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Background: Renal cell carcinoma (RCC) is a common malignant tumor worldwide, and

immune checkpoint inhibitors are a new therapeutic option for metastatic RCC. Infiltrating

immune cells in the tumor microenvironment (TME) play a critical part in RCC biology,

which is important for tumor therapy and prediction. Hypoxia is a common condition that

occurs in the TME and may lead to RCC immunosuppression and immune escape. This

study was conducted to analyze the extent of the hypoxia immune microenvironment in

the TME of RCC and develop a hypoxia-related risk model for predicting the prognosis

of patients with RCC.

Methods: The gene expression profiles of 526 patients with RCC were downloaded

from The Cancer Genome Atlas database. Combined with the hallmark-hypoxia gene

dataset downloaded from Gene Set Enrichment Analysis, prognosis-related hypoxia

genes were selected by survival analysis. A protein–protein interaction network and

functional enrichment analysis were performed. A hypoxia-related risk model predicting

the prognosis of patients with RCC was established using the least absolute shrinkage

and selection operator. Data of 91 cases downloaded from the International Cancer

GenomeConsortium (ICGC) database were used for validation. CIBERSORTwas applied

to analyze the fractions of 22 immune cell types in the TME of RCC between low- and

high-risk groups. The expression profiles of immunomodulators and immunosuppressive

cytokines were also analyzed.

Results: Ninety-three genes were significantly associated with poor overall survival

of patients with RCC and were mainly involved in 10 pathways. Using the established

hypoxia-related risk model, the receiver operating characteristic curves showed an

accuracy of 76.1% (95% CI: 0.719–0.804), and Cox proportional hazards regression

analysis revealed that the model was an independent predictor of the prognosis of

patients with RCC [hazard ratio (HR) = 2.884; 95% CI: 2.090–3.979] (p < 0.001).

Using the ICGC database, we verified that the low-risk score group had a better overall

survival outcome than the high-risk group. Additionally, dividing the hypoxia risk score

into high-risk and low-risk groups could predict the immune microenvironment of RCC.
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Conclusions: We demonstrated that a hypoxia-related risk model can be

used to predict the outcomes of patients with RCC and reflect the immune

microenvironment of RCC, which may help improve the overall clinical response to

immune checkpoint inhibitors.

Keywords: renal cell carcinoma, immune response, tumor microenvironment, hypoxia, risk model

INTRODUCTION

Kidney cancer is a common malignant tumor worldwide, with
an estimated 403,000 new cases and 175,000 deaths in 2018
(Bray et al., 2018). Renal cell carcinoma (RCC) is the most
common form of kidney cancer, and ∼70% of these cases
show clear-cell tumors in histological analysis (Lipworth et al.,
2016). Surgical resection, including radical nephrectomy and
nephron-sparing surgery, remains the most effective therapy for
clinically localized RCC. Once metastasis of RCC occurs, clinical
treatment is challenging and patients show a 5-year survival rate
of approximately 12% (Siegel et al., 2017). Cytokines [interferon
(IFN)-α, interleukin (IL)-2], targeted therapy [tyrosine kinase
inhibitors, anti-vascular endothelial growth factor (VEGF)
antibodies, agents targeting the mammalian target of rapamycin
(mTOR)], and immune checkpoint inhibitors are used as
therapies for metastatic RCC. However, it is important to elevate
the overall clinical response rate of cancer immunotherapy and
identify biomarkers for response prediction.

Multiple factors contribute to cancer initiation and
progression. The tumor microenvironment (TME) is an
important regulator of tumor progression and metastasis
(McAllister and Weinberg, 2014). Infiltrating immune cells are
among the major normal cells in tumor tissues and play a crucial
role in tumor biology, tumor prognosis, drug resistance, and
immunotherapeutic efficacy (Straussman et al., 2012; van Dijk
et al., 2019; Guo et al., 2020). A better understanding of the TME,
particularly infiltrating immune cells, is important for improving
tumor therapy and tumor prediction.

