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Abnormal expression of RNA binding proteins (RBPs) has been reported across various
cancers. However, the potential role of RBPs in colorectal cancer (CRC) remains
unclear. In this study, we performed a systematic bioinformatics analysis of RBPs in
CRC. We downloaded CRC data from The Cancer Genome Atlas (TCGA) database.
Our analysis identified 242 differentially expressed RBPs between tumor and normal
tissues, including 200 upregulated and 42 downregulated RBPs. Next, we found eight
RBPs (RRS1, PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1) related
to the prognoses of CRC patients. Among these eight prognosis-related RBPs, four
RBPs (NOL3, PTRH1, UPF3B, and SMAD6) were selected to construct a prognostic
risk score model. Furthermore, our results indicated that the prognostic risk score
model accurately predicted the prognosis of CRC patients [area under the receiver
operating characteristic curve (AUC)for 3- and 5-year overall survival (OS) and was
0.645 and 0.672, respectively]. Furthermore, we developed a nomogram based on a
prognostic risk score model. The nomogram was able to demonstrate the wonderful
performance in predicting 3- and 5-year OS. Additionally, we validated the clinical value
of four risk genes in the prognostic risk score model and identified that these risk
genes were associated with tumorigenesis, lymph node metastasis, distant metastasis,
clinical stage, and prognosis. Finally, we used the TIMER and Human Protein Atlas
(HPA)database to validate the expression of four risk genes at the transcriptional and
translational levels, respectively, and used a clinical cohort to validate the roles of
NOL3 and UPF3B in predicting the prognosis of CRC patients. In summary, our study
demonstrated that RBPs have an effect on CRC tumor progression and might be
potential prognostic biomarkers for CRC patients.

Keywords: colorectal cancer, RNA binding protein, prognostic model, transcriptomics, TCGA

INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers of the gastrointestinal
tract. It is the third leading cause of cancer-related death worldwide (Siegel et al.,
2020). Although surgical and adjuvant therapies have improved, the 5-year overall
survival (OS) rate of CRC patients ranges from 90 to 10% (Van Cutsem et al., 2014).
The poor prognosis of CRC is primarily due to tumor distant metastasis and recurrence
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(Roth et al., 2010; Kow, 2019). Therefore, understanding
the mechanisms that lead to CRC initiation and progression
is necessary for diagnosis, therapeutic interventions, and
prognostic prediction.

RNA binding proteins (RBPs) are a class of proteins involved
in splicing, modifications, transport, localization, stability,
degradation, and translation of RNAs (Mitchell and Parker, 2014;
Perron et al., 2018). In fact, more than 1,500 human RBPs
have been validated by high-throughput screens and experiments
(Gerstberger et al., 2014; Neelamraju et al., 2015). RBPs play
vital roles in several essential cellular processes by interacting
with their target RNAs (Moore, 2005). The target RNAs of RBPs
are diverse and include microRNAs, transfer RNAs (tRNAs),
small interfering RNA, small nucleolar RNAs, and small nuclear
RNAs (Hentze et al., 2018). Abnormally expressed RBPs regulate
the expression and function of oncogenes and tumor-suppressor
genes via post-transcriptional regulatory mechanisms across
various cancers. For example, aberrant hnRNPM expression
promoted breast cancer metastasis by controlling CD44 splice
isoform switching during epithelial–mesenchymal transition
(EMT) (Xu et al., 2014). In melanomas, CPEB4 increased
the translation of melanoma drivers MITF and RAB72A,
which helps promote tumor proliferation (Pérez-Guijarro et al.,
2016). In hepatocellular carcinoma, HuR/methyl-HuR and
AUF1 modulate MAT1A and MAT2A expression through post-
translational regulation of their messenger RNAs (mRNAs), thus
impacting tumor progression (Vázquez-Chantada et al., 2010). In
CRC, overexpression of IMP-1 increased proliferation by directly
binding to and stabilizing c-Myc (Mongroo et al., 2011).

