
Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 11 | Article 628175

ORIGINAL RESEARCH
published: 04 February 2021

doi: 10.3389/fgene.2020.628175

Edited by:
Wang Guohua,

Harbin Institute of Technology, China

Reviewed by:
Pu-Feng Du,

Tianjin University, China
Yushan Qiu,

Shenzhen University, China

*Correspondence:
Haihe Shi

haiheshi@jxnu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 11 November 2020
Accepted: 29 December 2020
Published: 04 February 2021

Citation:
Shi H, Shi H and Xu S (2021) Efficient

Multiple Sequences Alignment
Algorithm Generation via
Components Assembly
Under PAR Framework.

Front. Genet. 11:628175.
doi: 10.3389/fgene.2020.628175

Efficient Multiple Sequences
Alignment Algorithm Generation via
Components Assembly Under PAR
Framework
Haipeng Shi 1,2, Haihe Shi 3* and Shenghua Xu 1

1 School of Information Management, Jiangxi University of Finance and Economics, Nanchang, China, 2 School of Software,
Jiangxi Normal University, Nanchang, China, 3 School of Computer and Information Engineering, Jiangxi Normal University,
Nanchang, China

As a key algorithm in bioinformatics, sequence alignment algorithm is widely used in
sequence similarity analysis and genome sequence database search. Existing research
focuses mainly on the specific steps of the algorithm or is for specific problems, lack of
high-level abstract domain algorithm framework. Multiple sequence alignment algorithms
are more complex, redundant, and difficult to understand, and it is not easy for users to
select the appropriate algorithm; some computing errors may occur. Based on our
constructed pairwise sequence alignment algorithm component library and the convenient
software platform PAR, a few expansion domain components are developed for multiple
sequence alignment application domain, and specific multiple sequence alignment
algorithm can be designed, and its corresponding program, i.e., C++/Java/Python
program, can be generated efficiently and thus enables the improvement of the development
efficiency of complex algorithms, as well as accuracy of sequence alignment calculation.
A star alignment algorithm is designed and generated to demonstrate the
development process.

Keywords: multiple sequence alignment algorithm, domain component, algorithm generation, convenient
software development platform, bioinformatics

INTRODUCTION

Alignment is a common and important approach in biology study. In the research of bioinformatics
(Wang et al., 2015), biological sequence alignment is one of the important processes of similarity
analysis between unknown and known molecular sequences, the basis of biological sequence
analysis and database search, and used in the sequence assembly. It is the key link to apply
high-performance computing to biology.

Sequence alignment is a technique for identifying regions of sequence similarity by arranging
genome sequences to obtain the function, structure, or evolutionary relationship between the
sequences to be aligned. With the implementation of the Human Genome Project, the development
of sequencing technology has produced a large amount of raw sequence data about biological
molecules. For example, Illumina HiSeqX Ten can generate approximately 3 billion 2 × 150 bp
paired-end sequencing data within 3 days (Illumina, 2016). Challenged with such a wealth of

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.628175&domain=pdf&date_stamp=2021-02-04
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.628175
https://creativecommons.org/licenses/by/4.0/
mailto:haiheshi@jxnu.edu.cn
https://doi.org/10.3389/fgene.2020.628175
https://www.frontiersin.org/articles/10.3389/fgene.2020.628175/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.628175/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.628175/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.628175/full

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 11 | Article 628175

genome sequence data, to efficiently process and analyze these
data, to compare similar regions and conserved sites between
the two sequences, to seek sequence homology structures, and
to reveal biological heredity, variation, and evolution, etc., have
become the main motivations for the research of sequence
alignment algorithms.