Hypoxia is a common condition found in the TME,
playing a vital role in tumor genetic instability and prognosis
(LaGory and Giaccia, 2016). The hypoxia-inducible transcription
factor (HIF) signaling pathway can be activated by tumor-
induced hypoxia (Fallah and Rini, 2019). In clear-cell RCC
(ccRCC), HIF is particularly important, with HIF-1α and
HIF-2α exerting opposing effects on tumor development
(Schödel et al., 2016). Small-molecule inhibitors of HIF-2
may serve as another therapeutic option for ccRCC in the
future (Martínez-Sáez et al., 2017). Hypoxia can lead to
tumor immunosuppression and immune escape. It has been
reported that hypoxia promotes suppressive immune cells and
immunosuppressive cytokines in the TME (Terry et al., 2017).
Therefore, hypoxia-related genes may be useful for predicting
immunotherapy outcomes.

This study was conducted to analyze the gene expression
profiles of RCC downloaded from The Cancer Genome Atlas
(TCGA) database and hypoxia-related genes (hallmark-hypoxia
genes) downloaded from Gene Set Enrichment Analysis (GSEA).

We selected prognosis-related hypoxia genes to develop a
hypoxia-related risk model for predicting the prognosis and
immune microenvironment landscape of patients with RCC in
high/low hypoxia risk score groups. The workflow of the study
design is shown in Figure 1.

MATERIALS AND METHODS

Database
The level 3 gene expression profiles of 526 patients with
RCC were downloaded from TCGA database (https://
tcga-data.nci.nih.gov/) (June 2020). The patients’ clinical
characteristics, including age, sex, TNM stage, and survival
data, were also obtained from the database. Patients with cancer
without pathologic diagnosis or a lack of clinical information
were excluded.

Hypoxia-related genes (hallmark- hypoxia genes) were
downloaded from GSEA (https://www.gsea-msigdb.org/gsea/
index.jsp). The gene expression profiles of 91 patients with
RCC determined by the CAGEKID consortium in Europe were
downloaded from the International Cancer Genome Consortium
(ICGC) database (https://icgc.org/icgc/cgp/65/812/817) and used
as the validation cohort to verify the predictive value of the
risk model.

Construction of Protein–Protein Interaction
Network and Functional Enrichment
Analysis
Hypoxia genes were selected using the log-rank test to
identify statistically significant prognosis-related genes. The
selected hypoxia genes were used to establish a protein–
protein interaction (PPI) network and for functional enrichment
analysis. The Search Tool for the Retrieval of Interacting Genes
(STRING) database was used to generate the PPI network
(Szklarczyk et al., 2015). Thereafter, Cytoscape software (version
3.7.0) was used to reconstruct and visualize the PPI network
(Shannon et al., 2003). The connectivity degree of each protein
node was calculated. The R package clusterprofile was utilized to
perform functional enrichment analysis (Yu et al., 2012). Based
on Gene Ontology (GO) categories, the genes were identified
with different GO terms based on their respective characteristics:
molecular functions (MFs), biological processes (BPs), and
cellular components (CCs). Additionally, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were used for pathway
enrichment analysis. The false discovery rate (FDR) was set
at 0.05.
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FIGURE 1 | The flowchart of the study.

Construction of a Risk Model
The selected prognosis-related hypoxia genes were applied in
the least absolute shrinkage and selection operator (LASSO)
using the R package glmnet. The hypoxia risk score formula
was established based on gene expression multiplied by a linear
combination of the regression coefficient, which was acquired
from LASSO. The cases were divided into high- and low-risk
groups based on the optimal cutoff point of the risk score with
the R package survminer (version 0.4.6). R package survival and
ROCR were utilized for Kaplan–Meier analysis and to generate
receiver operating characteristic (ROC) curves. To draw heat
maps, pheatmap (version 1.64.0) was used in R package. The
predictive value of the risk model was verified using data from
91 patients with RCC downloaded from the ICGC database.

