems such as poor convergence and mixing in some
situations (Wolc et al., 2011).

A Bayesian regression model with “global–local” shrinkage
prior could be a good alternative for genomic prediction. With
the global–local prior, the variances of marker effects can be
shaped by global and local parameters simultaneously. The global
parameter, τ, can shrink the marker effects to approach zero,
whereas the local parameter, λk, allows a marker to escape
from the shrinkage when the marker has a big effect (Piironen
and Vehtari, 2017). Horseshoe prior (Carvalho et al., 2010) is
one of the most popular estimators of global–local prior. In
Horseshoe prior, the local parameter follows a positive half-
Cauchy distribution, which is a special case of half-t distribution
where the degree of freedom is one. The Horseshoe prior has
a similar form as the one-group model, but its prior can lead

to a “pseudo-posterior,” which shows the same pattern as the
“two-group” model (Bhadra et al., 2017).

Horseshoe prior has already been applied to many scenarios,
such as genomic prediction (Pong-Wong and Woolliams, 2014),
genome-wide association study (Johndrow et al., 2017), and
eQTL mapping (Li et al., 2019). Until now, BayesU (Pong-
Wong and Woolliams, 2014) is the only model that uses the
Horseshoe prior, and BayesU had similar performance with
BayesA and BayesB tested with simulation data. However, the
performance of BayesU has not yet been tested with real data. To
better separate signals and noise, an extension of the Horseshoe
estimator, named Horseshoe+ prior (Bhadra et al., 2017), was
proposed. Horseshoe+ introduces one more local parameter with
a positive half-Cauchy distribution, which leads a heavier tail
than using standard Horseshoe prior. The investigation of using
Horseshoe+ prior in Bayesian regression models for genomic
prediction could be interesting but has not yet been explored
previously. Besides, in variable shrinkage and selection models,
hyperparameters is a challenge, and many previous studies have
tried to estimate hyperparameter to improve prediction accuracy
(Habier et al., 2011; Zhu et al., 2016).

This study’s objectives were to (i) develop two Bayesian
methods for genomic prediction based on the global–local prior,
which have the flexibility in estimating hyperparameters, and (ii)
to test the model performance with simulated and real data for
traits with various genetic architectures.

MATERIALS AND METHODS

Statistical Models
In Bayesian regression models, the differences in different models
were the prior assumptions on the effects of single-nucleotide
polymorphisms (SNPs). All Bayesian multiple regression model
can be described as follows:

y = µ+
m∑

k =1
xkβk + e,

where y is the vector of pre-corrected phenotypes, µ is the overall
mean, xk is the vector of genotypes for the kth SNP, m is the
number of SNPs, βk is the effect of the kth SNP, and e is a vector
of random residuals. The assumptions of the residuals are e ∼
N(0,Dσ2

e ), where σ2
e is the random residual variance. The D is an

identity matrix when using pre-corrected phenotypes other than
de-regressed proofs (DRPs). DRPs were derived from an official
estimated breeding value (EBV) with the method that Jairath et al.
(1998) suggested. When using DRP as y, D is a diagonal matrix

with diagonal elements calculated as dii =
1−r2

i
r2

i
, to account for

heterogeneities in σ2
e due to differences in reliability (r2

i ) of DRP.
In Bayesian inference, a total of 50,000 Markov chain Monte

Carlo samples were generated, with the first 20,000 samples
discarded as burn-in and every 50th sample of the remaining
30,000 samples saved for inferring posterior statistics. All analyses
with Bayesian regression models were conducted using in-house
scripts written in Fortran 95 by the first author.
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BayesU
The BayesU (Pong-Wong and Woolliams, 2014) was developed
based on Horseshoe prior (HS). To make it comparable with
other methods, the global prior τ was set as a flat prior. A detailed
description is given as:

βk ∼ N(0,λ2
kτ

2), λk ∼ C+(0, 1) , and τ ∼ flat

where λk and τ are local and global parameters, respectively. The
local parameter λk follows a positive half-Cauchy distribution,
which is a special case of student-t distribution where the degree
of freedom equals to 1.

