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Long intergenic non-coding ribonucleic acids (lincRNAs) are critical regulators for many

complex diseases, and identification of disease-lincRNA association is both costly

and time-consuming. Therefore, it is necessary to design computational approaches

to predict the disease-lincRNA associations that shed light on the mechanisms of

diseases. In this study, we develop a co-regularized non-negative matrix factorization

(aka Cr-NMF ) to identify potential disease-lincRNA associations by integrating the gene

expression of lincRNAs, genetic interaction network for mRNA genes, gene-lincRNA

associations, and disease-gene associations. The Cr-NMF algorithm factorizes the

disease-lincRNA associations, while the other associations/interactions are integrated

using regularization. Furthermore, the regularization does not only preserve the

topological structure of the lincRNA co-expression network, but also maintains the links

“lincRNA → gene → disease.” Experimental results demonstrate that the proposed

algorithm outperforms state-of-the-art methods in terms of accuracy on predicting the

disease-lincRNA associations. The model and algorithm provide an effective way to

explore disease-lncRNA associations.

Keywords: disease-lincRNA association, non-negative matrix factorization, heterogeneous network,

regularization, network analysis

1. INTRODUCTION

Long intergenic non-coding RNAs (lincRNAs) are transcripts whose lengths are greater than
200 nucleotides with little or no protein coding potential (Kapranov et al., 2007; Mercer et al.,
2009; Wang and Chang, 2011). In the traditional view, lncRNAs are considered as “junk RNAs”
because they do not code protein sequences. However, it has been proven that many lncRNAs
are dysregulated in human cancers and implicated in disease progression through modulating
apoptosis, increasing cellular oncogenic potential, or inhibiting tumor growth (Wilusz et al., 2009;
Taftet al., 2010).

With the advent of the next generation sequencing (NGS) techniques, a large number of
lincRNAs have been identified (Guttman et al., 2009, 2010; Wang et al., 2009; Popadin et al., 2013),
providing a great opportunity to investigate the functions of lncRNAs. Unfortunately, very few
lincRNAs have been depicted with explicit molecular mechanisms in cancers through biological
experiments or computational approaches (Guo et al., 2013; Zhao et al., 2016; Tang et al., 2017).
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Thus, discovering lincRNA patterns that are associated with
cancers is urgently needed as it sheds light on the underlying
mechanism of diseases.

Therefore, great efforts have been devoted to investigating the
functions or patterns of lincRNAs by analyzing omics data, such
as DNA sequences, expression profiles, and genomic annotations.
For instance, Liao et al. (2011) constructed a co-expression
network for protein-coding genes and lincRNAs, and predicted
the functions of lincRNAs via analyzing the constructed co-
expression network. However, it has been criticized because
of the fact that the gene expression profile cannot fully
characterize the connections between genes and lincRNAs. To
overcome this problem, Guo et al. (2013) developed a global
prediction algorithm to infer probable functions of lincRNAs
at a large scale by integrating gene expression, a protein-
protein interaction (PPI) network, and DNA sequences. Ma
et al. (2017a) designed a pipeline to discover disease related
lincRNA modules across various clinical stages of cancers,
rather than predicting the functions of lincRNAs. Ning et al.
(2016) extracted the disease associated with SNPs within
human lincRNAs.

Despite numerous research contributions to extract various
patterns of lincRNAs, few efforts have been devoted to
analyzing lincRNA-disease associations, which can be used to
predict implicated diseases. The available methods to predict
lincRNA-disease associations can be categorized into two classes:
biological experiments-based methods and computational based
approaches. The biological experiment-based methods have
been criticized because they are time-consuming and costly.
Computational based approaches are thus an alternative which
can provide critical clues for biologists in revealing the
mechanisms of diseases.

However, it is non-trivial to design effective and efficient
algorithms to predict the lincRNA-disease associations
largely due to two reasons. First, to infer the lincRNA-
disease associations, large-scale known association data is a
prerequisite. Second, diseases, such as cancers, are complex
and difficult to characterize. Thus, it is wise to predict the
lincRNA-disease associations by integrating omics data with
an immediate purpose to improve the accuracy of prediction.
Regarding the first concern, as more experimentally validated
lincRNA-disease associations accumulate, researchers have
summarized these associations as lincRNA-disease database,
such as LncRNADisease (Chen et al., 2012) and Lnc2Meth
(Zhi et al., 2018). These known associations provide a great
opportunity to infer the lincRNA-disease associations.