With the rapid development of high-throughput
sequencing, researchers have have been able to perform a
systematic functional analysis of RBPs using high-throughput
bioinformatics profiling. Recent bioinformatics studies have
implied that RBPs can predict the prognosis of different
cancers, such as breast cancer, lung adenocarcinoma, glioma,
hepatocellular carcinoma, and leukemia (Li et al., 2019a,b,
2020; Saha et al., 2019; Wang K. et al., 2019,Wang Z. et al.,
2020). In this study, we downloaded CRC data from the Cancer
Genome Atlas (TCGA) database. Next, we selected differentially
expressed RBPs to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Furthermore, we identified prognostic RBPs that enable the
construction of a prognostic risk score model. Furthermore, we
built a nomogram based on the prognostic risk score model.
Finally, we explored the clinical value of these risk genes. Our
study detected that several RBPs are involved in CRC, which
might be used to predict the prognosis of CRC patients and
inhibit tumor progression in the future.

MATERIALS AND METHODS

Data Acquisition
RNA sequencing data and the corresponding clinical data
were downloaded from the TCGA database1. Overall, 568 CRC

1https://portal.gdc.cancer.gov/

patients were used to analyze the differentially expressed RBPs
in the TCGA database. Then, 489 CRC patients were selected
for clinical analyses, as these patients had complete clinical
information, including primary tumor, lymph node metastasis,
distant metastasis, clinical stage, and follow-up for at least
1 month. Additionally, we downloaded RNA-seq data of the
GSE29623 cohort from the Gene Expression Omnibus (GEO)
database2. In total, 1,542 RBPs were included in our study
(Gerstberger et al., 2014; Neelamraju et al., 2015).

Clinical Samples and
Immunohistochemistry Staining
In total, tumor and normal tissues of 44 CRC patients
were obtained from the Peking University People’s Hospital.
All tissues were histopathologically confirmed by pathologists.
This study was granted approval by the ethics committee
of Peking University People’s Hospital. Immunohistochemistry
(IHC)staining was performed according to prior published
protocols (Zhang et al., 2019). Briefly, the staining index scores
were assigned as follows: staining intensity (negative: 0; weak:
1; moderate: 2; strong: 3) and positive staining (<5%: 0; 5–
25%: 1; 26–50%: 2; 51–75%: 3; > 75%: 4). The staining index
scores were calculated by multiplying the staining intensity score
by the positive staining score, which ranged from 0 to 12. The
antibodies used in this study included anti-NOL3 (Proteintech,
United States) and anti-UPF3B (Proteintech, United States).

Functional Enrichment Analysis of
Differentially Expressed RNA Binding
Proteins
The GO and KEGG pathway analyses were performed to
analyze the biological functions of these differentially expressed
RBPs. The GO terms include biological process (BP), cellular
component (CC), and molecular function (MF).

Building a Prognostic Model
A univariate Cox regression analysis was performed to identify
prognostic RBPs. Subsequently, a multivariable Cox regression
analysis was carried out to construct a prognostic risk score
model. Furthermore, the risk score was calculated as follows:

riskscore =
n∑

i=1

coefficieent(i)∗expression(i),

where coefficient(i) and expression(i) represent the regression
coefficient and expression levels of selected genes in the
prognostic risk score model, respectively. The time-dependent
receiver operating characteristic (ROC) analysis was used to
assess the prognostic ability of the prognostic risk score model.
Then, a nomogram was built to predict the OS of CRC patients.
The calibration plot and concordance index (C−index) were used
to evaluate the performance of the nomogram.

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29623
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External Validation of the Expression and
Genetic Alterations of the Risk Genes
The TIMER database3 and the Human Protein Atlas (HPA)
database4 were utilized to explore and validate gene expression
at the transcriptional and translational level, respectively. The
cBioportal for Cancer Genomics5 was used to identify each
genetic alteration, which included four CRC studies.

Statistical Analyses
Statistical analyses were performed using the R software v3.5.1.
Kaplan–Meier analysis was used to construct survival curves,
and the log-rank test was utilized to assess the significance
of differences. T-test and Wilcoxon signed-rank test were
used to explore quantitative variables. P < 0.05 represents
statistical significance.