BayesHP
Compared with HS, its modified version Horseshoe+ (HS+)
can form a heavier tailed prior distribution by introducing
an additional local parameter with a positive half-Cauchy
distribution. Regarding the performance, HS+ can better
distinguish the signals and noise than the standard HS (Bhadra
et al., 2017). However, Horseshoe+ prior (HS+) (Bhadra et al.,
2017) has not yet been applied in Bayesian regression models for
genomic prediction. In this study, we proposed a novel BayesHP
model based on HS+:

βk ∼ N(0,λ2
kτ

2),λk ∼ C+(0,ηk), ηk ∼ C+(0, 1),

and τ ∼ C+(0,N−1)

where λk and ηk are local parameters, and τ is a global
parameter following a positive half-Cauchy distribution with
scale parameter equals to N−1. The N is the size of training
data, as Bhadra et al. (2017) suggested. Compared with HS,
HS+ introduces one more layer of local parameter ηk. As
described by Makalic and Schmidt (2016) and Makalic et al.
(2016) (Appendix), the half-Cauchy distribution can be
modeled as a scale mixture of inverse gamma distributions: if
x2
∼ IG

( 1
2 ,

1
a
)

and a ∼ IG
(

1
2 ,

1
A2

)
, then x ∼ C+(0,A).

Finally, the distribution of parameters for the revised
Horseshoe+ hierarchy is as follows:

βk ∼ N
(
0,λ2

kτ
2) ,λ2

k ∼ IG
(

1
2
,

1
θk

)
, θk ∼ IG

(
1
2
,

1
η2

k

)
,η2

k

∼ IG
(

1
2
,

1
νk

)
, νk ∼ IG(

1
2
, 1), τ2

∼ IG
(

1
2
,

1
ξ

)
,

and ξ ∼ IG
(

1
2
,N2

)
.

The conditional posterior distributions of λk and ηk
parameters are inverse-gamma distributions, which makes Gibbs
sampling straightforward.

BayesHE
In BayesU and BayesHP, the prior of local parameter λk followed
a positive half-Cauchy distribution. Both of these two models
used a fixed value as the degree of freedom. To increase
the flexibility and the suitability of the prediction model, we

proposed a new model, named BayesHE, which assumed the local
parameter λk to follow a half-t distribution with an unknown
degree of freedom υ:

βk ∼ N(0,λ2
kτ

2),λk ∼ half − t+(υ, 1), τ ∼ C+(0,N−1),

and υ ∼ G
(
a, b

)
By introducing auxiliary variables (Wand et al., 2011), the

revised hierarchy is as follows:

βk ∼ N
(
0,λ2

kτ
2) , λ2

k ∼ IG
(

υ

2
,

υ

θk

)
, θk ∼ IG

(
1
2
, 1
)
,

τ2
∼ IG

(
1
2
,

1
ξ

)
, ξ ∼ IG(

1
2
,N2), and υ ∼ G

(
a, b

)
.

All parameters, including βk, λ2
k, θk, τ2, and ξ , had a

standard form, except υ. The full conditional distribution of the
hyperparameter υ is described as follows:

f (υ|.) ∝ f
(
λ2

k|υ
)
∗ f (υ) ∝

m∏
k =1

(
υ
θk

)( υ
2 )

0( υ
2 )

λ2
k−
(υ

2
+ 1

)
exp

(
−

υ
θk

λ2
k

)
∗ υ(a−1) exp

(
−bυ

)
∝ υ(

υ∗m
2 +a−1)