Regarding the second concern, many algorithms have been
developed to address this issue. For example, Yang et al. (2014)
predicted the lncRNA-disease associations by constructing two
biological networks, such as lncRNA-implicated disease network
and disease network. Then, a propagation algorithm is applied
to extract similar lncRNAs and diseases from those constructed
networks. To integrate the expression profile, Chen et al.
(2012) designed the Laplacian regularized least squares for
lncRNA-disease associations, where the tissue expression profiles
of intergenic lncRNA (lincRNA) from the Human BodyMap
LincRNA project (Cabili et al., 2011). Zhang et al. (2017)

proposed a label propagation algorithm to predict lncRNA-
disease associations by integrating multiple heterogeneous
networks. Fu et al. (2018) developed a matrix factorization-
based model to predict disease-lncRNA associations, where
multiple data matrices from various heterogeneous sources are
factorized into low-rank matrices. Lan et al. (2017) designed
a web server for the prediction of the lncRNA-disease. These
algorithms achieve promising performance in inferring lncRNA-
disease associations.

However, all of these studies solely focus on ranking lncRNA-
disease associations via integrating the additional features of
lncRNA genes and diseases, which cannot make use of the
known prior knowledge to further improve the performance
of algorithms. The latent features facilitate the identification of
biological patterns, such as copy number and driver genes (Xi
et al., 2020a,b). Actually, compared to the lincRNAs, knowledge
of protein-coding genes is more redundant. How do you
effectively incorporate the prior information into algorithms in
order to perform a particular function and/or to infer a disease
in the biological systems? For instance, Liao et al. (2011) made
use of the gene-lncRNA relation to predict the functions of
lncRNAs, implying that integration of omic data is promising for
improving the performance of algorithms. Recently, Biswas et al.
(2015) designed the iNMF algorithm by integrating expression
profiles of protein-coding and lncRNA genes, lncRNA-disease
and gene-disease associations, and gene genetic interaction
networks to predict the diseases of lncRNAs. The experimental
results demonstrate that it is wise to integrate omics data to infer
lncRNA-disease associations a major motivation for this study.

iNMF jointly factorizes expression profiles of lncRNA and
protein-coding genes. However, the method ignores the fact
that lncRNAs execute their functions via interactions between
them. Thus, we develop a novel algorithm, named co-regularized
NMF (Cr-NMF), to predict lincRNA-disease associations via
the heterogeneous network with multiple types of association,
including lincRNA co-expression, lincRNA-disease, gene-
disease, gene genetic and lincRNA-gene associations (As shown
in Figure 1). The Cr-NMF algorithm decomposes the lincRNA-
disease associations into the feature and coefficient matrices;
the latent features for lincRNAs regularize the topological
structure of lincRNA co-expression network. Furthermore,
we also expect that the factorization reflects paths from
lincRNA → gene → disease, which is also represented by
regularization. Compared to state-of-the-art algorithms, the
proposed algorithm is more accurate in the lincRNA-disease
prediction. The proposed model and method provide an effective
strategy to predict lncRNA-disease associations.

The rest of this study is organized as follows. Section 2 presents
the details of the proposed algorithm. Then, in section 3, we set
up experiments to validate the performance of Cr-NMF. Finally,
conclusions are drawn in section 4.

2. ALGORITHM

The algorithm consists of two major components: the objective
function construction and optimization rules, as shown in
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FIGURE 1 | Overview of the Cr-NMF algorithm. It factorizes the known disease-lincRNA associations, regularizing the other associations/interactions. Specifically, the

basis matrix is the latent representation of lincRNAs, which preserves the topological structure of lincRNA co-expression networks. The coefficient matrix regularizes

the links “lincRNA → gene → disease”.

TABLE 1 | Notations.

