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Alzheimer’s disease (AD) is the most frequent cause of dementia among neurodegenerative 
diseases. Two factors were hypothesized to be  involved in the pathogenesis of AD, 
namely beta-amyloid cascade and tauopathy. At present, accumulating evidence suggest 
that epigenetics may be the missing linkage between genes and environment factors, 
providing possible clues to understand the etiology of the development of AD. In this 
article, we focus on DNA methylation and histone modification involved in AD and the 
environment factor of heavy metals’ contribution to AD, especially epigenetic mechanisms. 
If we can integrate information together, and that may find new potential targets for 
the treatment.
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INTRODUCTION

Neurodegenerative disorders are characterized by the progressive accumulation of misfolded 
proteins, which trigger damage of synapses, disturb network of pathway, facilitate death of 
specific neuronal populations, and finally initiate diseases. Several factors were hypothesized 
to be  associated with the etiology of those diseases, including genetic and environmental 
factors. Alzheimer’s disease (AD) is the most common neurodegenerative disease, and the 
hallmarks of AD pathology are an accumulation of Aβ to form amyloid-plaques and aggregation 
of phosphorylated tau to constitute neurofibrillary tangles (NFTs). Aβ is viewed as the core 
stone and trigger of diseases, which induces the dysfunction of synapses, loss of neurons, and 
ultimately dementia, with the existence of Aβ plaques and NTFs (Morris et  al., 2014). Hyper-
phosphorylation changed the conformation of tau, which was believed to play a role in synaptic 
plasticity and facilitated its misfolding in pathological process (Zhang et  al., 2016). Beside, 
apolipoprotein E (ApoE) gene shows strong association with risk for AD, for ApoE combined 
directly with Aβ to promote its aggregation and that facilitated tau phosphorylation inducing 
NFTs (Brecht et  al., 2004).

Epigenetics is the study of heritable and reversible changes in gene expression, including 
DNA methylation, multi-modification of histones, and microRNA (Collotta et  al., 2013), which 
occur without a change in the DNA sequence. This article reviewed DNA methylation and 
histone modifications to exhibit latest understanding about the role epigenetics plays in AD.
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DNA Methylation
The first report epigenetic changes in AD found hypomethylation 
of amyloid precursor protein (APP) from an AD patient (West 
et  al., 1995). In a pair of monozygotic twins, levels of DNA 
methylation significantly decreased in temporal neocortex neuronal 
nuclei of the AD twin (Mastroeni et  al., 2009). Besides, DNA 
methyltransferase (DNMT) decreased in entorhinal cortex layer 
II of AD patients (Mastroeni et  al., 2010). In a recent research, 
the patient group showed 25% reduction of DNA methylation 
levels in mitochondrial DNA D-loop region (Stoccoro et  al., 
2017), suggesting the underlying role of mitochondrial DNA 
methylation in AD. Hypomethylation of BRCA1 was observed 
in AD patients, and this result was in consistent with the higher 
expression of its mRNA (Mano et al., 2017). Through comparing 
brains of mouse models and AD patients, hyper-methylation 
of three genes namely TBXA2R, SPTBN4, and SORBS3 resulted 
in silence of these genes in AD process (Sanchez-Mut et al., 2013).

Histone Modification
Comparing the temporal cortex and hippocampus, the twin 
with AD showed a significantly higher level of H3K9me3, a 
sign of gene silence, and H3S10 phosphorylation, a regulator 
of chromatin structure (Wang et  al., 2013). The brains from 
AD patients showed hyper-acetylation in histone H3 and H4 
(Narayan et al., 2015). Histone deacetylation catalyzed by histone 
deacetylase (HDAC) results in a condensed state of chromatin 
and consequent transcriptional repression. HDAC2 increased 
in AD-related neurotoxic insults in vitro, two mouse models 
and patients with AD, which decreased the histone acetylation 
of genes related to memory and inhibited their expression 
(Graff et  al., 2012). Tau interacts with HDAC6 to decrease its 
activity. Through this way, tau promoted the acetylation of 
related genes (Perez et al., 2009). As a feedback and compensation, 
the expression of HDAC6 was significantly increased. In a 
mouse model of AD, decreased HDAC6 facilitated the recovery 
of learning and memory through disturbing mitochondrial 
trafficking dysfunction caused by Aβ (Govindarajan et al., 2013). 
Importantly, the AD mouse model treatment with valproic 
acid (VPA), one of widely used HDAC inhibitors in clinical 
research, has shown exciting results. VPA significantly decreased 
Aβ production by inhibiting γ-secretase cleavage of APP and 
alleviated the memory deficits of the AD mice (Qing et al., 2008).

Roles of Metals in AD
Plumbum
Plumbum facilitated the concentrations of free radicals, which 
leaded to the death of neurons. Pb exposure stimulated the 
serine/threonine phosphatases to impair memory formation 
(Rahman et  al., 2011). Pb exposure leaded to the DNA 
methylation changes in the whole blood cells (Hanna et  al., 
2012). Early exposure of Pb increased Aβ product in old age. 
While in aged monkeys exposed to Pb as infants, the expression 
of APP and BACE1 elevated, and the activity of DNMT 
decreased (Wu et  al., 2008). In rodents exposed lead, the 
expression of APP increased 20  months later, implying that 
lead exposure showed a life-long risk of AD (Basha et al., 2005).