At present, most of the research on alignment algorithms
focus on specific problems (Isa et al., 2014; Cattaneo et al.,
2015; Chattopadhyay et al., 2015; Huo et al., 2016) or specific
algorithm optimization (Farrar, 2007; Houtgast et al., 2017;
Junid et al., 2017) in the field of sequence similarity analysis,
but less on the whole problem domain, so it is difficult to
get an algorithm component library with a higher level of
abstraction and suitable for the whole field of sequence similarity
analysis. To some extent, this leads to the redundancy of the
sequence alignment algorithm and the errors that may be caused
by the artificial selection algorithm. It also makes it difficult
for people to effectively understand the algorithm structure
and ensure the correct use of the algorithm, which reduces
the accuracy of the sequence similarity analysis. Because of
the specificity and low-level abstraction of existing algorithms,
researchers need to spend a lot of time to learn and use such
algorithms, and it is also difficult to locate and solve the errors
generated by the algorithms; thus, maintainability and reusability
of the algorithms are reduced, and the burden of sequence
similarity analysis is increased.

Sequence alignment algorithms can be divided into pairwise
alignment algorithms and multiplesequence alignment algorithms
(Zhan et al., 2019, 2020). Among them, the most classic solution
to the pairwise sequence alignment algorithm is dynamic
programming. We studied the field of dynamic programming–
based pairwise sequence alignment algorithm (DPPSAA) in
the early stage and established a domain component library
(Shi and Zhou, 2019), which has been successfully applied to
the problem of pairwise sequence alignment algorithm. However,
the multisequence alignment algorithm is rather complex.
Because of its non-deterministic polynomial (NP)-complete
(Wang and Jiang, 1994), current researches are all devoted to
finding the optimal approximate solution. With the increase
of the complexity and difficulty of the multisequence alignment
algorithm, the reliability and efficiency of the algorithm are
difficult to be guaranteed.

Based on the previous work, this article adopts the formal
method PAR (Xue, 1997, 2016; Shi and Xue, 2009, 2012; Xue
et al., 2018) to describe, construct, transform, and refine the
components, models, and frameworks related to the
multisequence alignment algorithm and expand PAR platform
to support the generation of effective multiple sequence alignment
algorithm via component assembly. The multilevel different
models in the algorithm development process are unified under
the PAR framework to effectively ensure the reliability of
the resulting algorithm and improve the efficiency of
algorithm development.

Through in-depth analysis of the field of multiple sequence
alignment algorithms, based on the component library of the
DPPSAA domain, some algorithm components have been
improved and added, and a component library of multiple

sequence alignment algorithms on top of the component library
of the DPPSAA domain was established. Finally, an example,
the successful assembly of the star alignment algorithm and
the automatic generation of the C++ program, is shown.

ALGORITHM GENERATION UNDER THE
PAR FRAMEWORK

Related Work
On the basis of the component library in the DPPSAA domain,
this article has carried out the research on the algorithm design
and program generation of multiple sequence alignment
algorithms under the PAR framework.

PAR
The PAR framework includes two parts: software formal method
and convenient software development platform. The PAR method
is composed of a generic algorithm design language Radl, a
generic abstract programming language Apla, systematic
methodology for algorithms and programming. It combines
two high-efficiency techniques, i.e., partition and recursion
used in special problems, covering a variety of known algorithm
design techniques such as dynamic programming, greedy, divide
and conquer, and so on. It can be used as a unified method
of algorithm generation to avoid the difficulty of making choices
among the existing algorithm design methods. The PAR platform
is composed of Apla to C++/C#/Java/Python program generation
systems and realizes the automatic generation of algorithmic
programs such as sequential programs, parallel/concurrent
programs, and database applications.

Practice has proven that the productivity of complex algorithm
program and database application software can be greatly
improved by using the language, method, series algorithm,
and program automatic generation tool provided by PAR. Many
military departments, such as the National General Equipment
Department, Beijing Military Region, and armored academy,
have taken the lead in applying these achievements to the
construction of China’s important military projects and have
achieved remarkable military and economic benefits. The PAR
framework has been appraised by the expert group of the
Ministry of Science and Technology of China as “having the
international advanced level, among which the theoretical
framework of the correctness of the complex algorithm program
has the international leading level.”

DPPSAA Domain Model and Component Library
In Shi and Zhou (2019), we analyzed the characteristics of
DPPSAA, extracted the common and variable features and the
constraints and dependencies between them, established the
DPPSAA domain model and its algorithm component interaction
model, and further implemented the models using the abstract
programming language Apla to form a highly abstract DPPSAA
component library, in order to automatically or semiautomatically
assemble components to generate sequence alignment algorithms
for specific fields, thereby reducing the error rate and time

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 3 February 2021 | Volume 11 | Article 628175

cost of manual selection algorithms for sequence similarity
analysis, improving the efficiency of algorithm execution, and
even assembling a more efficient new sequence alignment
algorithm based on dynamic programming.