Notation Definition and description

ng, nd , nl Number of genes, diseases, and lincRNAs

G[g] Gene genetic interaction network

G[l] lincRNA co-expression network

X̂ known lincRNA-disease associations

Ŷ known gene-disease associations

Ẑ genes-lincRNAs associations

W [g],W [l] weighted adjacency matrix for G[g] and G[l]

w
[g]
ij the element at i-th row jth column in matrix W [g]

D the degree diagonal matrix, i.e., D = diag(d1, . . . ,dn)

W
[g]

normalized G[g], i.e., W
[g]

= D−1/2W [d]D−1/2

W
′

transpose of matrix W

wi. the i-th row of matrix W

w.j the j-th column of matrix W

‖W‖F Frobenius norm of matrix W

Tr(W) the Tr of matrix W, i.e., Tr(W) =
∑

i wii

Figure 1. The procedure and analysis of the proposed algorithm
are addressed in this section.

2.1. Notations
Before presenting the detailed description of the proposed
algorithm, let us introduce some terminologies that are widely
used in the sections that follow.

The notations for the algorithm are summarized in Table 1.
Let ng be the number of genes, nd be the number of diseases,
nl be the number of lincRNAs. The lincRNA co-expression

network is denoted by G[l] = (V[l],E[l]), where V[l] is the set
of lincRNAs and E[l] is the interaction sets based on lincRNA co-
expression coefficients. The adjacency matrix for G[l] is denoted

by matrix W[l], where w
[l]
ij is the weight on edge (i, j) in G[g].

Because G[l] is undirected, W[l] is symmetric. The degree of
the i-th lincRNA in G[l] is defined as the sum of weights on

the edges connecting to it, i.e., di =
∑

i w
[l]
ij . The degree

matrix of G[l] is the diagonal one with degree sequence, i.e.,

D[l] = diag(d
[l]
i , . . . , d

[l]
nl ). Given network G[l], we construct a

normalized Laplacian matrix L[l] = I − (D[l])−1/2W[l](D[l])−1/2.
Analogously, we construct the normalized Laplacian matrix for
G[g] as L[g] = I − (D[g])−1/2W[g](D[g])−1/2.

The known lincRNA-disease associations are represented by
X̂, where the row represents a lincRNA and column denotes
a disease. The known gene-disease associations are denoted
by Ŷ , where rows correspond to genes and columns denote
diseases. Thegene-lincRNA associations Ẑ are constructed based
expression data, where the rows correspond to genes, columns
to lincRNAs, and zij = 1 if the i-th gene and j-th lincRNA are
associated with at least one disease, 0 otherwise.

2.2. Objective Function
NMF aims at learning the representation parts of the original
data (Lee and Seung, 1999) by approximating the target matrix
into the product of two low-ranking matrices. Specifically, given
matrix W, NMF decomposes W into two non-negative matrices
B(m+n)×k and F(m+n)×k such that

W ≈ BF′, s.t.B ≥ 0, F ≥ 0, (1)
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FIGURE 2 | The paradiagrams for disease-lincRNA association prediction.

(A,B) The label propagation model predicts the disease-lincRNA associations

by each single disease based on the lincRNA co-expression network, and (C)

the proposed algorithm integrates lincRNA co-expression network, gene

genetic networks and various associations. The dashed lines show

disease-lincRNA association (matrix X̂ ), disease-gene association (matrix Ŷ ),

and lincRNA-gene associations (matrix Ẑ).

where B is the basis matrix and F is the feature matrix. NMF has
been widely applied for graph analysis (Ma et al., 2018a), link
prediction (Ma et al., 2017b, 2018b), bioinformatics (Chen and
Zhang, 2016; Ma et al., 2016, 2018c).

As shown in Figure 2A, the label propagation-based model
has been widely studied and successfully applied to predict
phenotype-gene associations (Hwang and Kuang, 2010; Vanunu
et al., 2010; Hwang et al., 2011). Themodel aims at identifying the
disease-lincRNA associations X under some constraints. Thus,
the objective function of label propagation model is defined as

Olp = θTr(X′L[l]X)+ (1− θ)‖X − X̂‖2F , (2)

where θ ∈ (0, 1) is a parameter to balance the contributions
of the two terms, Tr(·) is the Tr function and ‖ · ‖F is the
Frobenius norm. To further improve the performance of label
propagation model, Petegrosso et al. (2017) proposed transfer
learning-based label propagation model to integrate omics data
to predict phenome-genome association.