∗ 0
(υ

2

)−m

∗ exp

(
−υ

(
1
2

m∑
k =1

ln(θkλ
2
k)+

m∑
k =1

1
θkλ

2
k
+ b

))

where m is the number of SNPs, 0(.) is the gamma function,
a is the shape parameter in gamma distribution, and b is the
scale parameter of the gamma distribution for υ. In this study,
we compared two models with the same b (b equals to 1)
but with different a, including BayesHE1 with a equals to 4
and BayesHE2 with a equals to 5. The hyperparameter was
inferred by applying a univariate Metropolis–Hastings sampling
(DFMH) process (Yang et al., 2015). The random walk M-H step
worked with ζ = log (υ) because υ was inherently positive. The
corresponding full conditional distribution of ζ is as follows:

f (ζ|ELSE) ∝ exp (ζ)(
exp(ζ)∗m

2 +a−1)
∗0

(
exp (ζ)

2

)−m

∗ exp

(
− exp (ζ)

[
1
2

m∑
k =1

ln(θkλ
2
k)+

m∑
k =1

1
θkλ

2
k
+ b

])
∗exp(ζ)

∝ exp (ζ)
exp(ζ)∗m+2a

2 ∗ 0

(
exp (ζ)

2

)−m
∗

exp

(
− exp (ζ)

[
1
2

m∑
k =1

ln(θkλ
2
k)+

m∑
k =1

1
θkλ

2
k
+ b

])

where exp (ζ) is the Jacobian from υ to ζ .
The performance of three Bayesian regression models

applying global–local priors, including BayesU, BayesHP, and
BayesHE, were further compared with three widely used genomic
prediction models, including GBLUP, BayesA, and BayesB.
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BayesA/BayesB
In BayesB, the prior distribution of βk is as follows:

βk|S2
β,υ,π ∼ IID

{
0 with probabilittyπ

t(0, S2
β,υπ) with probabilitty 1− π

The BayesA model can be considered as a specific case of BayesB,
where π = 0. In this study, we set π = 0.95 for BayesB.

GBLUP
The GBLUP model is described as follows:

y = µ+ Zg + e

where y is the vector of pre-corrected phenotypes, µ is the overall
mean, Z is the design matrix linking genetic value (g) to y, and e
is a vector of random residuals. It was assumed that,

g ∼ N(0,Gσ2
g) and e ∼ N(0,Dσ2

e )

where σ2
g is the additive genetic variance and σ2

e is the
random residual variance. The genomic relationship matrix (G)
(VanRaden, 2008) was calculated with SNPs:

G =
(M−P)(M−P)′

2
∑m

k =1 pk(1−pk)
,

where M is a n ×m matrix with n for the number of individuals
and m for the number of SNPs, pk is the MAF of ith SNP, and
P is the matrix in which the kth column elements are 2pk. In
this study, GBLUP was implemented using the DMU software
(Madsen and Jensen, 2012).

Datasets
Quantitative Trait Locus-Marker-Assisted Selection
Data
We used the simulated data from the 15th QTL-marker-assisted
selection (MAS) workshop (Elsen et al., 2012) to test model
performances. The founder animals consist of 20 sires and
200 dams. For each generation, one sire was mated to 10
dams, and each dam produced 15 offspring. Eight QTLs were
simulated across the five chromosomes, with one QTL being
quadri-allelic, two linked in phase, two linked in repulsion, one
imprinted, and two epistatic. Random residual effects were added
to achieve a realized heritability of 0.3. After removing loci
without polymorphisms, 7,121 SNPs were retained for analysis.
Details on the simulated dataset are in Li et al. (2018).

In each full-sib family, 10 individuals had marker genotypes
and phenotype, and the remaining five individuals only had
marker genotypes. In total, 2,000 individuals had both genotype
and phenotype information, and 1,000 individuals only had
genotype information. In this study, only 2,000 individuals with
genotypes and phenotypes were used for cross-validation.