The experimental results show that the DPPSAA algorithm
component library has a certain degree of practicability and has
good expected results. It can be seen from the domain realization
process that the domain feature model is a formal description
at a higher level of abstraction, which not only makes the specific
composition characteristics and dependencies of the algorithm
clearly displayed, but also is very helpful for understanding the
overall architecture of the algorithm. Moreover, the establishment
of the feature interaction model makes it easier to specify the
specific configuration knowledge required by the algorithm in
the domain implementation process and then automatically
assemble the components in the DPPSAA algorithm component
library to design the desired algorithm, without paying too much
attention to the details of algorithm implementation.

Algorithm Generation Process
Based on a large amount of practical work carried out in the
early stage, combined with related methodologies such as PAR
and domain engineering, the development of multisequence
alignment algorithms can be divided into two parts: reuse-
oriented development and application reuse development.

For reuse-oriented development, it can be divided into the
following steps:

 1. Analyze the algorithm family in the field of multiple sequence
alignment, and establish the domain model.

 2. Formally describe the component function specifications.
3. Use the PAR method to design abstract Apla algorithm

components, use the PAR platform to obtain highly reliable
executable language-level components, and expand the PAR
platform component library in a self-expanding manner.

The process of designing a specific problem-solving algorithm
and generating a program is a development process of
application reuse:

1. Analyze and (formally) characterize the specific problem to
be solved.

2. Determine the algorithm components required for assembly.
3. The Apla abstract language is used to describe the assembly

process, and the executable program corresponding to the
specific algorithm is automatically generated through the
PAR platform.

The introduction of the PAR framework reduces the
operational difficulty of algorithm component assembly and
improves the automation of algorithm component assembly.

STAR ALIGNMENT ALGORITHM

Algorithm Idea
The star alignment algorithm (Zou et al., 2009, 2015) is a heuristic
fast approximation algorithm for typical multisequence alignment.

It compares all sequences in pairs and selects the sequence
with the highest alignment score with other sequences as the
central sequence. Then, continue to compare with other sequences
to obtain the final alignment result. When adding subsequent
sequences to the alignment process, follow the “leave blank
once, leave blank everywhere” rule, which cannot guarantee
the ultimate result of the alignment.

For example, for the sequence s1 = CGCT, s2 = GCGT,
s3 = CCTG, the pairwise alignment results of the sequences
s1, s2, and s3 are shown in Table 1.

The star alignment algorithm adds the alignment scores of
each sequence to other sequences and selects the sequence
with the largest score as the central sequence. Therefore, in
this case, s1 is selected as the center sequence, and the best
alignment result and the final merge result with S2 and S3
are shown in Figure 1.

Algorithm Component and Apla
Implementation
Using feature modeling knowledge and performing process
analysis on star alignment algorithms, we will know that
multisequence alignment is mainly used as the core service
of star alignment algorithms in the star alignment process.
The multiple sequence alignment service is mainly based on
the pairwise sequence alignment, by selecting the optimal
pairwise sequence alignment result as the central sequence,
and then continuously adding the suboptimal sequence to the
alignment until the final multisequence alignment result is
obtained. After analyzing the execution process of the star
alignment algorithm, the multisequence alignment operation
service mainly consists of the following features (the component
name of the corresponding feature in parentheses): sequence
legality check (msa_check), distance matrix (dist_Matrix),
pairwise alignment manipulation (align_manipulation), center
sequence selection (msa_center), remember alignment space

TABLE 1 | Distance matrix of s1, s2, and s3.

s1 s2 s3 Score

s1 −1 −1 −2
s2 −1 −2 −3

s3 −1 −2 −3

FIGURE 1 | Result of star sequence alignment.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 11 | Article 628175

(rmb_space), multisequence alignment result output (msa_op_
result), and so on. Among them, sequence legality check,
pairwise alignment manipulation, distance matrix, and center
sequence selection are mandatory features in the star alignment
algorithm, and the multisequence alignment result output feature
mainly depends on the remember alignment space feature;
that is, when the assembly algorithm contains a multisequence
alignment result output component, it will include and implement
the remember alignment space component by default.