Given the disease-lincRNA associations X̂, Cr-NMF first
factorizes X̂ into the product of matrix B and F, i.e.,

X̂ = BF, s.t. B ≥ 0, F ≥ 0, (3)

where B ∈ Rnl×r is the basis matrix, F ∈ Rr×nd is the
feature matrix, r is the number of latent variables (usually, r ≪

min{nl, nd}). By casting Equation (3) as an optimization form, we
obtain the following objective function as

ONMF =
1

2
‖X̂ − BF‖2F , s.t. B ≥ 0, F ≥ 0. (4)

On the one hand, matrix B is considered to be the representations
of lincRNAs in the latent space, where each row bi. is
interpreted as latent representation of the i-th lincRNA. We
expect the latent representations in matrix B preserve the local
topological structure of lincRNAs G[l]. Specifically, if a pair of
lincRNAs are close in terms of the latent representation, they
are well connected in G[l] and vice versa. Cai et al. (2010)
demonstrated that

OG[l] =
1

2

∑

i

∑

j

‖bi. − bj.‖
2w

[l]
ij

= Tr(B′D[l]B)− Tr(B′W[l]B)

= Tr(B′L[l]B). (5)

On the other hand, the disease-lincRNA associations are also
related to the topological structure of the gene interaction
network, lincRNA-gene association (Figure 2B), and the disease-
gene associations. The association between the i-th lincRNA
and the j-th disease follows the pattern lincRNA → gene →

gene network → disease. For example, in Figure 2C, the i-
th lincRNA and j-th disease are connected by the red path.
There is a good biological interpretation for this pattern: the
lincRNAs transduce signal to the target genes. The dysfunctional
signal possibly leading to an abnormal response via interaction
among genes, resulting in diseases. Thus, the disease-lincRNA
association wij can be defined as a product of weights on all the
paths connecting the i-th lincRNA and j-th disease, i.e.,

xij =
∑

k

ẑikw
[g]
ij ŷkj. (6)

The underlying assumption for Equation (6) is that the more
paths connecting a lincRNA and disease, the more likely it is to be
a true association. Transforming Equation (6) into matrix form,
we obtain

X = ẐW[g]Ŷ . (7)

Transforming Equation (7) into an optimization problem,
we obtain

OG[g] =
1

2
‖X − ẐW[g]Ŷ‖2F . (8)

Because we use NMF to approximate X, Equation (8) is
re-written as

OG[g] =
1

2
‖BF − ẐW[g]Ŷ‖2F . (9)

Combining Equations (4,5), and (9), the objective function of the
proposed algorithm is defined as

O = ONMF + αOG[l] + βOG[g] , (10)
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where parameter α,β control the contributions of two terms
OG[l] and OG[g] . The disease-lincRNA prediction problem is
transformed into an optimization problem as

min
B,F

1

2
‖X̂ − BF‖2 + αTr(B′L[l]B) (11)

+
β

2
‖BF − ẐW[g]Ŷ‖2F

s.t. B ≥ 0, F ≥ 0.

In the next subsection, we address how to optimize the problem
in Equation (11).

2.3. Optimization
An iterative two-step strategy is adopted because direct
optimization to Equation (11) is difficult, where we optimize
matrices B and F by fixing parameters. At each iteration,
either matrix B or F is optimized first, whereas the other is
fixed. Iteration is repeated until the algorithm converges or the
maximum number of iterations is reached.

Let the objective function of Equation (11), i.e.,

L =
1

2
‖X̂ − BF‖2 + αTr(B′L[l]B)

+
β

2
‖BF − ẐW[g]Ŷ‖2F . (12)

We handle the non-negative constraints for matrices B and F
using the Larange method. Specifically, let φij and ψij be the
Larange multiplier for the constraints bij and fij, respectively.
Considering 8 = [φij], 9 = [ψij], the Larange L of Equation
(12) can be formulated as

L =
1

2
‖X̂ − BF‖2 + αTr(B′L[l]B)

+
β

2
‖BF − ẐW[g]Ŷ‖2F +8B+9F. (13)

The partial derivatives of L with respect to basis matrix B and
feature matrix F are calculated as

∂L

∂B
= (1+ β)BFF′ − X̂F′ + 2αL[l]B− ẐW[g]ŶF′ +8, (14)

and

∂L

∂F
= B′X̂ − B′BF + βB′BF − B′ẐW[g]Ŷ +9 . (15)

According to the Karush-Kuhn-Tucker conditions φijbij = 0 and
ψijfij = 0, we obtain the updated rules

B =
X̂F′ + ẐW[g]ŶF′

(1+ β)BFF′ + 2αL[l]B
B, (16)

and

F =
B′BF + B′ẐW[g]Ŷ

B′X̂ + βB′BF
F. (17)

The Cr-NMF algorithm is presented in Algorithm 1.