Assessment of Immune Cell Type Fractions
Using gene expression data, the analytical method CIBERSORT
(https://cibersort.stanford.edu/) can be applied to characterize
the cell composition in a mixed cell population (Newman et al.,
2015). The leukocyte gene signature matrix containing 547 genes,
named LM22 in CIBERSORT, was applied to distinguish 22
immune cell types including CD8T cells, naive CD4T cells,
restingmemory CD4T cells, activatedmemory CD4T cells, naive
B cells, memory B cells, plasma cells, follicular helper T cells,

T-regulatory cells (Tregs), gamma delta T cells, resting natural
killer cells, activated natural killer cells, monocytes, macrophages
M0, macrophages M1, M2, resting dendritic cells, activated
dendritic cells, restingmast cells, activatedmast cells, eosinophils,
and neutrophils. We applied CIBERSORT to assess the fractions
of these cell types between the low- and high-risk groups.

Expression Profile of Immunomodulators
and Immunosuppressive Cytokines
Several key immunomodulators, including lymphocyte
activation gene 3 (LAG-3), T cell immunoglobulin and mucin
domain containing 3 (TIM-3), cytotoxic T lymphocyte associated
protein 4 (CTLA-4), IFN-γ, ICOS inducible T cell costimulator
(ICOS), intercellular adhesion molecule 1 (ICAM-1), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), PD-1
programmed cell death 1 (PD-1), programmed cell death 1 ligand
1 (PD-L1), natural killer group 2member A (NKG2A), V-domain
immunoglobulin suppressor of T cell activation (VISTA), and
immunosuppressive cytokines were quantified. The t-test was
applied to compare the differences in the expression levels of
immunomodulators and immunosuppressive cytokines between
the low- and high-risk groups. A two-sided p < 0.05 was
considered to indicate statistical significance.
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FIGURE 2 | Analysis of hypoxia-related genes. (A) PPI networks of hypoxia-related genes. A large node means a higher degree. (B) KEGG pathway enrichment

analysis of hypoxia-related genes. (C–E) GO enrichment analysis of molecular function (MF), biological process (BP), and cellular component (CC). PPI, the

protein–protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

RESULTS

Characterization of Hypoxia-Related
Genes
The hypoxia-related gene (hallmark- hypoxia genes) dataset
downloaded from GSEA contained 200 genes. These genes were
upregulated following treatment with low oxygen levels. In
conjunction with the gene expression profiles of 526 patients
with RCC downloaded from TCGA database, the prognostic
predictive value of hypoxia-related genes was explored using
Kaplan–Meier survival curves. Ninety-three genes were found to
be significantly associated with poor overall survival outcomes
according to log-rank test (p< 0.05; Supplemental Table 1). The
STRING database and Cytoscape software were used to build the
PPI network of these genes (Figure 2A). To evaluate the 93 genes,
we performed KEGG and GO analyses. KEGG analysis illustrated
that the genes primarily participated in 10 pathways (Figure 2B),
including glycolysis/gluconeogenesis, HIF-1 signaling pathway,
carbon metabolism, biosynthesis of amino acids, etc. The 285
GO terms, including 269 biological process terms, eight cellular

component terms, and eight molecular function terms, were
enriched (p < 0.05; Supplemental Table 2). The top GO terms,
including carbohydrate binding, monosaccharide metabolic
process, and extracellular matrix, are shown in Figures 2C–E.

Evaluation Prognosis Prediction Power of
the Hypoxia-Related Risk Model
LASSO was used to explore the hypoxia-related risk model
predicting the prognosis of patients with RCC. The optimal
LASSO model was selected that included eight identified genes,
PLAUR, BCL2, KLF6, KDELR3, WSB1, PPARGC1A, PCK1, and
RORA. The risk score was calculated using the following formula:
risk score = 0.34577 × expression (PLAUR) + 0.18588 ×

expression (BCL2)+ (−0.45209)× expression (KLF6)+ 0.22279
× expression (KDELR3) + 0.53993 × expression (WSB1) +

(−0.13366) × expression (PPARGC1A) + 0.01587 × expression
(PCK1) + (−0.55309) × expression (RORA). Figure 3A shows
the heatmap exhibiting the distinct gene expression patterns
of the selected genes. Receiver operating characteristic (ROC)
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FIGURE 3 | Hypoxia risk model. (A) Distribution of genes in the hypoxia risk model. (B) ROC analysis for the hypoxia risk model. (C) Kaplan–Meier curves for overall

survival of risk score in TCGA cohort. (D) ROC analysis for the hypoxia risk model in the ICGC cohort. (E) Kaplan–Meier curves for overall survival of risk score in ICGC

cohort. ICGC, International Cancer Genome Consortium; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.

curves were used to evaluate the prognosis prediction power
of the hypoxia-related risk model shown in Figure 3B. The
model had an accuracy of 76.1% (95% CI: 0.719–0.804), and
its predictive ability was higher than those of any other clinical
characteristics (Table 1).