Cattle Data
For real data analysis in dairy cattle, we collected phenotypic and
genomic data from Chinese Holsteins. In total, 7,052 individuals
were available for analyses on three milk production traits,

including milk yield (MY), fat yield (FY), and protein yield
(PY), and on one health traits (somatic cell score, SCS), and
3,530 individuals were available for three type traits including
conformation (CONF), feet lag (FL), and mammary system
(MS). DRP derived from the official EBV were used as pseudo-
phenotypes for genomic prediction. The reliability of DRP for
each individual was estimated as r2

DRP = ERCi/(ERCi + λ),

with λ = 1−h2

h2 , where ERCi refers to the effective record
contribution and h2 refers to the estimated heritability of
the trait. On note, effective record contribution (ERCi) was
relevant to the reliability (RELi) of the EBV of animal i
(Přibyl et al., 2013), ERCi = λ ∗ REL/(1− RELi. Animals were
genotyped by the Illumina 50K chip. Missing genotypes were
imputed with Beagle version 3 (Browning and Browning, 2011).
We further removed the SNPs with a minor allele frequency
below 0.01 and significantly deviated from Hardy–Weinberg
equilibrium ( p < 10−6 ) and the individuals with call rates
lower than 0.90. After quality control, 43,447 SNPs remained for
subsequent analyses.

Mice Data
For real data analysis in mice, we used the heterogeneous
stock mice dataset generated by the Wellcome Trust Centre for
Human Genetics1. As described by Legarra et al. (2008), the
extent of linkage disequilibrium in this population is strong, with
an average r2

LD among adjacent SNPs being 0.62. To compare
the performance of different methods, we selected three traits:
growth rate between 6 and 10 weeks of age (GSL), body mass
index (BMI), and body length (BL). There were 1,821, 1,814,
and 1,901 individuals available for analysis on BL, BMI, and
GSL, respectively. In total, 9,098 SNPs were available. A detailed
description of the population can be found in Li et al. (2018).

Cross-Validation and Prediction
Accuracy
To assess the prediction accuracy, a 5 × 6 cross-validation (six-
fold cross-validation repeated five times) procedure was used,
and the results are shown as the mean and standard error for
replicates. The performances of all methods were evaluated by
examining the accuracy of direct genomic value (DGV) in test
data. For QTL-MAS and mice data, Pearson correlation of DGV
and phenotype/pre-corrected phenotype was used; for cattle data,
the prediction accuracy was further corrected by the average
accuracy (square root of reliability) of DRP in test data:

acc =
cor(DRP,DGV)

r̄

where cor(DRP,DGV) is the Pearson correlation of DRP and
DGV of the validation data, and r̄ is the average of the square
root of the testing data DRP reliabilities.

In addition, the regression of DRP on phenotype, y, was used
to evaluate the unbiasedness of prediction for all three datasets.
The closer the regression coefficient to one, the more unbiased
the prediction result.

1http://gscan.well.ox.ac.uk/
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RESULTS

In this study, the performance of our newly proposed Bayesian
models with global–local priors was compared with GBLUP,
BayesA, BayesB (π = 0.95), and BayesU, using the simulated
data generated by QTL-MAS, and real data in cattle and mice.

To assess the convergence of Markov chain Monte Carlo,
trace plots of the overall mean (µ) and additive variance

[Vg = var(
m∑

k =1
xkβk)] are shown in Figure 1. Also, the trace

plots suggested that parameters mixed well. However, additive
variance from BayesHE (Figures 1E,F) converges faster than
BayesHP (Figure 1D).

Quantitative Trait
Locus-Marker-Assisted Selection Data
Table 1 shows the prediction accuracies and bias for all models
based on the 15th QTL-MAS workshop dataset. Regarding the

prediction accuracy, Bayesian regression models with global–
local priors, such as BayesU (0.506), BayesHP (0.505), BayesHE1
(0.505), and BayesHE2 (0.505), outperformed all other methods.
The prediction biases of the seven methods were similar
and close to one.

Cattle Data
The prediction accuracies of seven traits in the Chinese Holstein
population that the mean r2

LD of adjacent SNP pairs ranged from
0.16 to 0.24 (Zhou et al., 2013) are shown in Table 2. Generally,
BayesHE with two modalities (e.g., BayesHE1 and BayesHE2)
on hyperparameters achieved optimal or suboptimal prediction
accuracy for all of the seven traits.