Taking DPPSAA as the basis of sequence alignment, generic
programming language Apla is used to abstractly represent
the star alignment algorithm, which can realize star alignment
algorithm by standardized assembly. Here, we expand on the
basis of the component library in the DPPSAA domain, so
that the component library in this domain can be used to
assemble and implement the star alignment algorithm.
We perform Apla representation of the extended component
as follows:

1. Sequence legality check
 msa_check is an extension based on the check component
in the DPPSAA field that can be used to detect multiple
sequences. The Apla process statement is:
procedure msa_check(String str[]);
where str[] represents the base string array for multiple
sequence alignment.

2. Distance matrix
dist_Matrix means that all pairwise alignment scores
participating in multisequence alignments are returned as
distance matrix elements, and the component uses pairwise
sequence alignment operations as its generic parameters. The
prototype of the Apla function is as follows:
function dist_Matrix (procalign_manipulation(sometype
elemMatrix; ADT dp_mode(eM:elemMatrix); op_mode (func
score_op():integer; proc traceback (proc print_align(); proc
print_extrude() =NULL)); result:boolean; eM: elemMatrix;
s:String; t:String))):integer[][].

3. Center sequence selection
The msa_center component is an important part of the
components library of multiple sequence alignment algorithm.
This component can be used to select the best alignment in
all pairwise alignments; take the best alignment sequence in
the alignment as the center sequence, and then iteratively
add the remaining sequences to obtain the best multiple
sequence alignment results. The function prototype is as follows:
function msa_center(dist[][]: integer):integer;
The array dist represents the array returned by the distance
matrix, and the component returns the index value of the
center sequence.

4. Remember alignment space
In the star alignment algorithm, the algorithm follows the
rule of “leave blank once, leave blank everywhere” when
adding subsequent sequences to the alignment process.
Therefore, the role of the rmb_space component is to remember
the space inserted during each sequence alignment. The
function prototype is as follows:
function rmb_space(): integer[][];

5. Multisequence alignment result output
This component inserts the space index value obtained in
(4) into the sequence to output the final multisequence
alignment result. This component can be implemented with
the following Apla process:
procedure msa_op_result(space[][]:integer);

Star Alignment Algorithm Generation
Using the Apla-C++ conversion system, the aforementioned
component library is converted into the corresponding C++
component through the combination of automatic conversion
and manual conversion, which can be used to generate the
star alignment algorithm program and conduct test analysis
to obtain experimental results. This section shows only the
three main components: dist_Matrix component, msa_center
component, and rmb_space component.

As the star alignment algorithm requires the pairwise sequence
alignment manipulation, and the alignment score result value is
used as the element of the distance matrix, the dist_ matrix
component needs to use the sequence alignment manipulation in
DPPSAA as its generic parameter to obtain the score value of
the pairwise alignment of all sequences. In the process of converting
the Apla program to the C++ program, it is first necessary to
assemble the components in DPPSAA to form a pairwise sequence
alignment algorithm and design the pairwise sequence alignment
algorithm as an independent function as the function pointer
parameter of the distance matrix component, which reduces the
dependency between the pairwise sequence alignment algorithm
and the distance matrix. Here, we set the pairwise sequence
alignment algorithm to NW algorithm and return the pairwise
sequence alignment scores. The C++ code is as follows:

class MsaNW{//NW algorithm assembly
public:
int Msa_NW(Score_matrix_mani& matrix,const std::string&

s,const std::string& t){
matrix.apply_memory();
matrix.Memory_Score_of_Matrix(&Init_Score_matrix::Init_