Based on the chosen cutoff value of 0.5, the cases were divided
into high and low hypoxia risk score group. According to the
Kaplan–Meier curve, Figure 3C illustrates that the low-risk score
group had a better overall survival outcome than the high-risk
score group (p < 0.001). Adjusting for confounding variables,
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TABLE 1 | The predictive accuracy of the hypoxia-related risk model and other

clinical characteristics.

AUC 95% CI

Age 62.9% 0.579–0.680

Gender 49.0% 0.447–0.534

Metastasis 62.9% 0.589–0.669

TNM staging 74.6% 0.701–0.791

Radiation therapy 48.5% 0.439–0.530

Hypoxia risk score 76.1% 0.719–0.804

TABLE 2 | The univariate analysis and multivariate analysis of the hypoxia

risk score.

Parameter Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Age 1.033 (1.019–1.046) <0.001 1.036 (1.022–1.051) <0.001

Gender 0.941 (0.6902–1.283) 0.7 1.053 (0.767–1.446) 0.749

Metastasis 3.651 (2.68–4.974) <0.001 1.503 (0.987–2.289) 0.058

TNM staging 1.856 (1.629–2.115) <0.001 1.482 (1.241–1.770) <0.001

Radiation therapy 0.775 (0.574–1.046) 0.095 0.862 (0.636–1.167) 0.336

Hypoxia risk 4.315 (3.185–5.845) <0.001 2.884 (2.090–3.979) <0.001

score

including age, gender, metastasis, TNM staging, and radiation
therapy, Cox proportional hazards regression analysis revealed
that the hypoxia risk score was an independent predictor of RCC
patient prognosis, as shown in Table 2 [hazard ratio (HR) =

2.884; 95% CI: 2.090–3.979] (p < 0.001).
From the ICGC database, data from a cohort of 91 patients

with RCC was obtained to verify the results. As shown in
Figure 3D, the accuracy of the model was 62.5% (95% CI: 0.505–
0.745) in the validation samples. Additionally, Figure 3E also
shows that the low-risk score group had a better overall survival
outcome compared to the high-risk score group (p= 0.011).

Immune Landscape of High/Low Hypoxia
Risk Score Groups
The capability of the hypoxia-related risk model to assess the
immune microenvironment of RCC was evaluated. We utilized
the CIBERSORT method with the LM22 signature gene file to
assess the immune cell fraction between the low- and high-
risk groups. A summary of the results based on 526 patients
with RCC downloaded from TCGA database is illustrated in
Figure 4A. The proportions of immunosuppressive cells, such
as Tregs, were significantly higher in the high hypoxia risk
score groups, as shown in Figure 4B. This indicates that patients
with high hypoxia risk scores possess an immunosuppressive
microenvironment. Figures 4C–L show other types of immune
cells, which exhibited significantly different proportions between
the low- and high-risk groups.

Expression Profile of Immunomodulators
and Immunosuppressive Cytokines
The expression of 11 immunomodulators and six
immunosuppressive cytokines in 526 patients with RCC
downloaded from TCGA database is illustrated in Figure 5A.
We found that the expression of PD-1, CTLA-4, ICAM-1, TIGIT,
NKG2A, LAG-3, IFNG, and ICOS was significantly upregulated
in the high hypoxia risk score group, as shown in Figure 5B.
Immunosuppressive cytokines, such as transforming growth
factor (TGF)-β1 and IL-10, were also significantly upregulated
in the high hypoxia risk score group, as shown in Figure 5C.
However, NOS2 and NOS3 were significantly reduced in the
high-risk group. As a result, patients with RCC in the high
hypoxia risk score group may have an immunosuppressive
tumor microenvironment with upregulated immunomodulators
and immunosuppressive cytokines. Therefore, targeting hypoxia
may benefit immunotherapy in clinical practice.