For milk production traits, Bayesian regression models
with global–local priors had a better performance compared
with GBLUP, BayesA, or BayesB, especially for MY. For
example, the prediction accuracy of BayesHE1 was 0.473, which
increased approximately 2.2% than GBLUP. Also, BayesHE1
had similar prediction accuracy than BayesHE2. However,

FIGURE 1 | Trace plots of overall mean and additive variance for BayesHP and BayesHE. (A–C) Trace plots of overall mean for BayesHP, BayesHE1, and BayesHE2;
(D–F) Trace plots of additive variance for BayesHP, BayesHE1, and BayesHE2.
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TABLE 1 | Prediction accuracies and biases of DGVs of test dataset from 15th
QTL-MAS data using six-fold cross-validation with five replications.

Accuracy Bias

GBLUP 0.456±0.002 1.010±0.004

BayesA 0.474±0.009 0.924±0.008

BayesB 0.475±0.013 0.925± 0.004

BayesU 0.506±0.002 0.996±0.004

BayesHP 0.505±0.002 1.000±0.005

BayesHE1 0.505±0.002 1.005±0.006

BayesHE2 0.505±0.002 1.003±0.005

DGVs, direct genomic value; and the mean and standard errors are
shown in the table.

for SCS, BayesHP achieved the lowest prediction accuracy
(0.341), and BayesHE and BayesA had similar prediction
accuracy (0.365).

For type traits, BayesB, BayesU, and BayesHP did not perform
well, and GBLUP, BayesA, and BayesHE had similar prediction
accuracy. Notably, BayesHE2 performed similarly to BayesHE1.
Although BayesHE did not perform the best, the prediction
accuracy was very close to that of the best model. For example, the
prediction accuracy for MS from BayesHE2 was 0.427, which was
only slightly lower than the highest prediction accuracy achieved
by GBLUP (0.428).

The biases of prediction for the seven traits are shown in
Table 3. For MY, FY, PY, and SCS, BayesHE1 achieved the least
bias of prediction. The performance of BayesHE2, regarding bias,

was very close to that of BayesHE1. For FL, BayesA was the most
unbiased model, and BayesHE2 was the second best.

Mice Data
The prediction accuracies of three mice traits with different
methods are shown in Table 4. In the analysis of mice data, there
were two kinds of traits: one growth trait (GSL) and two type
traits (BL and BMI). For all three traits, BayesHP performed the
worst. For example, the prediction accuracy of BL from BayesHP
was 0. 253, but accuracies from other methods were greater
than 0.260. However, GBLUP, BayesA, and BayesHE had similar
prediction accuracies.

Table 5 shows the prediction bias. The regression coefficients
were close to the unity for all traits using all models, which
indicated unbiasedness of the predictions. Nevertheless,
there were still some slight differences. For example, the
unbiasedness of BayesB was slightly lower than other
models for all traits.

DISCUSSION

In Bayesian regression models, the differences among methods
are the assumptions on the genetic marker effects. Because
of the flexibility of the Bayesian method, it has attracted
increasing attention. In classical one-group models, both signals
and noises were assumed to follow one single continuous
prior distribution, where the effects of some markers were
shrunk toward zero, relying on the posterior distribution.
For the two-group model or the spike-and-slab model, the

TABLE 2 | Prediction accuracies of seven traits of dairy cattle using six-fold cross-validation with five replications.