RESULTS

Identifying Differentially Expressed RNA
Binding Proteins in Colorectal Cancer
Figure 1A shows detailed designs of the study. We downloaded
transcriptomic files of CRC from the TCGA database
encompassing 568 tumors and 44 normal samples. The
Wilcoxon signed-rank test was applied to identify significantly
differentially expressed RBPs. The R package Limma was used to
identify differentially expressed RBPs according to the following
parameters: | log2FC| > 1 and false discovery rate (FDR) < 0.05.
Among the 1,542 RBPs, we detected 242 differentially expressed
RBPs, including 200 upregulated and 42 downregulated RBPs
between tumor and normal tissues (Figures 1B,C).

Functional Enrichment Analysis of
Differentially Expressed RNA Binding
Proteins in Colorectal Cancer
To investigate the biological significance of RBPs in CRC, we
performed GO and KEGG pathway analyses of 242 differentially
expressed RBPs using the R package clusterProfiler. We displayed
the top 10 significantly enriched GO terms (Figure 2A).
Results revealed that these differentially expressed RBPs were
significantly enriched in biological processes such as non-
coding RNA processing, ribonucleoprotein complex biogenesis,
ribosome biogenesis, and ribosomal RNA metabolism. They
were mainly located in the preribosome, nucleolar part,
small-subunit processome, 90S preribosome, and cytoplasmic
ribonucleoprotein granule. They were found to participate in
various molecular functions, including catalytic activity (acting
on RNA), catalytic activity (acting on a tRNA), ribonuclease
activity, single-stranded RNA binding, and poly(U) RNA
binding. For KEGG pathway analysis, we found that these
differentially expressed RBPs were mainly associated with
ribosome biogenesis in eukaryotes, RNA degradation, RNA

3https://cistrome.shinyapps.io/timer/
4http://www.proteinatlas.org
5http://www.cbioportal.org/

transport, mRNA surveillance pathway, and aminoacyl-tRNA
biosynthesis (Figure 2B).

Identifying Prognostic RNA Binding
Proteins in Colorectal Cancer
To assess the prognostic significance of RBPs in CRC,
we performed a univariate Cox regression analysis of 242
differentially expressed RBPs. We detected eight RBPs (RRS1,
PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1)
that were related to the prognosis of CRC patients (p < 0.05,
Figure 3A). Also, all these eight prognostic RBPs were protective
factors because CRC patients with high expression of these RBPs
had poor prognosis. The expression of eight prognostic RBPs
in tumor and normal tissues of CRC patients are shown in
Figure 3B.

Constructing a Prognostic Risk Score
Model in Colorectal Cancer
We constructed the optimum prognostic risk score model for
prediction of OS of CRC patients by using multivariate Cox
regression analysis. The identified eight prognostic RBPs were
used to construct the prognostic risk score model. Among
the eight prognostic RBPs, we identified UPF3B, SMAD6,
NOL3, and PTRH1 as risk genes in the prognostic risk score
model. Furthermore, coefficients of four risk genes are shown
in Figure 4A. We calculated the risk scores using regression
coefficient and expression levels of the risk genes according to
this equation: risk score = 0.4257 ∗ expression (UPF3B)+ 0.5463
∗ expression (SMAD6) + 0.562 ∗ expression (NOL3) + 2.368 ∗
expression (PTRH1). Then, all CRC patients were divided into
either high-risk or low-risk groups according to the risk scores.
We demonstrated that patients in the high-risk group had a
shorter OS time compared with those in the low-risk group
(Figure 4B). We measured the prognostic ability of the risk score
model through the use of an ROC analysis, which was conducted
using the R package survivalROC. Also, our results indicated that
the area under the ROC curve for 3- and 5-year OS was 0.645 and
0.672, respectively (Figure 4C). Heat map of mRNA expression
indicated that all four were upregulated in the high-risk group
(Figure 4D). Distribution of risk scores and survival status of
patients are shown in Figures 4E,F. In addition, we found a
higher percentage of deaths in the high-risk group.

We next assessed whether the four RBP-related gene models
can predict the survival prognosis of CRC patients among
additional CRC cohorts. We calculated the risk scores using the
same formula that was used in the GSE29623 cohort. The results
demonstrated that patients in the high-risk group had shorter OS
time compared with those in the low-risk group (Supplementary
Figures 1A–D), which is consistent with the TCGA CRC cohort.
The results demonstrated that the four RBP-related gene models
can accurately predict the prognosis of CRC patients.