Algorithm 1: The Cr-NMF algorithm

Input:

G[l]: Co-expression network for lincRNAs;
M[g]: Expression profile for genes;
M[l]: Expression profile for lincRNAs;
X̂: Known disease-lincRNA associations;
Ŷ : Known disease-gene associations;
α,β : Parameters control relevant importance.

Output:

X: Predicted disease-lincRNA associations.
Step 1: Data Processing

1: Construct co-expression network G[l] for lincRNAs using
expression profileM[l];

2: Construct gene-lincRNA associations Ẑ usingM[l] andM[g];
3: Construct Laplacian matrix L[g] for G[g];
4: Construct Laplacian matrix L[l] for G[l];

Step 2: Matrix Factorization

5: Make initial matrices B and F;
6: Update matrix B according to Equation (16);
7: Update matrix F according to Equation (17);
8: Goto Step 5 until the algorithm is convergent;

Step 3: Predict disease-lincRNA associations

9: Predict disease-lincRNA association as X = BF;
10: return X

2.4. Algorithm Analysis
The complexity of algorithm is investigated. On the space
complexity of algorithm, the space for the gene genetic network
is O(n2g). The space for lincRNA co-expression network is

O(n2
l
). The space of disease-lincRNA association, disease-gene

associations, and gene-lincRNA association is O(ndnl), O(ndng),
andO(ngnl), respectively. The space of basis matrix B and feature
matrix F isO((nl+nd)r), where r is the number of latent variables.
Thus, the total space of Cr-NMF is O(n2

l
+ n2g + ndnl + ndng +

ngnl + (nl + nd)r). Because nd ≪ ng and nl ≪ ng , the total space
of the proposed method is O(n2g).

The running time of the proposed algorithm depends on
the updating rules in Equations (16) and (17). Thus, the time
complexity of Cr-NMF is the same as that of NMF, i.e., O(tkn2),
where t is the number of iteration (Lin, 2007). Thus, the
overall running time for RNMF-MM is O(tkn2) + O(n2) =

O(tkn2), indicating that the proposed algorithm is also efficient
in comparison with the NMF algorithm.

3. RESULTS

In this section, we validate the performance of the proposed
algorithm. The data, parameter selection as well as the
performance of algorithms are addressed in turns.

3.1. Data
The lincRNAs are downloaded from the Human BodyMap
project, which provides a catalog of lincRNAs from RNA-seq
data across 22 tissues (Cabili et al., 2011). The catalog contains
transcript expression profile across the tissues using the Cufflinks
(Trapnell et al., 2010).
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The association dataset of lincRNAs and diseases are extracted
from the LncRNADisease database (Chen et al., 2012) in
January 2015. There are 1564 lincRNAs and their associations
with 1641 diseases. We employ the OMIM API function call
(Hamosh et al., 2005) to retrieve closely matched phenotype IDs,
resulting in a set of 684 OMIM phenotypes (mainly disease)
associated with lincRNAs. All the diseases without matching
any valid OMIM phenotype ID are removed. Finally, we obtain
the lincRNA-disease association among 562 lincRNAs and 645
OMIM diseases.

The mRNA-disease associations are downloaded from
DisGeNET software (Bauer-Mehren et al., 2010), where 16,666
mRNA genes are associated with 13,135 diseases. Similar to
the lincRNA-disease associations, we use the OMIM function
call to map disease names to matched phenotype IDs, and only
these diseases with at least one lincRNAs are selected. Finally,
180,266 gene-disease associations are obtained among 645
OMIM diseases and 13,425 coding-genes.

The gene genetic interaction network is extracted from Lin
et al. (2010), where 4,836,794 interactions among coding-genes.
Only these genes associated with at least one disease are retained,
resulting 3,264,923 interactions among 13,425 genes.

