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Circular RNAs (circRNAs), as a rising star in the RNA world, play important roles in

various biological processes. Understanding the interactions between circRNAs and

RNA binding proteins (RBPs) can help reveal the functions of circRNAs. For the past

decade, the emergence of high-throughput experimental data, like CLIP-Seq, has made

the computational identification of RNA-protein interactions (RPIs) possible based on

machine learning methods. However, as the underlying mechanisms of RPIs have not

been fully understood yet and the information sources of circRNAs are limited, the

computational tools for predicting circRNA-RBP interactions have been very few. In

this study, we propose a deep learning method to identify circRNA-RBP interactions,

called DeCban, which is featured by hybrid double embeddings for representing RNA

sequences and a cross-branch attention neural network for classification. To capture

more information from RNA sequences, the double embeddings include pre-trained

embedding vectors for both RNA segments and their converted amino acids. Meanwhile,

the cross-branch attention network aims to address the learning of very long sequences

by integrating features of different scales and focusing on important information. The

experimental results on 37 benchmark datasets show that both double embeddings

and the cross-branch attention model contribute to the improvement of performance.

DeCban outperforms the mainstream deep learning-based methods on not only

prediction accuracy but also computational efficiency. The data sets and source code

of this study are freely available at: https://github.com/AaronYll/DECban.

Keywords: circular RNAs, RNA binding proteins, deep learning, double embeddings, attention network

1. INTRODUCTION

Circular RNAs (circRNAs) are a special kind of non-coding RNA molecules. Different from linear
RNAs, circRNAmolecules have closed-ring structures, which are not affected by RNA exonuclease,
and their expression is more stable (Pamudurti et al., 2017; Li et al., 2018). Although natural
circRNAs were discovered more than two decades ago, their important roles in gene regulation and
disease development have just been revealed in recent years (Hansen et al., 2013; Li et al., 2015).

Emerging studies have shown that circRNAs can bind to various types of proteins to affect
protein localization, regulate protein expression, or influence protein-protein-interactions. The
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circRNA-binding-proteins (circRBPs) include transcription
factors, RNA processing proteins, proteases, and common
RNA-binding-proteins (RBPs) that can be bound with linear
RNAs. Understanding the interactions between circRNAs and
proteins is helpful for revealing the biological functions of
circRNAs (Du et al., 2017; Zang et al., 2020). For the past decade,
high-throughput experimental technologies have been widely
used to detect the interactions between RNAs and proteins,
like cross-linking and immunoprecipitation followed by RNA
sequencing (CLIP-Seq) (Yang et al., 2015). The large-scale
experimental data makes it possible to predict RNA-protein
interactions (RPIs) based on machine learning methods (Li
et al., 2013). Compared with expensive and time-consuming
wet experiments, the computational methods have considerably
sped up the identification of interactions, thus the automatic
prediction of RPI has been a hot topic in the bioinformatics field
(Pan et al., 2019).

The existing prediction tools include both RNA-oriented
or protein-oriented, i.e., identifying the binding sites in the
RNA chain and protein chain, respectively (Yan et al., 2016).
Benefitting from the abundant domain knowledge from protein
databases, many studies perform prediction based on protein
information. By contrast, much fewer studies focus on the
binding sites on circRNAs (Ju et al., 2019; Zhang et al., 2019;
Jia et al., 2020; Wang and Lei, 2020). The reasons are two-
folds. For one thing, compared with other non-coding RNAs, like
microRNAs and long non-coding RNAs, research on circRNAs
has been largely lagged and their data is scarce. For another
thing, the prediction for circRNAs is a very difficult task, due to
the long sequences, sparsely distributed binding sites and limited
information that could be extracted.

As circRNAs have attracted more and more attention,
experimental data of circRNAs has increased rapidly. Till now,
a lot of circRNA-protein interactions have been revealed and
released in public databases, e.g., CircInterome that houses
the RBP/miRNA-binding sites on human circRNAs (Dudekula
et al., 2016). Thanks to the fast-growing circRNA data and
the rise of deep learning, methods for predicting circRNA-RBP
binding sites are emerging. For instance, Zhang et al. (2019)
proposed a method called CRIP to predict circRNA-RBP binding
sites, which is a hybrid architecture of convolutional neural
networks (CNNs) and recurrent neural networks (RNNs); Jia
et al. (2020) proposed an ensemble classifier, PASSION, which
combines various statistical sequence features and performs
feature selection to enhance the prediction accuracy.