Additionally, we explored the relationship between risk scores
and clinical features of CRC patients. These results implied
that risk scores were significantly higher in CRC patients that
have deeper tumor infiltration (Figure 4G), distant metastasis
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FIGURE 1 | Identification of differentially expressed RNA binding proteins (RBPs) in colorectal cancer (CRC). (A) Flowchart of our methods. (B) Volcano plots of
differentially expressed RBPs in CRC. (C) Heatmap plots of differentially expressed RBPs in CRC.

(Figure 4H), and lymph node metastasis (Figure 4I) and are at
a late clinical stage (Figure 4J).

Building a Nomogram Based on the
Prognostic Risk Score Model
Univariate and multivariate Cox regression analyses
demonstrated that age, clinical stage, and the risk scores
obtained from the prognostic risk score model were independent
prognostic factors of CRC patients (Figures 5A,B). Therefore,
based on these three independent prognostic factors, we
constructed a nomogram that would be able to predict 3-
and 5-year OS of CRC patients using the R package rms
(Figure 6A). The calibration plots showed that the probability
of predicting 3- or 5-year OS through nomogram agreed
with actual observation (Figures 6B,C). Furthermore, the
C-index for predicting OS through nomogram was 0.75 (95%
CI: 0.69–0.81).

Validating Clinical Value of the Four Risk
Genes in the Prognostic Risk Score
Model
To further explore the clinical value of these four risk
genes, we analyzed the relationship between expression of
these genes and clinical features of the CRC patients. The
survival curves showed that high expression of NOL3, PTRH1,
SMAD6, and UPF3B is associated with poor prognosis of
CRC patients (Figures 7A–D). We also found that NOL3
was significantly overexpressed in patients with lymph node
metastasis (Figure 7E), distant metastasis (Figure 7F), and
at a late clinical stage (Figure 7G). PTRH1 was found to
be significantly overexpressed in patients with deeper tumor
infiltration (Figure 7H). UPF3B was significantly upregulated in
patients with deeper tumor infiltration (Figure 7I), as well as late
clinical stage (Figure 7J). However, SMAD6 was downregulated
in patients with deeper tumor infiltration (Figure 7K).
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FIGURE 2 | Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed RBPs in CRC.
(A) GO terms of differentially expressed RBPs. (B) KEGG pathways of differentially expressed RBPs.

FIGURE 3 | Univariate Cox regression analysis to identify prognostic RBPs in CRC. (A) Forrest plot of univariate Cox regression analyses in CRC. (B) mRNA
expression of eight prognostic RBPs in CRC.

External Validation of the Four Risk
Genes
Consistent with results from the TCGA database, each of the four
risk genes was found to be significantly upregulated in both colon
and rectal cancer, according to the TIMER database (Figure 8).

Interestingly, we identified that the expression of these four genes
is not the same across different cancers. For instance, UPF3B is
upregulated in esophageal carcinoma, stomach adenocarcinoma,
hepatocellular carcinoma, and breast invasive carcinoma,
whereas UPF3B was downregulated in kidney chromophobe,
prostate adenocarcinoma, and thyroid carcinoma. Additionally,
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FIGURE 4 | Four RBP-related gene model to predict overall survival (OS) of CRC patients. (A) Coefficient of four risk genes identified by multivariate Cox regression
analysis. (B) OS curve for high-risk and low-risk groups in the prognostic risk score model. (C) Time-dependent receiver operating characteristic (ROC) analysis of
the prognostic risk score model.(D–F) Heat map of mRNA expression (D), distribution of risk score (E), and survival status (F) of patients in high-risk and low-risk
groups. (G–J) Relationships between risk score and T (G), N (H), M (I), and clinical stage (J). (T, primary tumor; N, lymph node metastasis; M, distant metastasis).

