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Alzheimer disease (AD) is the most common cause of dementia and creates a significant
burden on society. As a result, the investigation of hub genes for the discovery of
potential therapeutic targets and candidate biomarkers is warranted. In this study,
we used the ComBat method to merge three gene expression datasets of AD from
the Gene Expression Omnibus (GEO). During combined analysis, we identified 850
differentially expressed genes (DEGs) from the temporal cortex of AD and cognitively
normal (CN) samples. We performed weighted gene coexpression network analysis to
build gene coexpression networks incorporating these DEGs to identify key modules
and hub genes. We found one module most strongly correlated with AD onset as the
key module and 19 hub genes in the key module that were down-regulated in AD brains.
According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses,
DEGs were mostly enriched in synapse function, and genes in the key module were
mostly related to learning and memory. We selected five little-studied genes, AP3B2,
GABRD, GPR158, KIAA0513, and MAL2, to validate their expression in AD mouse
model by performing quantitative real-time polymerase chain reaction. We found that
all of them were down-regulated in cortices of 8-month 5xFAD mice compared to
those of wild-type mice. We then further investigated their correlations with β-secretase
activity and Aβ42 levels in AD samples of different Braak stages. We found that all
five hub genes had significant negative associations with β-secretase activity and that
AP3B2 and KIAA0513 had significant negative associations with Aβ42 levels. We tested
the differential expressions of the five hub genes in two AD GEO datasets from the
blood and found that KIAA0513 was significantly up-regulated in patients with both
mild cognitive impairment (MCI) and AD and was able to differentiate MCI and AD
from CN in the two datasets. In conclusion, these five novel vulnerable genes were
involved in AD progression, and KIAA0513 was a promising candidate biomarker for
early diagnosis of AD.
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INTRODUCTION

Alzheimer disease (AD) is the most common cause of dementia
and is manifested as progressive impairments of memory and
other cognitive domains. Pathological lesions in AD include
β-amyloid (Aβ) plaques, neurofibrillary tangles, synaptic failure,
neuronal loss, and brain atrophy (Serrano-Pozo et al., 2011). At
present, only APP, PSEN1, PSEN2, and APOEε4 are considered
to be causal genes or variants for AD (Tanzi, 2012; Jia et al.,
2020; Neuner et al., 2020). In addition, genome-wide association
studies also found AD risk genes including ABCA7, CLU, SORL1,
TREM2, and so on (Campion et al., 2019; Kunkle et al., 2019).
Network analyses of AD-related genes from publications revealed
the complexed molecular mechanisms of AD (Hu et al., 2017).
In vitro studies have identified other genes such as AChE (Garcia-
Ayllon et al., 2011) and TFEB (Guo et al., 2017; Xu et al., 2020)
playing roles in AD pathologies, which provides potential targets
for AD therapy. However, there are still no effective drugs for
AD treatment. Because AD is a complicated disease affected by
age, genetic, and environmental factors, a greater number of key
genes and their underlying mechanisms must be identified in
order to facilitate the discovery of novel therapeutic targets and
candidate biomarkers.

Weighted gene coexpression network analysis (WGCNA) is
a gene-screening (i.e., ranking) method and a data exploratory
tool for finding clusters (i.e., modules) that includes highly
correlated genes, which can then be used for identification
of candidate biomarkers and therapeutic targets (Langfelder
and Horvath, 2008, 2012). This analysis has been applied
widely in studies of various diseases, including cancers and
neuropsychiatric disorders (Chuang et al., 2017; Radulescu et al.,
2018; Ding et al., 2019; Luo et al., 2019). In the current study,
we merged three independent gene expression datasets from the
Gene Expression Omnibus (GEO) database1 using the ComBat
method (Johnson et al., 2007) and analyzed the merged datasets
to identify differentially expressed genes (DEGs). These DEGs
were then used to find key modules and hub genes associated
with AD by WGCNA. Gene Ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were further utilized to identify possible functions of
the DEGs and key modules. Finally, five little-characterized hub
genes, AP3B2, GABRD, GPR158, KIAA0513, and MAL2, were
chosen to test their expression levels in different Braak stages,
their diagnostic values for AD and mild cognitive impairment
(MCI), and their correlations with β-secretase activity and Aβ42
levels. Gene Set Enrichment Analysis (GSEA) was used to explore
potential biological functions of these hub genes.