DISCUSSION

Previous studies demonstrate that hypoxia and hypoxia-related
signaling pathways play important roles in the development
and progression of RCC (Schödel et al., 2016). Von Hippel–
Lindau tumor suppressor (pVHL) and HIFs are critical factors
in these pathways. With tumor cell proliferation and growth,
RCC results in hypoxia with the activated HIF-α signaling in
response to oxygen deprivation (Millet-Boureima et al., 2021).
On the other hand, the VHL gene is lost in ∼90% of ccRCC
tumors (Linehan and Ricketts, 2019). In normal renal tissue,
oxygen-dependent posttranslational modifications on HIF-2α
allow pVHL to normally recognize and mediate the proteasomal
degradation (Choueiri and Kaelin, 2020). Loss of VHL gene in
ccRCC, tumor is under pseudohypoxia state with accumulated
HIF-2α and activated HIF-1 to upregulate the expression of
hypoxia-inducible genes and increase tumor oxygenation (Haase,
2013). Hypoxia is a phenomenon in other cancers. HIF-2α
has been known to regulate tumor proliferation, metabolism,
metastasis, and resistance to chemotherapy in digestive system
cancers (Zhao et al., 2015). In melanoma, a hypoxia-related
signature has been developed to predict prognosis (Shou et al.,
2021).

In the present study, we identified 93 hypoxia-related genes
significantly associated with the outcomes of patients with
RCC. The PPI network of these selected genes significantly
included glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
IL-6, phosphoglycerate kinase 1 (PGK1), enolase 1 (ENO1),
and glucokinase (GCK). GAPDH is a key enzyme involved in
glycolysis and is related to cell proliferation in RCC (Vilà et al.,
2000). IL-6 has been shown to induce drug resistance in RCC and
is associated with poor prognosis (Ishibashi et al., 2018). PGK1
is also a glycolytic enzyme that can be secreted by tumor cells
to participate in angiogenesis. ENO1, GCK, PGK1, and GAPDH
are involved in tumor energymetabolism. Functional enrichment
analysis revealed that these genes were specifically related to
the glucometabolic process, hypoxia-related pathway, carbon
metabolism, and extracellular matrix. These results suggest that
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FIGURE 4 | Immune landscape between high and low hypoxia risk score groups of renal cell carcinoma patients. (A) The abundance of immune infiltration in high-risk

and low-risk groups from TCGA cohort. (B–L) The proportions of different immune cells between high-risk and low-risk groups in TCGA cohort. TCGA, The Cancer

Genome Atlas.

hypoxia-related energy metabolism is associated with tumor
prognosis and the TME condition.

Multiple approaches have been developed to predict
the prognosis of RCC, including prognostic models and
nomograms. Tumor node metastasis classification remains the
most important identified prognostic factor (Klatte et al., 2018).
Immunohistochemical staining of Ki-67, p53, and VEGFR-1 was
shown to be significantly related to RCC outcomes. Molecular
markers have also been applied as prognostic models. The
ClearCode34-based model was developed including 34 genes
to classify the subtypes of localized ccRCC to predict patient
survival outcomes (Brooks et al., 2014). The continuous CLEAR
score (continuous linear enhanced assessment of ccRCC)
was developed based on an 18-transcript signature to predict
patients’ disease-specific survival and the response to tyrosine
kinase inhibitor (Wei et al., 2017).