Score_matrix1, matrix.get_Matrix(), matrix.getPenaltyMatrix(),
matrix.get_length_s(), matrix.get_length_t());

dp_mode dp_NW;
dp_NW.align_and_score(matrix,&set_and_remember::set_

and_remember1);
return matrix.the_Last_element_score();
}
}
The C++ program obtained by transforming the dis_matrix

component is as follows:
class dist_Matrix{
int** dist; //distance matrix
int* row_sum;//sum of row
int seqs_num;//number of sequences
public:
void Dist_Matrix(int(MsaNW::*Msa_NW)(Score_matrix_

mani&, const std::string&, const std::string&),std:string* seqs,
Score_matrix_mani** matrix)//final score {...}

void sum_row(){...}
}

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 5 February 2021 | Volume 11 | Article 628175

Among them, the class dist_Matrix contains three attributes;
dist represents the distance matrix, for example, the element
dist[0][1] = 1, which represents the pairwise sequence alignment
score value of the first sequence, and the second sequence is
1; row_sum represents the sum of the scores of each sequence
after pairwise alignment with other sequences, that is, the row
sum of dist; seqs_num represents the number of sequences
participating in the alignment. In the method Dist_Matrix,
seqs represents a string pointer to all sequences participating
in the alignment, matrix represents a two-dimensional matrix
composed of score matrix objects obtained after pairwise
alignment of all sequences, and the method sum_row() is used
for calculation row_sum value.

At the same time, msa_center component is transformed
into a class msa_center. The attribute center_index of this class
records the index of the center sequence. The method Msa_center
is used to calculate the center_index, and the distance matrix
object is used as its parameter. The C++ representation of
this component is as follows:

class msa_center{
private:
int center_index; //record center sequence index
public:
int Msa_center(dist_Matrix distM){...}
}
rmb_space component is also converted to the class rmb_space

in C++, where the attribute Msa_space_loc represents the gap
position inserted when the center sequence is aligned with
other sequences, and the attribute msa_ret_str means the
sequence alignment result after inserting gaps in all sequences
according to the “leave blank once, leave blank this time”
rule. The C++ representation is as follows:

class rmb_space{
int** Msa_space_loc;//the position of the space when each

sequence is aligned with the center sequence
std::string* msa_ret_str;//MAS alignment result

public:
void Msa_add_space(MsaCenterSeq mcs, Dist_Matrix distM,

Msa_Sequence* seqs, Score_matrix_mani** matrix){..}
}
Through the above conversion, we can obtain the complete

component library to assemble and generate the star alignment
algorithm. The process of assembling and generating the star
alignment algorithm is listed below, where Star represents the
parameter matrix of the method Dist_Matrix used to construct
the distance matrix in the star alignment algorithm, that is,
the score matrix operation object in the NW algorithm.

int main{
std::string s[3]={"CGCT", "CCTG","GCGT"};
int seq_num = sizeof(s)/sizeof(s[0]);
Msa_check().check_dna(s, seq_num);
Star star(s, seq_num);
dist_Matrix distM(seq_num);
distM.Dist_Matrix(&MsaNW:Msa_NW,s, star.get_matrix());
distM.sum_row();
msa_center mc;
mc.Msa_center_seq(distM);
RmbSpace rs(seq_num, star.get_Seqs()->max_length());
rs.Msa_add_space(mc, distM, star.get_seqs(), star.

get_matrix());
Msa_print_align().msa_print_align(rs.get_ret_str(),

seq_num);
}

Experiment Analysis
We downloaded four Escherichia coli DNA data with a length
of approximately 200 characters from NCBI’s Genbank gene
database website for experimental testing. The basic
configuration of the machine is 3.40 GHz, Intel Core i7
processor, 8 GB RAM, and Windows 7 operating system.
The result of the experiment is shown in Figure 2. The
comparison takes 11.318 s.

FIGURE 2 | Snapshot of the alignment result.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 11 | Article 628175

The running kr alignment algorithm generated by the assembly
can perform multisequence alignment better and has obtained
results similar to the original star alignment algorithm, which
verifies the practicability of the star alignment algorithm
generated by the assembly.

CONCLUSION

Sequence alignment algorithms are widely used. Because of
the complexity of multiple sequence alignment problems and
the diversity of algorithm design strategies, it is difficult to
guarantee the development efficiency and reliability of multiple
sequence alignment algorithm programs.