In this study, we want to make use the connections between
lincRNAs and coding-genes. Based on Biswas et al. (2015), we
construct the lincRNA-gene association network from diseases.
Specifically, if the i-th lincRNA is connected to the j-th coding-
gene if and only if both of them are associated with at least a
disease. Based on this strategy, there are 1,775,375 edges among
562 lincRNAs and 13,425 coding-genes.

3.2. Settings
To fully validate the performance of the proposed algorithm, we
select five well-known algorithms for a comparative comparison:
NMF (Lee and Seung, 1999), non-smooth NMF (nsNMF)
(Pascual-Marqui et al., 2001), integrated NMF (iNMF) (Biswas
et al., 2015), Label Propagation (LP) (Hwang et al., 2011), and
Random Walk (RW) (Li and Patra, 2010). All these algorithms
can be categorized into two classes: matrix decomposition
based and topological structure based methods. The matrix
decomposition-based algorithms include NMF, nsNMF, and
iNMF, while the topological structure-based methods are
LP and RW.

To evaluate the performance of these algorithms, three
measures, including mean absolute error (MAE), Accuracy and
root mean squared error (RMSE), are employed to quantify the
accuracy of algorithms. They are defined as Herlocker et al.
(2004):

MAE(X̂,X) =
1

|τ |

∑

(i,j)∈τ

|̂xij − xij|, (18)

Accuracy(X̂,X) = 1−MAE(X̂,X), (19)

RMSE(X̂,X) =

√√√√ 1

|τ |

∑

(i,j)∈τ

(|̂xij − xij|)2, (20)

RSS(X̂,X) =

√∑

i,j

(|̂xij − xij|)2, (21)

where X̂ and X are the observed association matrix and the
predicted associationmatrix, respectively. τ is the set of lincRNA-
disease association for prediction, i.e., τ is considered as the
test set.

3.3. Parameter Selection
Three parameters are involved in the proposed algorithm, where
parameter α determines the relevant importance of lincRNA
co-expression networks, parameter β controls the relevant
importance of the gene genetic network, and parameter k is the
number of features for the basis and coefficient matrices. Similar
to Ref., we set α = β by assuming that the lincRNA co-expression
network and gene genetic network are equally important in
discovering the lincRNA-disease associations.

We first investigate how parameter k determines the
performance of the proposed algorithm. Figure 3A illustrates
how RSS changes from 3 to 54 with a gap 3. From Figure 3A,
we conclude that as k increases from 3 to 33, RSS dramatically
decreases, which implies that the accuracy of the proposed
algorithm increases. As k increases from 34 to 54, RSS increases.
There is a good reason why this occurs. When k is small,
the number of the latent features is insufficient to characterize
the lincRNA-disease associations. When k is large, the number
of the latent features is redundant. k = 33 reaches a good
balance between them since RSS reaches the minimum. In the
experiment, we set k= 33.

We then investigate how parameter α and β affect the
performance of the Cr-NMF algorithm. Figure 4 shows that how
MAE and RMSE change as α ∈ {0.001, 0.01, 0.1, 1, 10, 100}.
It is shown that the proposed algorithm achieves the best
performance when α = 1. Furthermore, the proposed algorithm
is robust since the perturbation of performance is subtle if α ∈

[10, 100], indicating that Cr-NMF is not sensitive to parameter

α and β . Even though MAE and RMSE decrease when α ∈

[10, 100], the change is subtle.
Finally, we check the convergence of the proposed algorithm.

Figure 3B shows how RSS changes as the number of iterations

increases. It is easy to assert that, when the number of iterations

reaches 60, the algorithm converges because RSS does not change

dramatically any more. Thus, the number of iterations is set as

60 in the experiments. The result demonstrates that the proposed

algorithm is efficient.

3.4. Performance of Various Algorithms on
Predicting lincRNA-Disease Associations
By setting α(β) = 10, k = 33, and the number of iterations as
60, we apply Cr-NMF to the omic data to predict the lincRNA-
disease associations. To quantify the performance of various
algorithms, the accuracy in Equation (19) is adopted, where it is
also used in Biswas et al. (2015). Because all of these compared
algorithms have a factor of randomness, we get rid of randomness
of algorithms by running each algorithm 50 times, and the mean
of accuracy is used to quantify the performance of algorithms.
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FIGURE 3 | Parameter selection and convergence analysis. (A) How the RSS changes as the number of features changes from 3 to 54, and (B) How the RSS

changes as the number of iterations increases from 1 to 100.