MY FY PY SCS CONF FL MS

GBLUP 0.451±0.002 0.410±0.002 0.435±0.001 0.356±0.002 0.480±0.003 0.676±0.004 0.428±0.006

BayesA 0.467±0.002 0.425±0.002 0.433±0.001 0.365±0.002 0.478±0.003 0.677±0.004 0.425±0.006

BayesB 0.455±0.003 0.401±0.002 0.421±0.002 0.345±0.002 0.380±0.037 0.656±0.005 0.399±0.006

BayesU 0.463±0.003 0.415±0.002 0.420±0.002 0.346±0.003 0.447±0.007 0.664±0.007 0.404±0.008

BayesHP 0.459±0.003 0.410±0.002 0.414±0.003 0.341±0.003 0.440±0.009 0.660±0.007 0.401±0.008

BayesHE1 0.473±0.003 0.427± 0.002 0.435±0.001 0.365±0.002 0.478±0.003 0.674±0.004 0.426±0.006

BayesHE2 0.473±0.003 0.427±0.002 0.434±0.001 0.365±0.002 0.478± 0.003 0.674±0.004 0.427± 0.005

MY, milk yield; FY, fat yield; PY, protein yield; SCS, somatic cell score, CONF, conformation; FL, feet lag; MS, mammary system; and the mean and standard errors are
shown in the table.

TABLE 3 | Prediction biases of seven traits of dairy cattle data using six-fold cross-validation with five replications.

MY FY PY SCS CONF FL MS

GBLUP 0.865±0.004 0.817± 0.003 0.814±0.002 0.807±0.006 0.803±0.006 0.829±0.007 0.826±0.014

BayesA 0.877±0.005 0.807±0.003 0.807±0.002 0.812±0.005 0.798±0.006 0.837± 0.007 0.809±0.014

BayesB 0.824±0.006 0.755±0.003 0.750±0.004 0.756±0.006 0.763±0.021 0.775±0.006 0.740±0.014

BayesU 0.887±0.007 0.828±0.004 0.816±0.007 0.812± 0.008 0.749±0.019 0.812±0.011 0.786±0.020

BayesHP 0.889± 0.007 0.829±0.005 0.816±0.007 0.815±0.007 0.735± 0.022 0.805±0.011 0.772±0.019

BayesHE1 0.906±0.007 0.835±0.003 0.821±0.002 0.821±0.006 0.805±0.007 0.833±0.007 0.831±0.015

BayesHE2 0.905±0.008 0.834±0.003 0.819±0.002 0.820±0.006 0.807±0.007 0.834±0.007 0.833±0.014

MY, milk yield; FY, fat yield; PY, protein yield; SCS, somatic cell score, CONF, conformation; FL, feet lag; MS, mammary system; and the mean and standard errors are
shown in the table.
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TABLE 4 | Prediction accuracies of mice data using six-fold cross-validation with
five replications.

BL BMI GSL

GBLUP 0.272±0.002 0.226±0.002 0.386±0.003

BayesA 0.275±0.002 0.227±0.002 0.385±0.003

BayesB 0.268±0.001 0.217±0.002 0.374±0.003

BayesU 0.261±0.002 0.220±0.003 0.374±0.003

BayesHP 0.253±0.003 0.214±0.003 0.368±0.004

BayesHE1 0.274±0.002 0.229±0.002 0.386±0.003

BayesHE2 0.272±0.001 0.227±0.002 0.386±0.003

BL, body length; BMI, body mass index; GSL, growth slope; and the mean and
standard errors are shown in the table.

TABLE 5 | Prediction biases of mice data using six-fold cross-validation with
five replications.

BL BMI GSL

GBLUP 0.988±0.012 1.023±0.022 1.004±0.010

BayesA 0.995±0.009 0.988±0.015 0.988±0.008

BayesB 0.948±0.004 0.929±0.017 0.959±0.007

BayesU 0.972±0.007 0.999±0.036 0.996±0.012

BayesHP 0.981±0.011 1.032± 0.039 1.002±0.015

BayesHE1 1.006±0.011 1.024±0.021 1.004±0.009

BayesHE2 1.003±0.009 1.016±0.021 1.005±0.008

BL, body length; BMI, body mass index; GSL, growth slope; and the mean and
standard errors are shown in the table.

prior regarding the proportion of genetic markers being signal
usually impact its performance in genomic prediction. Some
two-group models, such as BayesCπ (Habier et al., 2011),
have been developed to estimate the proportion of non-zero
effect markers based on both prior and the analyzed data.
However, there is a poor convergence and mixing in some
situations. The global–local prior, which can shrink signals and
noises through local and global parameters, seems to be a
good alternative, theoretically. Global–local priors is a kind of
continuous shrinkage prior, which can adaptively shrink noise
to zero while leaving the large data-supported signal unshrunk
(Ge et al., 2019).