Note that learning long sequences has still been an
open problem for neural networks. Biological sequences are
much longer than natural language sentences, conventional
learning models, including long short-term memory networks
(LSTMs) which were designed to handle long-term dependencies
(Hochreiter and Schmidhuber, 1997), do not work well for
extremely long sequences. Therefore, most of the existing
predictors take short segments instead of full-length non-coding
RNAs as input to identify the binding sites (Pan and Shen,
2017, 2018; Pan et al., 2018; Zhang et al., 2019), i.e., they divid
the RNA sequences into short fragments and predict whether a
fragment is a binding site or not. Obviously, such simplification

does not accord with the real scenario. For one thing, RPIs are
usually determined by the full-length RNA information rather
than short fragments; and for the other thing, the binding regions
only make up a tiny proportion in the whole RNA sequences,
while the fragment-based prediction often constructs relatively
balanced datasets, leading to a high false-positive-rate. Therefore,
to address the sparse distribution of binding sites and reduce false
positive predictions, this study aims to develop a model which
allows full-length circRNA sequences as input and provides
reliable predictions.

Generally, the performance of machine learning methods
depends on two factors, namely feature extraction and learning
model. In traditional learning methods, RNA sequences are
represented by statistical features, like the frequency of k-mers
and secondary structure elements (Zhang et al., 2011; Chen
et al., 2014). With the rise of deep learning, hand-crafted feature
extraction has been largely replaced by automatic feature learning
and pre-training via large-scale unlabeled datasets (Clauwaert
and Waegeman, 2019; Meher et al., 2019). Word embedding
is an emerging technique for representing biological sequence
features. Unlike traditional features or one-hot encoding,
word embedding is a kind of continuous distributed features.
Commonly used word embedding methods include Word2vec
(Mikolov et al., 2013), Glove (Pennington et al., 2014), ELMo
(Peters et al., 2018), GPT (Radford et al., 2018), and Bert (Devlin
et al., 2018). The first two models yield static embedding, i.e.,
the embedding vector for each word is context-independent and
fixed after training (Peters et al., 2018), while the latter three
methods yield context-dependent embedding vectors.

At present, static embeddings learned by shallow models
have been widely used in biological sequence analysis, while
only a few studies applied dynamic embedding, like Elmo and
Bert. One reason is that the models based on deep learning
models such as Elmo and Bert are very computation-intensive.
Especially, non-coding RNA sequences are much longer than
protein sequences, thus learning dynamic embedding for RNA
sequences may require more complex model. In this study, we
also adopt static word embedding method to represent circRNA
sequences. To better mine the sequence information, we propose
a double-embedding method to expand the feature space, which
is further learned by deep neural networks to extract abstract
features for classification.

As circRNAs are usually thousands of nucleotides, to handle
the extremely long sequences, specialized model design is also
required. Previous studies mainly used CNN (Alipanahi et al.,
2015), RNN, or CNN-RNN hybrid models (Pan and Shen,
2017; Zhang et al., 2019). As aforementioned, these models
take short fragments as input and construct balanced datasets,
while true binding sites are very rare. In this study, we design
a new model called DeCban (Double embedding and Cross-
branch attention network) to predict the presence of RBP-
binding sites on full-length circRNAs. This predictor is featured
by not only a new sequence encoding scheme, i.e., double
embedding, but also a cross-branch attention neural network.
The network extracts sequence features of different abstract levels
and different granularities, and the attention module allows
the network to focus on important features for discrimination.
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TABLE 1 | Experimental datasets.

RBP Train# Test# RBP Train# Test#

AGO1 33547 14377 IGF2BP2 59467 25485

AGO2 57697 24724 IGF2BP3 83120 35622

AGO3 8570 3672 LIN28A 50769 21757

ALKBH5 4497 1927 LIN28B 21601 9257

AUF1 3045 1305 METTL3 9033 3871

C17ORF85 6225 2667 MOV10 6309 2703

C22ORF28 15680 6720 PTB 67963 29127

CAPRIN1 15503 6643 PUM2 4903 2101

DGCR8 57651 24707 QKI 3036 1300

EIF4A3 25017 10721 SFRS1 36563 15669

EWSR1 13253 5679 TAF15 3580 1534

FMRP 79392 34024 TDP43 2610 1118

FOX2 2756 1180 TIA1 5127 2197

FUS 60699 26013 TIAL1 9613 4119

FXR1 2908 1246 TNRC6 3876 1660

FXR2 15400 6600 U2AF65 16236 6958

HNRNPC 2588 1108 WTAP 1517 649

HUR 73352 31436 ZC3H7B 30175 12931

IGF2BP1 66355 28437

Compared with the existing RPI prediction tools andmainstream
deep learning models, DeCban has great advantages on both
prediction accuracy and computational efficiency.