This article takes the problem of multiple sequence
alignment as a special field and works on the algorithm
development and program generation under PAR framework.
Through the analysis of problem characteristics, the generality
of the domain algorithm family is extracted, the features
are described, and abstract algorithm components are designed.
Based on the research of the pairwise sequence alignment
algorithm family, the method and platform under the PAR
framework are used to assemble the specific multisequence
alignment algorithms and generate programs automatically.
As a case study, assembly of the star alignment algorithm
is given to demonstrate the generation process of the specific
algorithm program, which further proves the practicability
of the component library in the related field and the
reliability and efficiency of the algorithm generation under
the PAR framework.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://www.ncbi.nlm.
nih.gov/genbank/.

AUTHOR CONTRIBUTIONS

HpS did the codes work and the experiments. HhS instructed
the whole research work and revised the paper. SX proofread
the full text. All authors read and approved the final manuscript
and are agree to be accountable for all aspects of the work.

FUNDING

This work was supported by the National Natural Science
Foundation of China under grant nos. 61662035, 62062039, and
71561010, the Natural Science Foundation of Jiangxi Province
under grant no. 20202BAB202024, and the Postgraduate Innovation
Project of Jiangxi Province under grant no. YC2016-B061.

ACKNOWLEDGMENTS

We thank the reviewers of CBC2020 for their helpful comments
and recommendation for publication in the Journal of Frontiers
in Genetics.

REFERENCES

Cattaneo, G., Petrillo, U. F., Giancarlo, R., and Roscigno, G. (2015). “Alignment-
free sequence comparison over hadoop for computational biology” in
Proceedings of the 44th International Conference on Parallel Processing Workshops.
September 1-4, 2015; Piscataway, NJ: IEEE, 184–192.

Chattopadhyay, A. K., Nasiev, D., and Flower, D. R. (2015). A statistical physics
perspective on alignment-independent protein sequence comparison.
Bioinformatics 31, 2469–2474. doi: 10.1093/bioinformatics/btv167

Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics 23, 156–161. doi: 10.1093/
bioinformatics/btl582

Houtgast, E., Sima, V. M., and Al-Ars, Z. (2017). “High performance streaming
Smith-Waterman implementation with implicit synchronization on Intel
FPGA using OpenCL” in Proceedings of the 2017 IEEE International Conference
on Bioinformatics and Bioengineering. October 23-25, 2017; Piscataway, NJ:
IEEE, 492-496.

Huo, H., Sun, Z., Li, S., Vitter, J. S., Wang, X., Yu, Q., et al. (2016). “CS2A:
A compressed suffix array-based method for short read alignment” Proceedings
of the 2016 IEEE Data Compression Conference. March 30-April 1, 2016;
Piscataway, NJ: IEEE, 271–278.

Illumina (2016). HiSeqX instrument performance parameters [EB/OL]. Available
at: https://www.illumina.com/systems/sequencing-platforms/hiseq-x/specifications.
html

Isa, M. N., Murad, S. A. Z., Ismail, R. C., Ahmad, M. I., Jambek, A. B., and
Kamil, M. M. (2014). “An efficient processing element architecture for pairwise
sequence alignment” in Proceedings of the 2nd International Conference on
Electronic Design. August 19-21, 2014; Piscataway, NJ: IEEE, 461–464.

Junid, S. A. M. A., Idros, M. F. M., Razak, A. H. A., Osman, F. N., and
Tahir, N. M. (2017). “Parallel processing cell score design of linear

gap penalty smith-waterman algorithm” in Proceedings of the 13th
IEEE International Colloquium on Signal Processing & ITS Applications.
March 10-12, 2017; PBatu Ferringhi: IEEE, 299–302.