FIGURE 4 | How parameter affects the performance of the proposed algorithm in terms of various measurements: (A) MAE, and (B) RSME.

The leave-one-out cross validation (LOOCV) is adopted to
measure the accuracy of each algorithm. Specifically, for each
disease, we remove all the associations between the disease and
lincRNA genes. The accuracy of various algorithms is depicted in
Figure 5A. It is easy to draw conclusions such as: (1) the Cr-NMF
algorithm achieves the best performance in LOOCV, followed
by the iNMF algorithm. In detail, the accuracy of Cr-NMF is
0.823± 0.009, which is 1.9% higher than the iNMF algorithm on
predicting disease-lincRNA associations. (2) Both Cr-NMF and
iNMF algorithms outperform the rest of the methods, implying
the integration of omic data is promising on predicting disease-
lincRNA associations. Moreover, (3) The random walk and label
propagation algorithms are worst in terms of accuracy. There
are two reasons why the proposed algorithm outperforms the
other approaches. First, the Cr-NMF algorithm directly factorize
associations between diseases and lincRNAs, which captures the
latent features to characterize the disease-lincRNA associations.
Second, the factorization preserves the paths from “disease ⇀
lincRNA → protein-coding gene,” which more precisely infers
disease-lincRNA associations. The RW and LP algorithms are
much worse than the others, implying that the topological

structure is insufficient to characterize the relations between
diseases and lincRNAs.

In order to further validate the performance of the proposed
algorithm, we take the disease-lincRNA associations before
2015 January as training set, and set the data between
2015 and 2017 July as testing set, as shown in Figure 5B.
It is easy to assert that the proposed algorithm is best,
followed by iNMF. Specifically, the accuracy of algorithms
is 0.647 (Cr-NMF), 0.594 (iNMF), 0.587 (nsNMF), 0.598
(sNMF), 0.575 (LP), 0.412 (RW). Careful comparison between
Figures 5A,B indicates that the accuracy of various algorithms
in the external validation decreases dramatically. However,
the relative performance of these algorithms is similar. The
results demonstrate that the proposed algorithm is promising in
predicting disease-lincRNA associations.

4. CONCLUSION

LncRNAs are critical regulators in human diseases and disorder
pathways. Thus, it is necessary to understand the associations
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FIGURE 5 | The accuracy of various algorithms on predicting disease-lincRNA

associations in terms of various strategies: (A) leave-one-out cross validation

(LOOCV), and (B) external validation, where Y-axis denotes mean accuracy

and error bar represents standard deviation.

between lncRNAs and diseases since these relations shed light on
revealing the mechanisms of complex diseases. Compared to the
protein-coding genes, a very little is known about the associations
of lncRNAs and diseases. The next generation of sequencing
technique discovers novel lncRNAs at an unprecedent speed.
Therefore, there is a critical need to develop sophisticated
computational tools to predict the relations between lncRNAs
and diseases.

In this study, we proposed an NMF-based algorithm to
predict lincRNA-disease associations by integrating multiple
types of interaction data, such as co-expression interactions
between lincRNAs, disease-lincRNA associations, disease-gene
associations, gene genetic interactions, and lincRNA-gene links.
There are two advantages of the proposed algorithm. First, it is
able to explain each of the associated lincRNA as well as disease

in a latent feature space. Second, the proposed algorithm takes
the path from lincRNA to disease, i.e., “disease ⇀ lincRNA
→ protein-coding gene,” which improves the accuracy of the
prediction. The results demonstrate that the propose method
outperforms state-of-the-art algorithms in terms of accuracy.

There are some limits in the proposed algorithm. First,
there are two parameters involved in the methods and we
solve this issue by a step search strategy in the experiments.
A better and faster way to accomplish this needs to be
developed. Particularly, how to infer the values of parameters
by making use of the biological knowledge in diseases is
ideal. Second, even though the proposed algorithm integrates
omics data, incorporating additional data, such as disease
networks, mutation data in genes would obtain even
more meaningful results. In a future study, we will address
these issues.
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