2. METHODOLOGY

2.1. Datasets
To evaluate the prediction performance of DeCban, we collect
circRNAs and their interacting proteins from Circular RNA
Interactome (https://circinteractome.nia.nih.gov/) (Dudekula
et al., 2016). The sequence redundancy is removed by CD-Hit
(Fu et al., 2012) with threshold 0.8, resulting into 32,216 circRNA
sequences, which are bound to a total of 37 RBPs. We train a
binary prediction model for each RBP and construct 37 datasets.
The positive-to-negative ratio of each data set is 1:1, where
the positive samples are the circRNAs binding to the RBP and
negative samples are the remaining ones. The circRNAs in this
set range from 100 to 30,000 nt in length, 90% of which are
500~7,000 nt. Therefore, to avoid the potential bias brought by
too short and too long sequences, we only include the sequences
falling in the range of 500~7,000 nt in the final data set. The data
statistics are shown in Table 1.

2.2. Model Architecture
Figure 1 shows the model architecture. The feature vectors
generated by double embeddings are fed into a CNN-based
neural network with multiple branches of different granularities.
We introduce the self-attention mechanism to automatically
integrate the semantic information extracted from different
branches at each abstract level (an abstract level corresponds to
a convolutional layer), and combine multiple levels of semantic

information to determine whether binding sites exist in the
RNA equences.

2.2.1. Double Embeddings
To work with deep neural networks (DNNs), input sequences are
usually converted into numerical vectors by encoding schemes,
such as one-hot, which encodes each nucleotide by a four-
dimensional binary vector with only one element equal to 1.
One-hot is unable to express the association between different
nucleotides or context information, and the low dimensionality
of its feature space limits the performance of further learning
by DNN. By contrast, word embeddings, that are continuous
dense vectors capturing semantic association of words, have
been a mainstream method to represent words and sentences in
natural language processing. The training of word embeddings is
based on the language modeling task, like next-word prediction,
which does not require sequence labels. Thus, the training of
embeddings can be performed on large-scale unlabeled corpus.

In recent years, word embeddings for k-mers have emerged
in various bioinformatics applications. Here we also adopt word
embeddings to represent circRNA sequence features. Besides, we
notice that the word embedding technology has been applied
more and achieved better performance in protein classification
tasks, perhaps due to the bigger alphabet size and much shorter
length of amino acid sequences compared with DNA/RNA
sequences. To expand the alphabet, Zhang et al. (2019) developed
a codon-based encoding scheme for circRNA sequences. A major
advantage of this scheme lies in the enlarged feature space,
as the classic one-hot has only 4 symbols while the codon-
based encoding has 21 symbols, which are a combination of 3
nucleotides. The genetic codes define not only the alphabet of
the new symbol system, but also the rules of correspondence
between combinations of nucleotides and new symbols. Zhang
et al. (2019) also showed that the three-nucleotide combinations
defined by codons, are superior to random combinations defined
in other encoding systems. Inspired by this idea, we convert RNA
segments into pseudo-peptides and obtain word embeddings
for them (we call them “pseudo-” because them are not real
peptides). Then, we combine the two kinds of embeddings to
generate the input features of our model. We call the new feature
extraction method as double embeddings.

For a circRNA fragment of length k, there are (k − 2)
consecutive codons, where the codons are translated in an
overlapping manner to retain more local context information.
Then we perform pre-training of the word embeddings for k-
mer RNA segments and (k − 2)-mer peptides, respectively.
Since circRNA sequences are very long, to reduce the length
of sentences, we need to set a large k, and long fragments also
containmore local sequence information. However, training long
words will require intensive computation resource. As a tradeoff,
we set k to 7. We treat the segmented k-mers as words and
adopt the GloVe algorithm to train their embeddings. Like NLP
applications, to produce good embedding vector for words, a
large corpus of text is required. Here we adopt the whole human
genome as the corpus for RNA sequences (we replace “T” with
“U” to convert DNAs to RNAs) and UniRef50 (https://www.
uniprot.org/help/uniref) as the corpus for amino acid sequences.
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FIGURE 1 | Model architecture of DeCban. The network consists of three convolutional layers and three branches (shown in green, orange, and red, respectively). An

attention layer (shown in light blue) is used to integrate the outputs of the three branches. Then, the feature embeddings learned by the three layers are concatenated

and fed to a fully connected layer to yield the final output.