The model’s performance depended on the genetic
architecture of the trait. The results of simulation indicated
that models based on global–local priors, e.g., BayesU, BayesHP,
and BayesHE, performed better in traits with higher heritability
(i.e., in this study, heritability is 0.3) and fewer QTL. In real
data, BayesHE can achieve optimal or suboptimal performance;
however, BayesHP performed better only for production traits.
Our results suggested that auto-estimate the degree of freedom
(e.g., BayesHE) would be a better choice other than increasing
the layers of the local parameter (e.g., BayesHP).

The Bayesian models with the assumption more in line
with the real distribution of marker effects will result in
more accurate predictions. The Bayesian model shrinks the
effect of noise markers toward zero and thus increases the
prediction accuracy. However, in genomic prediction, markers
are not simply signal or noise due to the existence of linkage

disequilibrium. It is reasonable that for some traits, GBLUP
will achieve better prediction accuracy. For example, GBLUP
performed better for type traits (e.g., CONF, FL, and MS) than
BayesB, BayesU, and BayesHP, as shown in our results. Notably,
in genome-wide association study, regardless of dairy cattle (Wu
et al., 2013) or beef cattle (Vallée et al., 2016), there are few
significant signals for type traits, suggesting that most genetic
variants have similar medium or small effects on the traits.
Therefore, it is reasonable why GBLUP had a better performance
for type traits.

Many previous studies have suggested that using
hyperparameters is likely to improve classical methods
(Habier et al., 2011; Yang and Tempelman, 2012; Zhu et al.,
2016). In our study, we assumed that the local parameter, λk,
followed a half-t distribution (BayesHE) with an unknown
degree of freedom instead of half-Cauchy (BayesU). By
introducing auxiliary variables (Wand et al., 2011), half-t
distribution was translated into a scale mixture of the inverse
gamma distribution. In BayesHE, λ2

k was assumed to follow

an inverse gamma distribution IG
(

υ
2 ,

υ
θk

)
, which led to an

assumption of student-t distribution for marker effects (Wand
et al., 2011). The use of unknown shape parameter is similar
to the study of Zhu et al. (2016), but the difference is that
there is a global parameter τ2 in BayesHE model. Besides,
in studies of Habier et al. (2011) and Zhu et al. (2016), they
set a gamma distribution G (1, 1) for the scale parameter.
In our study, the scale parameter θk was assumed to follow
an inverse gamma distribution, θk ∼ IG( 1

2 , 1). This inspired
the authors that the shape parameter of inverse gamma
distribution that θk followed can also be set as a variable other
than a constant.

Horseshoe-like prior with “U” type shrinkage pattern means
strong distinguishment of single and noise. According to the
results of QTL detection (Wu et al., 2013; Vallée et al., 2016),
Horseshoe-like prior with “U” type may be suitable for genomic
prediction of the traits affected by many QTLs with large
effect. In our study, we assumed an unknown hyperparameter
for the distribution of local parameters, which increased the
model flexibility and, therefore, more adaptable to traits with
different genetic architectures. The possibility to fit a suitable
hyperparameter for the global parameter has been proposed by
Armagan et al. (2011), where they assumed global parameter
followed a gamma distribution with different shape parameter
or just set as a constant value. Their study suggested that the
changes of hyperparameters of distributions that local parameters
followed and the value of global parameter led to different
shrinkage patterns on covariates. In the study of Piironen and
Vehtari (2016), the global parameter τ was set as a constant
value or followed a normal or half-Cauchy distribution, and
they recommended τ half-Cauchy distribution, τ ∼ C+(0, τ2

0),
where the scale parameter τ2

0 is relevant to the effective number
of variables with non-zero effects. In the global–local prior
method, the marker variances were shaped by global and local
parameters simultaneously. The global parameter, τ, usually
causes the marker effect to approach zero, whereas the local
parameter, λk, allows marker variance to escape the shrinkage
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when that marker has a large effect. In future research, more
investigation on choosing the type of distribution for global
parameters could be interesting.