We developed a hypoxia-related risk model based on hypoxia-
related genes to predict the prognosis of patients with RCC.
The model had an accuracy of 76.1% (95% CI: 0.719–0.804) and
was found to be an independent predictor in Cox proportional
hazards regression analysis. PLAUR encodes the receptor for
urokinase plasminogen activator. BCL2 encodes a membrane
protein that regulates lymphocyte apoptosis. KLF6 encodes
the zinc finger protein that acts as a tumor suppressor.
KDELR3 encodes a member of the KDEL endoplasmic reticulum
protein retention receptor family. WSB1 encodes a member
of the WD-protein subfamily. PPARGC1A encodes proteins
that regulate energy metabolism. PCK1 is a critical regulator
of gluconeogenesis. RORA participates in tumor metastasis
regulation. PLAUR, BCL2, KLF6, WSB1, PPARGC1A, and PCK1
were identified to be related to the prognosis of ccRCC (Hirata
et al., 2009; Syafruddin et al., 2019; Xu et al., 2019; Liu et al., 2020;
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FIGURE 5 | Expression profile of immunomodulators and immunosuppressive cytokines. (A) Distribution of genes of immunomodulators and immunosuppressive

cytokines. (B,C) The proportions of immunomodulators and immunosuppressive cytokines between high and low hypoxia risk groups in TCGA cohort. TCGA, The

Cancer Genome Atlas.

Shen et al., 2020; Shi et al., 2020). The functions of KDELR3 and
RORA have not been reported in RCC.

Further analysis demonstrated that the hypoxia-related risk
model was also related to the immune microenvironment of
RCC. Tregs are key players in tumor immune escape and
angiogenesis (Facciabene et al., 2012). Monocytes congregate in
the TME and differentiate into tumor-associated macrophages
(TAMs). Hypoxia has a profound effect on these cells (Lewis
and Murdoch, 2005). Tregs were discovered to be significantly
higher in the high hypoxia risk score groups, indicating
an immunosuppressive microenvironment in these patients.
Monocytes and M1 macrophages, which can function as
efficient immune effector cells and promote antitumor immune
responses, were suppressed in patients with high hypoxia risk
scores. Additionally, our results showed that PD-1 and CTLA-
4 were significantly upregulated in the high hypoxia risk score
groups. However, CD8+ T cells and activated natural killer
cells were higher in the high hypoxia risk score groups. These

results indicate that hypoxia condition has multiple effects on
the immune microenvironment. The hypoxia-related risk model
may be useful for predicting the immunotherapy response.
Improving oxygen deficiency may decrease immunosuppression
in the TME of RCC, which may benefit immunotherapy.

It remains difficult to predict or explain the clinical
response rate of RCC immunotherapy in practice. However,
hypoxia has been reported to lead to immunosuppression
and tumor progression (Li et al., 2018). Hypoxia-induced
changes in the TME have also been reported as a barrier
to immunotherapy in pancreatic adenocarcinoma (Daniel
et al., 2019). Furthermore, inhibition of hypoxic stress-
relevant pathways can enhance antitumor immunity and
improve the response rate of immunotherapy. mTOR inhibitors
are applied in current therapies for RCC to target HIF
translation. VEGFA inhibitors target the function of HIF-
target genes. This may help prevent drug resistance and
enhance immunotherapy.
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There were some limitations to this study. First, the results
are based on data collected from TCGA database. Although the
results were verified in the ICGC database with 91 cases, the
potential for selection bias cannot be avoided, and it is impossible
to collect all clinical information from the patients. Second, the
results are descriptive, and in vitro or in vivo experiments were
not performed to clarify the exact immune microenvironment
of RCC. Third, further clinical trials are needed to validate the
prognostic prediction power of the hypoxia-related risk model.
Last but not least, the comparison between different tools for
predicting the prognosis of RCC, which may lead to a more
objective evaluation of the novel hypoxia-related risk model, is
not included in our study. Despite these limitations and lack of
further validation in more studies, the presented findings applied
a hypoxia-related risk model in RCC prognosis predicting and
statistically proved its performance.

We developed a hypoxia-related risk model based on
eight identified hypoxia-related genes. The model was
validated as an independent predictor of the prognosis of
patients with RCC. We hope that the hypoxia-related risk
model can be used as a prognostic biomarker in patients
with RCC, which may be helpful for underpinning clinical
decision-making in the future. Moreover, the hypoxia-related
risk model may reflect the immune microenvironment
of RCC and help improve the overall clinical response
to immunotherapy.
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