FIGURE 2 | An example of double embeddings. An RNA sequence is

segmented into 7-mers, and each 7-mer is converted into an embedding

vector; meanwhile, the 7-mer is mapped to a pseudo-peptide, which is also

converted into an embedding vector. The two embedding vectors are

concatenated as a whole input.

Finally, we construct the input matrix by using pre-trained
word embeddings. Specifically, for each 7-mer fragment of a
circRNA sequence, we concatenate the RNA embedding and
the corresponding pseudo-peptide embedding. For example, as
shown in Figure 2, the first 7-mer “CACUAUA” contains the
codons CAC, ACU, CUA, UAU, and AUA, which encode the
amino acids H, T, L, Y, and I, respectively. Then, the embedding
vectors of “CACUAUA” and “HTLYI” are concatenated to
represent the feature vector of “CACUAUA.”

Formally, for a given circRNA, let its length be L, which is
divided intom segments (m =

⌊

L/k
⌋

}). Let the RNA and peptide
embedding vectors for wi are Ri and Pi, whose dimensions are
p and q, respectively. Then the double embedding for wi is
defined as,

Di = Ri +©Pi, i ∈ {1, 2, · · · ,m}, (1)

where +© denotes the concatenation operation. Then the
circRNA is represented by a matrix of size (p + q) × m, i.e.,
[D1,D2, · · · ,Dm].

2.2.2. Cross-Branch Attention Network
As shown in Figure 1, the network has multiple branches, which
have the same number of convolutional layers but vary in
convolution kernel size. Thus, the branches can extract features
at different granularities.

Besides, at the same layer of all branches, we introduce the
self-attention mechanism. As the length of the input sequences
varies greatly, the best features extracted from different sequences
may come from different branches. The self-attention module
enables the network to assign weights to the branches and obtain
weighted average features. We introduce such modules in each
layer to extract features of different abstract levels. Therefore, we
name the model cross-branch attention network.

Formally, let the input of the network be X, and the first layer
outputs of the three branches be X1

1 ,X
1
2 , and X1

3 , respectively,
which can be expressed as,

X1
j = f (W1

j ∗ X + b1j ), j ∈ {1, 2, 3}. (2)

Similarly, for each subsequent layer i, the outputs Xi
j are

computed as,

Xi
j = f (Wi−1

j ∗ Xi−1
j + bij), i ∈ {2, 3}, j ∈ {1, 2, 3}. (3)

The Xi
js are further processed via a maximum pooling

operation, i.e.,

Y i
j = h(Xi

j), (4)

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 11 | Article 632861

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yuan and Yang DeCban

where h(·) is the max-pooling function. Then, the self-attention
module works on each layer to integrate the outputs of
three branches,

Y i
attn(Wa,Y

i
1 : 3) = SoftMax(g(Wa ∗ (Y

i
1 : 3)

T)) ∗ Y i
1 : 3, (5)

where g(·) denotes the activation function, and Y i
attn is the output

yielded by the attention module for the i-th layer. The outputs of
the three layers are combined as yout ,

Yout = concat(Y1
attn,Y

2
attn,Y

3
attn). (6)

Finally, the output O of the network is obtained through a
FC layer,

O = SoftMax(g(Wfc ∗ Yout + bfc)). (7)

3. EXPERIMENTAL RESULTS

3.1. Experimental Settings
The DeCban model has three branches, and the sizes of their
convolution kernels are 3, 5, 7, respectively. Each branch
has three convolutional layers and each layer has 100 filters.
The initial parameters of each attention module are randomly
generated with normal distribution. We use Adam optimizer
with learning rate of 0.001 to optimize the model. The number
of early stopping rounds is set to 10, and the training-to-test ratio
is 7:3.