The limitation of our study is that it mostly focused on
statistical perspectives and lack of consideration of the biological
information. With time, an increasing amount of biological
information affecting complex traits will be detected. It is
reasonable to integrate these genomic features into the prediction
model, and then, how to effectively utilize these genomic features
is worth exploring. The BayesRC model proposed by MacLeod
et al. (2016) divides the genome into three major categories: trait-
associated genes, regular regions, and other variations. However,
there are some challenges in utilizing biological information
because of the dynamics in biological processes.

CONCLUSION

Our results showed that BayesHE could achieve optimal or
suboptimal performance. Compared with other methods, such
as GBLUP and BayesA, BayesHP did not perform better. With
the automatic estimation of hyperparameters, BayesHE was more
flexible than BayesU and BayesHP for the adaptation to a wider
range of traits. This suggested that auto-estimate the degree of
freedom (e.g., BayesHE) would be a better choice other than
increasing the layers of a local parameter (e.g., BayesHP).
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APPENDIX

Appendix A: Gibbs Sampler for SNP Effect βk
The full conditional distribution of βk for BayesHP and BayesHE can be written as,
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Appendix B: Gibbs Sampler for λ2
k

The full conditional distribution of λ2
k can be written as Makalic et al. (2016),
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Notably, in BayesHP, v equals to one.

Appendix C: Gibbs Sampler for θk
The full conditional distribution of θk can be written as Makalic et al. (2016),
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Similarly, in BayesHP, v equals to one.

Appendix D: Gibbs Sampler for η2
k

The full conditional distribution of η2
k can be written as Makalic et al. (2016),
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Appendix E: Gibbs Sampler for νk
The full conditional distribution of νk can be written as Makalic et al. (2016),

f (νk|ELSE) ∝ f
(
η2

k|νk
)
∗ f (νk) ∝ ν

−
1
2

k exp

(
−

ν−1
k
η2

k
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−
( 1

2+1
)

k exp
(
−

1
νk

)
∝ ν
−(1+1)
k exp

(
−

1
νk

(
1+

1
η2

k

))
∝ IG

(
1, 1+

1(
η2

k
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(1)
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Appendix F: Gibbs Sampler for τ2

The full conditional distribution of τ2 can be written as Makalic et al. (2016),

f
(
τ2
|ELSE

)
∝ f

(
τ2
|ξ
)
∗

m∏
k =1

f
(
βk|τ

2,λ2
k
)
∝
(
τ2)−( 1

2+1
)

exp
(
−
ξ−1

τ2

)
∗

m∏
k =1

(
2πλ2

kτ
2)− 1

2 exp

(
−

β2
k

2λ2
kτ

2

)
∝ τ

2−
(

k+1
2 +1

)

exp

[
−

1
τ2

(
1
ξ
+

∑ β2
k

2λ2
k

)]
∝ IG

(
k+ 1

2
,

1
ξ
+

∑ β2
k

2λ2
k

)

Appendix G: Gibbs Sampler for ξ
The full conditional distribution of ξ can be written as Makalic et al. (2016),

f (ξ |ELSE) ∝ f
(
τ2
|ξ
)
∗ f (ξ) ∝ ξ−

1
2 exp

(
−
ξ−1

τ2

)
∗ ξ−

( 1
2+1

)
exp

(
−

N2

ξ

)
∝ ξ−(1+1)

∗ exp
[
−

(
1
τ2 + N2

)
1
ξ

]
∝ IG

(
1,

1
τ2 + N2

)
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