In mice model of AD exposure to Pb, the levels of DNMT1, 
H3K9ac, and H3K4me2 decreased, the level of H3K27me3 
increased, while the concentration of DNMT3a did not change 
(Eid et  al., 2016). Besides, Pb exposure altered the production 
of tau (Dash et  al., 2016). In mice expressing human APP, Pb 
stimulated the production of Aβ (Gu et  al., 2011). Pb also 
disturbed the clearance of Aβ plaques by suppressing the activity 
of neprilysin (Huang et al., 2011). In primates with early exposure 
of Pb, their brains showed overexpression of APP and Aβ through 
hypo-methylation of related genes when aging. Yegambaram also 
reported that early exposure of Pb leaded to overexpression of 
APP, BACE1, and PS1, one of their regulators (Yegambaram 
et  al., 2015). Both of them suggest that early exposure of Pb 
played a role in the development of AD when aging.

Arsenic
S-adenosyl-methionine (SAM) is essential for methylation of 
inorganic arsenic to detoxication, and it is also the metyl-donor 
required by DNA methyltransferases. So, it is reasonable to 
speculate that arsenic exposure leads to hypo-methylation of 
DNA and facilitates tumor-related gene expression (Zhao et  al., 
1997). Insufficiency of SAM leaded to hypomethylation of PS1 
and BACE genes. This hypomethylation increased the expression 
of PS1 and BACE, which facilitated the production of Aβ (Fuso 
et  al., 2005). Besides, arsenic inhibited the expression of the 
DNA methyltransferase genes, DNMT1 and DNMT3a (Reichard 
et  al., 2007). Sodium arsenite exposure inhibited HDAC p300 
for attenuating H3K27ac at enhancers in mouse embryonic 
fibroblast cells (Zhu et  al., 2018). Su reported a dose-response 
relationship between the environmental concentration of total 
arsenic in topsoils and the prevalence and mortality of AD in 
European countries (Yegambaram et  al., 2015).

Environmental toxin arsenite induced a remarked increase 
in the phosphorylation of several sits in tau, including Thr-181, 
Ser-202, Thr-205, Thr-231, Ser-262, Ser-356, Ser-396, and Ser-404, 
which was in coincidence with results from AD (Giasson et al., 
2002). Gong argued that arsenic stimulated the generation of 
free radicals, which leaded to oxidative stress and neuronal 
death (Gong and O’Bryant, 2010). When mothers were exposed 
to arsenic during pregnancy, their children showed a higher 
activation of inflammation-related pathways involved in the 
development of AD (Fry et  al., 2007).

Aluminum
Aluminum has been reported to induce neurofibrillary 
degeneration in neurons of higher mammals in 1970s (Crapper 
et  al., 1973). McLachlan reported a dose-effect association 
between the risk of AD and residual aluminum in municipal 
drinking water. The estimated relative risk of AD for residents 
with drinking water containing more than 100 ug/L of Al was 
1.7 (McLachlan et  al., 1996). Walton (2014) reported that long 
term intake of Al was an etiology of AD. A 15-year follow-up 
implemented by Rondeau et al. (2009) also showed a significant 
association between a high daily intake of aluminum and 
increased risk of dementia. Al could selectively interact with 
Aβ to facilitate the formation of fibrillar aggregation, while 
copper, iron, or zinc could not (Bolognin et  al., 2011).
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In transgenic mice overexpressed human APP (Tg2576), 
dietary Al stimulated the expression and aggregation of Aβ 
through increasing oxidative stress (Pratico et  al., 2002). In 
embryo rat hippocampal neurons, high concentration of Al 
facilitated the production of ROS induced by Fe (Xie et  al., 
1996). Al facilitated the degradation from APP to the aggregation 
of Aβ (Kawahara et al., 1994). Besides, the structure of non-Aβ 
component of AD amyloid was changed by the induction of 
Al to resist degradation and form plaque (Paik et  al., 1997).

CONCLUSION

No mutation in genes has been definitely associated with 
neurodegenerative diseases, suggesting that, besides risk 
factors of gene, environmental exposure also is involved in 
the etiology of AD, and those two factors may be  abridged 
through epigenetic alterations. Recently, an integrated multi-
omics analyses identified molecular pathways associated with 
AD and revealed the H3 modifications H3K27ac and H3K9ac 
as potential epigenetic drivers linked to transcription and 
chromatin and disease pathways in AD (Nativio et al., 2020). 
These findings provide mechanistic insights on AD for aiming 

epigenetic regulation of therapeutic strategy. We  should get 
more enlightenment from it and explore the relationship 
between AD and epigenetics. On this basis, we  will further 
study the effective diagnosis, treatment, and prevention 
methods of AD, and develop new intervention measures 
for AD from the field of epigenetics.
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