3.2. Baseline Methods
To assess the performance of DeCban, we compare it with not
only the existing predictor for RNA-protein interactions but also
mainstream deep neural networks, including a recent method
called CRIP (Zhang et al., 2019), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs). Note that
CRIP performs prediction on short fragments (i.e., 101-nt), thus
for a full-length RNA sequence, we first divide it into fragments
and use CRIP to predict for each fragment, and then merge the
results to get the prediction for the whole sequence. The other
baseline models fall into five groups. Each group contains three
methods with the same backbone model but different feature
representations, namely RNA embeddings, peptide embeddings,
and double embeddings. In addition, the performance of DeCban
working with RNAor peptide embeddings alone is evaluated. The
specification of baseline models is as follows.

• Group 1—LSTM: a vanilla long short-term memory network
(Hochreiter and Schmidhuber, 1997).

• Group 2—BiLSTM with attention: a bidirectional LSTM with
attention mechanism (Zhou et al., 2016)1.

• Group 3—TextCNN: a TextCNN (Kim, 2014) model.
• Group 4—ResNet18 base: a basic ResNet18 model

(He et al., 2016).
• Group 5—ResNet18 small: a simplified ResNet18 model,

which has the same architecture as ResNet18 but fewer
convolutional kernels on each layer.

1An advanced model structure based on LSTM, which has achieved state of art

results on multiple NLP tasks.

FIGURE 3 | The ROC curves obtained by DeCban for 37 circRNA data sets.

• CRIP: a CNN-RNN hybrid model for the prediction of RBP-
bindings sites on RNAs (Zhang et al., 2019).

3.3. Experimental Results and Analysis
For a comprehensive comparison, we consider not only the
prediction accuracy but also computational efficiency. The
accuracy is evaluated by the common metrics of machine
learning models, F1 and AUC score (Area under the ROC
Curve). The efficiency is assessed by the number of parameters
and speedup.

First, we compare the AUC scores of DeCban and CRIP on
all 37 data sets. The ROC curves are shown in Figures 3, 4,
respectively. The AUC scores range from 0.819 to 0.970, and the
average AUC is 0.905. The lowest, highest, and average AUCs
of these two methods are 0.819 vs. 0.734, 0.970 vs. 0.917, and
0.905 vs. 0.821, respectively. DeCban has an obvious advantage
over CRIP.

Second, we compare the F1 scores for all baseline models.
Table 2 shows the average F1, number of parameters and
speedup. As can be seen, DeCban achieves the highest average F1
of 0.841, and the second best model is BiLSTM with attention,
whose average F1 is 0.827. The detailed scores for all 37 data
sets are listed in Supplementary Table 1. DeCban obtains the
highest F1 scores on all of the datasets. Meanwhile, DeCban
has a lightweight architecture. Compared with the second best
model BiLSTM, DeCban has a significant reduction on model
parameters. The detailed comparison results are discussed in
sections 3.3.1–3.3.5.

3.3.1. Comparison of the Sequence Encoding

Methods
From Table 2, it can be observed that double embeddings can
improve the performance of both baseline models and DeCban.
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FIGURE 4 | The ROC curves obtained by CRIP for 37 circRNA data sets.

Compared to original RNA embeddings, double embeddings
increase F1 by around 1%. In the meantime, using double
embeddings do not significantly increase the complexity of the
model. The total number of parameters of DeCban using double
embeddings has the same order of magnitude as that of the
model with RNA embeddings or amino acid embeddings. Taking
ResNet-18-base as an example, the number of parameters is
increased by <1.5%, while the average F1 on 37 data sets is
increased by nearly 1 percentage.

The results suggest that the combination of RNA information
and pseudo-peptide information can improve the data
representation ability, although the “peptides” are not biological
meaningful. A major reason for the performance improvement is
the enlarged feature space. Moreover, the new encoding method
traverses the RNA k-mers sequentially in an overlapping manner,
thus retaining some local context information, which may be
helpful for capturing the dependency relationship of nucleotides.

In addition, we replace the double embedding encoding with
the traditional one-hot encoding for comparison. The average F1
on 37 data sets is 0.822, and the training speed is significantly
slower than double embedding. This result shows the advantages
of double embedding over traditional one-hot encoding.