FIGURE 5 | Univariate and multivariate Cox regression analyses in CRC. (A) Forrest plot of the univariate Cox regression analyses in CRC. (B) Forrest plot of the
multivariate Cox regression analyses in CRC.
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FIGURE 6 | Building a nomogram predicting OS of CRC patients. (A) CRC survival nomogram.The calibration plot for predicting patient survival at (B) 3 and
(C) 5 years.

the expression of UPF3B was not found to be significantly
different in pancreatic adenocarcinoma, kidney renal clear cell
carcinoma, and kidney renal papillary cell carcinoma.

To further validate the expression of the four risk genes at the
translational level, we analyzed the protein expression of these
genes in the HPA database. The results indicated that NOL3
and UPF3B were overexpressed in CRC tumor tissues compared
with normal tissues (Figure 9A). PTRH1 expression was not
significantly different between the CRC tumor tissues and normal
tissues (Figure 9A). However, information of SMAD6 levels were
not found on the website. In addition, genetic alterations of the
four risk genes were found to rarely occur (Figure 9B).

Validation of the Clinical Significance of
NOL3 and UPF3B in Colorectal Cancer
Patients by Immunohistochemistry
We obtained 44 pairs of CRC samples from Peking University
People’s Hospital to validate protein expression of the two key

RBPs (NOL3 and UPF3B) in CRC. Immunohistochemical
staining results displayed that NOL3 and UPF3B were
upregulated in CRC tumor tissues (Figures 10A–C). In
addition, our results showed that overexpression of NOL3
and UPF3B was associated with poor prognosis of CRC
patients (Figures 10D,E). These results indicated that NOL3
and UPF3B play vital roles in predicting the prognosis
of CRC patients.

DISCUSSION

Recently, numerous studies have focused on certain
characteristics, such as autophagy and metabolic reprogramming,
to identify gene signatures that are able to predict the mortality
risk of cancer (Wan et al., 2019; Lin et al., 2020; Liu et al.,
2020). In this study, we identified four RBP-related genes
that were able to predict the OS of CRC patients. First, we
detected 242 differentially expressed RBPs from a total of
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FIGURE 7 | Relationship between the four risk genes expression and clinical features of CRC patients in The Cancer Genome Atlas (TCGA). (A–D) Survival curves of
NOL3 (A), PTRH1 (B), UPF3B (C), and SMAD6 (D). (E–G) Relationships between NOL3 expression and N (E), M (F), and clinical stage (G). (H) Relationships
between PTRH1 expression and T. (I,J) Relationships between UPF3B expression and T (I) and clinical stage (J). (K) Relationships between SMAD6 expression and
T. (T, primary tumor; N, lymph node metastasis; M, distant metastasis).

1,542 RBPs. Then, we performed univariate and multivariable
Cox regression analyses and selected four prognosis-related
RBPs to construct a prognostic risk score model. Also, results
showed that the prognostic risk score model accurately
predicted prognosis of CRC patients. Furthermore, we
built a nomogram based on independent prognostic factors
(including the risk score obtained from the prognostic risk
score model, age, and clinical stage). Also, the nomogram
performed well in predicting the 3- and 5-year OS. We
also validated the clinical value of the four risk genes and
found that they were associated with tumorigenesis, lymph
node metastasis, distant metastasis, clinical stage, and OS.
Finally, we confirmed the vital roles of NOL3 and UPF3B
in predicting prognosis of CRC patients using IHC in a
clinical cohort.

Based on four prognosis-related RBPs, we constructed a
prognostic risk score model to predict OS of CRC patients.
Some of these genes were found to be related to tumorigenesis
and progression of CRC and other malignancies. NOL3 was
strongly upregulated across multiple cancers. In particular,
NOL3 was found to be highly expressed in AML and was
associated with poor prognosis of AML patients (Carter et al.,
2011, 2019; Mak et al., 2014a,b). Overexpression of NOL3 was

also related to poor prognosis of nasopharyngeal carcinoma
patients (Wu et al., 2013). Studies also found that NOL3
promoted tumorigenesis, metastasis, and chemoresistance in
breast cancer, all of which contributed to worse patient
prognosis (Medina-Ramirez et al., 2011). NOL3 was a direct
target of miR-185 in gastric cancer (Li et al., 2014). Recent
discoveries have also identified that upregulation of NOL3 was
associated with worse prognosis among CRC patients (Mercier
et al., 2008; Tóth et al., 2016), which is consistent with our
results. Finally, NOL3 might be modulated by known cancer
signaling proteins including Ras (Wu et al., 2010) and HIF-
1 (Ao et al., 2012), and the lncRNA PCAT6 (Huang et al.,
2019), in CRC.