Shi, H., and Xue, J. (2009). PAR-based formal development of algorithms.
Chin. J. Comput. 32, 982–991. doi: 10.3724/SP.J.1016.2009.00982

Shi, H., and Xue, J. (2012). Research on automated sorting algorithms generation
based on PAR. J. Softw. 23, 2248–2260. doi: 10.3724/SP.J.1001.2012.
04164

Shi, H., and Zhou, W. (2019). Design and implementation of pairwise sequence
alignment algorithm components based on dynamic programming. J. Comput.
Res. Dev. 56, 1907–1917. doi: 10.7544/issn1000-1239.2019.20180835

Wang, L., and Jiang, T. (1994). On the complexity of multiple sequence alignment.
J. Comput. Biol. 1, 337–348. doi: 10.1089/cmb.1994.1.337

Wang, G., Liu, Y., Zhu, D., Klau, G. W., and Feng, W. (2015). Bioinformatics
methods and biological interpretation for next-generation sequencing data.
Biomed. Res. Int. 2015, 1–2. doi: 10.1155/2015/690873

Xue, J. (1997). A unified approach for developing efficient algorithmic programs.
J. Comput. Sci. Technol. 12, 314–329. doi: 10.1007/BF02943151

Xue, J. (2016). “PAR: a model driven engineering platform for generating algorithms
and software” in Symposium Programming: Logics, Models, Algorithms and
Concurrency to recognize Jayadev Misra’s Accomplishments. April 29-30, 2016;
University of Texas.

Xue, J., Zheng, Y., Hu, Q., You, Z., Xie, W., and Cheng, Z. (2018). “PAR: a
practicable formal method and its supporting platform” in Proceedings of
the 20th International Conference on Formal Engineering Methods (ICFEM
2018). eds. J. Sun and M. Sun. November 12-16, 2018; LNCS 11232, 70–86.

Zhan, Q., Fu, Y., Jiang, Q. H., Liu, B., Peng, J., and Wang, Y. D. (2020).
SpliVert: a protein multiple sequence alignment refinement method based
on splitting-splicing vertically. Protein Pept. Lett. 27, 295–302. doi: 10.217
4/0929866526666190806143959

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://doi.org/10.1093/bioinformatics/btv167
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1093/bioinformatics/btl582
https://www.illumina.com/systems/sequencing-platforms/hiseq-x/specifications.html
https://www.illumina.com/systems/sequencing-platforms/hiseq-x/specifications.html
https://doi.org/10.3724/SP.J.1016.2009.00982
https://doi.org/10.3724/SP.J.1001.2012.04164
https://doi.org/10.3724/SP.J.1001.2012.04164
https://doi.org/10.7544/issn1000-1239.2019.20180835
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1155/2015/690873
https://doi.org/10.1007/BF02943151
https://doi.org/10.2174/0929866526666190806143959
https://doi.org/10.2174/0929866526666190806143959

Shi et al. Multi-Sequence Alignment Under PAR Framework

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 11 | Article 628175

Zhan, Q., Wang, N., Jin, S., Tan, R., Jiang, Q. H., and Wang, Y. D. (2019).
ProbPFP: a multiple sequence alignment algorithm combining hidden Markov
model optimized by particle swarm optimization with partition function.
BMC Bioinformatics 20(Suppl. 18):573. doi: 10.1186/s12859-019-3132-7

Zou, Q., Guo, M., and Wang, X. (2009). An algorithm for DNA multiple
sequence alignment based on center star method and keyword tree. Acta
Electron. Sin. 37, 1746–1750.

Zou, Q., Hu, Q., Guo, M., and Wang, G. (2015). HAlign: fast multiple similar
DNA/RNA sequence alignment based on the centre star strategy. Bioinformatics
31, 2475–2481. doi: 10.1093/bioinformatics/btv177

Conflict of Interest: The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Copyright © 2021 Shi, Shi and Xu. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://doi.org/10.1186/s12859-019-3132-7
https://doi.org/10.1093/bioinformatics/btv177
http://creativecommons.org/licenses/by/4.0/

	Efficient Multiple Sequences Alignment Algorithm Generati on via Components Assembly Under PAR Framework
	Introduction
	Algorithm Generation Under the PAR Framework
	Related Work
	PAR
	DPPSAA Domain Model and Component Library
	Algorithm Generation Process

	Star Alignment Algorithm
	Algorithm Idea
	Algorithm Component and Apla Implementation
	Star Alignment Algorithm Generation
	Experiment Analysis

	Conclusion
	Data Availability Statement
	Author Contributions

	References