3.3.2. Comparison of Model Architectures
As DeCban is a convolutional neural network, we compare it
with the state-of-the-art CNN model, ResNet-18. The number
of layers and parameters of ResNet is much larger than that
of DeCban. Specifically, the parameter amount of ResNet-
18-base is 28 times of DeCban, while the F1 score is 2.5%
lower than DeCban. Considering that ResNet might overfit the
data due to the large model size, we implement a lightweight
version of ResNet-18, namely the ResNet-18-small, by reducing
the number of convolutional kernels for each layer, then the

TABLE 2 | Experimental results of different modelsa.

Model Paramb Avg Fa Speedupc

LSTM-base

RNA 118 K 0.685 1.8x

Peptide 132 K 0.685 2.0x

Double 183 K 0.692 3.3x

BiLSTM-attention

RNA 647 K 0.817 6.4x

Peptide 676 K 0.810 6.4x

Double 778 K 0.827 8.2x

CNN-base

RNA 26 K 0.796 1.0x

Peptide 30 K 0.793 1.2x

Double 46 K 0.806 2.3x

ResNet-18-base

RNA 3,914 K 0.811 2.7x

Peptide 3,927 K 0.803 2.6x

Double 3,972 K 0.814 3.7x

ResNet-18-small

RNA 254 K 0.770 1.7x

Peptide 255 K 0.761 1.8x

Double 261 K 0.773 2.7x

CRIP – 900 K 0.766 5.7x

DeCban

One-hot 33 K 0.822 9.6x

RNA 79 K 0.833 1.8x

Peptide 93 K 0.826 2.0x

Double 141 K 0.841 3.2x

aRNA, Peptide, Double denote the RNA embedding, Peptide embedding, and double

embedding, respectively.
bParam denotes the number of parameters in the model.
cSpeedup measures the relative performance of two methods processing the same

problem in terms of speed. We use CNN-base with RNA embedding as the basic

reference, i.e., its speedup is 1.0x.

amount of parameters is at the same order of magnitude
as DeCban. However, after the simplification, the prediction
accuracy drops significantly. Comparing with ResNet-18-base,
the F1 scores of three embeddingmethods are decreased by 0.038,
0.043, and 0.044, respectively. By contrast, benefitting from the
multi-branch and self-attention mechanism, DeCban can extract
features of different scales, and achieve better accuracy with
much higher efficiency. Even using only RNA word embeddings,
DeCban outperforms all baseline models, demonstrating the
superiority of the new model architecture.

Besides CNN models, we also consider the widely-used RNN
model, LSTM. Although LSTM was designed to address the
gradient vanishing issue and long-term dependencies, it is still
difficult for LSTM to handle very long sequences. It can be seen
from the experimental results that the performance of vanilla
LSTM is poor. When using the double embeddings, the average
F1 on 37 datasets is 0.692, which is much lower than that of
basic CNN (0.806). The gap of performance between these two
kinds of models may be attributed to the large difference in the
sequence length.

As the input sequences vary greatly in length, a large number
of meaningless zeros are filled at the end of short sequences.
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The padding operation affects the training of LSTM, while CNN
has more flexibility in extracting features from sequences with
varying length. In this case, attention mechanism becomes a
necessary part to enable the model focus on informative regions,
thus the BiLSTMmodel with attention improves the performance
of LSTM significantly, even better than basic CNNs and ResNets.

As for the training speed, RNN models generally need longer
training time compared with CNN-based models. BiLSTM-
attention becomes the most time-consuming model. By contrast,
although ResNet-18 has the most parameters, it takes only
less than half of the training time of BiLSTM-attention. Thus,
the CNN-based DeCban model also achieves high efficiency.
Taking the DeCban using double embedding as an example, the
parameters are only one fifth of those of BiLSTM-attention, but
the average F1 value is increased by 1.4%, which shows that
the proposed network can achieve better performance with less
computing resources.

3.4. Comparison With the Latest Models
In addition to the baseline models with common model
architectures, we compare DeCban with the existing predictors
for RBP-RNA interactions. Currently, the predictors for
circRNAs are very few. CRIP (Zhang et al., 2019) and PASSION
(Jia et al., 2020) are two recently developed models. We compare
them with DeCban in terms of feature extraction, model
architecture, and input, as described in the following.

CRIP also uses the 3-nucleotide codons to convert RNAs
into pseudo-amino acids, i.e., the stacked-codon encoding
scheme. However, CRIP presents the pseudo-amino acids as
one-hot vectors, while DeCban uses word embeddings for both
original RNAs and the converted pseudo-amino acids. PASSION
incorporates some traditional statistical features in addition to
CRIP’s features. Therefore, a major difference between DeCban
and the previous studies is using continuous dense feature
encoding instead of sparse discrete features. Besides, the double
embeddings contain the information of both RNA segments
and pseudo-peptides, so as to strengthen the representation of
raw sequences.