SMAD6, a member of the SMAD family, negatively modulates
the transforming growth factor-β signaling pathway (Jung
et al., 2013). SMAD6 is predictive of patient survival in
oral squamous cell carcinoma (Mangone et al., 2010).
SMAD6 was found to be overexpressed in glioma, and its
overexpression is associated with poor patient survival (Jiao
et al., 2018). SMAD6 correlated with poor patient survival
among non-small cell lung cancer, and its knockdown
inhibited cell proliferation and increased apoptosis in the
lung cancer cell line (Jeon et al., 2008). Our study indicated
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FIGURE 8 | Expression of the four risk genes in multiple cancers. Expression of (A) NOL3, (B) PTRH1, (C) UPF3B, and (D) SMAD6 in TIMER. *p < 0.05, **p < 0.01,
***p < 0.001.
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FIGURE 9 | Protein expression and genetic alterations of the four risk genes. (A) Representative protein level of the four risk genes in CRC tumor and normal tissues
in the Human Protein Atlas database. Data of SMAD6 are not available in this database. (B) Genetic alterations of the four risk genes in CRC in the cBioportal for
Cancer Genomics.

that overexpression of SMAD6 is related to worse patient
prognosis in CRC.

Our study identified that upregulated PTRH1 and UPF3B
correlated with worse prognosis of CRC patients. However,
we only found a few studies about these two genes in
CRC and other cancers. UPF3B, a member of the UP-
frameshift proteins, mediates nonsense-mediated mRNA
decay (Raimondeau et al., 2018). UP-frameshift proteins include

UPF1, UPF2, UPF3A, and UPF3B (Raimondeau et al., 2018).
Although UPF3B is less well-studied, we found several studies
about additional UP-frameshift proteins in cancers. UPF1
regulates tumor progression via diverse mechanisms across
different kinds of cancers, including CRC (Bordonaro and
Lazarova, 2019), hepatocellular carcinoma (Chang et al., 2016;
Zhang et al., 2017), pancreatic adenosquamous carcinoma
(Liu et al., 2014), glioblastoma (Shao et al., 2019), and
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FIGURE 10 | Clinical significance of NOL3 and UPF3B in CRC patients by immunohistochemistry (IHC). (A) IHC staining for NOL3 and UPF3B in tumor and normal
tissues of CRC patients. (B,C) Statistical analysis of NOL3 and UPF3B in tumor and normal tissues of CRC patients, respectively. (D,E) Survival curves of NOL3 and
UPF3B. *p < 0.05, **p < 0.01.

endometrial carcinoma (Xing et al., 2020). UPF3A partially
contributes to the effect of calcium homeostasis endoplasmic
reticulum protein (CHERP) in promoting tumorigenesis
in CRC (Wang Q. et al., 2019). UPF3B and other UP-
frameshift proteins can be interacted (Raimondeau et al.,
2018). These data, combined with results from our study,
suggest that UPF3B regulates tumor progression of CRC
and may represent a potential prognostic biomarker for
CRC patients. However, the mechanism of its effect in CRC
requires further study.

Although our study indicates that RBPs prominently
contribute to the prognosis of CRC patients, several limitations
need to be pointed out. First, the clinical cohort contains

fewer patients, which may lead to deviation. Additionally, the
mechanisms of how these RBPs regulate the progression of CRC
require further exploration.

CONCLUSION

In conclusion, we performed a comprehensive bioinformatics
analysis of RBPs and identified several potential prognostic RBPs
in CRC. The prognostic risk score model, including four RBPs,
is an independent prognostic factor for CRC. These four
RBPs are involved in tumorigenesis, progression, and prognosis
of CRC. RBPs represent an alternative strategy to interfere
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with tumor progression and predict the prognosis of CRC
patients in the future.
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