As for the model architecture, CRIP adopts a CNN-LSTM
hybrid network, and PASSION proposes an ensemble classifier,
which combines the hybrid network with an artificial neural
network (consisting of fully-connected layers). DeCban is a
CNN-based multi-branch attention network. As shown in
Table 2, the parameter quantity of CRIP is 900 K, and PASSION
has more parameters due to the ensemble nature; while DeCban
with double embedding uses only one seventh of the parameters
of CRIP.

Finally, both CRIP and PASSION perform prediction on short
fragments, i.e., 101-nt segments. The incomplete sequences may
lose some characteristics of original RNA molecules and lead
to more false positive predictions, as mentioned in Zhang et al.
(2019), while DeCban handles full-length sequences. Figure 4
shows the ROC curve of CRIP. The average AUC value of the
CRIP model on 37 data sets is 0.821, while DeCban is 0.905.
DeCban gets significantly higher AUC value than that of CRIP
on nearly all datasets. And, according to the results reported in
Jia et al. (2020), PASSION’s AUC is about 0.01 higher than that
of CRIP. As both these two methods’ inputs are short fragments

with balanced positive-to-negative ratio, they may have close
performance when handling full-length circRNAs.

4. DISCUSSION

Circular RNAs are a special kind of non-coding RNAs, which play
an important role in gene regulation and disease development.
Studying the interactions between circRNAs and RBPs can reveal
the functions of circRNAs. However, the prediction of binding
sites on circRNAs faces many challenges.

First, the length range of circRNA sequences is very large,
from tens to over 100,000 nt, which adds great difficulty to the
learning models. Thus, it is important to design a network to
adapt to the large variance of input sequences. The multi-branch
design of DeCban aims to extract features from different ranges
of sequence regions, as the branches differ in kernel sizes, leading
to different receptive fields. For instance, assume that step length
is 3, with 0 padding and 0 dilation. When the convolution kernel
size is 3, the receptive field sizes of the features output by the first
and second layers are 3 and 5, respectively.When the convolution
kernel size is 5, the receptive field sizes of the features output by
the first and second layers are 5 and 9. Thus, different convolution
kernel sizes can extract features of different scales.

The second challenge is that RBP-binding sites are extremely
sparsely located in the whole RNA sequences, i.e., the number
of binding sites are few and the binding regions are very short
compared to full-length sequences. Thus, this is a severely
imbalanced learning task, as most of the regions have no binding
affinity. The attention mechanism in DeCban can alleviate this
problem to a certain extent, which enables the model focus on
key regions in long sequences.

The third challenge arises from the data side. Compared
with linear RNAs, domain knowledge or information sources
other than sequences are lacked. By utilizing the codon-based
mapping between RNA and peptides, and performing large-scale
pre-training of word embeddings for both RNA segments and
peptides, we propose a new feature representation method for
circRNAs, called double embeddings. Experiments show that
this method effectively improves the representation ability for
raw sequences.

Compared with the existing circRNA-RBP prediction
methods, DeCban has the following advantages:

(1) The prediction can be performed on full-length circRNA
sequences instead of short segments.

(2) The model is highly efficient, whose training has a low cost
on computation resources.

(3) The high prediction accuracy makes it a useful tool for
studying circRNA-RBP interactions.

5. CONCLUSION

In this study, we propose a method called DeCban to predict
the binding relationship between RNA-binding-proteins and
circRNAs. Different from the existing tools which can only
handle short segments of circRNAs, DeCban is able to predict
whether a binding site is present on full-length circRNAs. In
order to solve the problem of large length span and sparse
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distribution of binding sites, we design a multi-branch and
multi-layer convolutional neural network with an attention
module. Moreover, to enhance the input data representation,
we propose the double embedding encoding scheme, which
is superior to the traditional single RNA embedding due to
the introduction of amino-acid-level sequence information. We
perform experiments on 37 data sets, corresponding to 37
RBPs. The experimental results show that our method achieves
the best results compared with a variety of advanced deep
learning structures. DeCban will be a useful tool for studying the
interactions between RBP and circRNA.
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