MATERIALS AND METHODS

Data Collection
Figure 1 shows the overall workflow of this study. All microarray
datasets were downloaded from the GEO database1. We searched
the GEO database for microarray datasets using the keyword

1https://www.ncbi.nlm.nih.gov/geo/

FIGURE 1 | Study workflow. AD, Alzheimer disease; CN, cognitively normal;
FC, fold change; GEO, Gene Expression Omnibus; GO, Gene Ontology; GS,
gene significance; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MM, module membership; WGCNA,
weighted gene coexpression network analysis; WT, wild type.

“Alzheimer.” Datasets were included if they met the following
criteria: (1) were from humans; (2) included expression data
from the temporal cortex of both AD and cognitively normal
(CN) samples, expression data from the temporal cortex of AD
samples with different Braak stages, or blood expression data
from AD, MCI, and CN samples; (3) the number of rows in each
platform was >30,000; (4) the number of AD samples was ≥10,
and the number of CN samples was ≥10; and (5) there were no
repeated samples among datasets. Finally, five datasets from the
temporal cortex of AD and CN samples; one dataset from the
temporal cortex of AD samples with different Braak stages; and
two datasets from the blood of AD, MCI, and CN samples were
selected. Detailed information for these datasets, including GEO
accession ID, dataset country, sample numbers, platform ID, and
number of genes in each platform, as well as usage in the current
study and references, was recorded and is shown in Table 1.
Because GSE132903 had far more samples (98 AD, 97 CN) than
the other four datasets from the temporal cortex of AD and CN
samples, combining this dataset would have blurred the results
of the combined analysis. Thus, GSE132903 (Piras et al., 2019)
was used to validate further the differential expression of hub
genes. Datasets GSE122063 (28 AD, 22 CN; McKay et al., 2019),
GSE36980 (10 AD, 19 CN; Hokama et al., 2014), and GSE5281 (16
AD, 12 CN; Liang et al., 2007, 2008a,b; Readhead et al., 2018) had
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TABLE 1 | Characteristics of the included datasets.

Tissue Dataset ID Country No. of samples GPL ID No. of rows
per platform

Usage here References

Temporal cortex GSE122063 United States 28 AD, 22 CN GPL16699 62,976 Combined (ComBat)
analysis

McKay et al., 2019

Temporal cortex GSE36980 Japan 10 AD, 19 CN GPL6244 33,297 Combined (ComBat)
analysis

Hokama et al., 2014

Temporal cortex GSE5281 United States 16 AD, 12 CN GPL570 54,675 Combined (ComBat)
analysis

Liang et al., 2007, 2008a,b;
Readhead et al., 2018

Temporal cortex GSE118553 United Kingdom 52 AD, 31 CN GPL10558 48,107 WGCNA, GSEA Patel et al., 2019

Temporal cortex GSE132903 United States 98 AD, 97 CN GPL10558 48,107 Validate diff. expr. of
hub genes

Piras et al., 2019

Temporal cortex GSE106241 Finland 60AD GPL24170 34,487 Hub expr. for Braak,
β-secretase, Aβ42

Marttinen et al., 2019

Blood GSE63060 United Kingdom 145 AD, 80 MCI, 104 CN GPL6947 49,576 Hub expr. in blood Sood et al., 2015

Blood GSE63061 United Kingdom 139 AD, 110 MCI, 135 CN GPL10558 48,107 Hub expr. in blood Sood et al., 2015

The first three datasets were used for combined analysis, GSE118553 was used for weighted correlation network analysis (WGCNA) and Gene Set Enrichment Analysis
(GSEA), and the last four datasets were used for validating the hub genes. AD, Alzheimer disease; CN, cognitively normal; GSE, Gene Expression Omnibus Series; GPL,
Gene Expression Omnibus Platform; MCI, mild cognitive impairment.

similar sample sizes and were chosen for the combined analysis
in the current study. Dataset GSE118553 (52 AD, 31 CN; Patel
et al., 2019) was used to build the coexpression network and
to perform GSEA. Dataset GSE106241 (Marttinen et al., 2019)
was used to test the expression of hub genes in different Braak
stages and to explore the correlation with β-secretase activity
and Aβ42 levels. Datasets GSE63060 and GSE63061 (Sood et al.,
2015) were used to validate the expression of hub genes in
the blood of AD samples. Series matrix files of these datasets
and their corresponding platform files were downloaded for the
current analysis.

Identification of Differentially Expressed
Genes by Combined Analysis
Combined analysis was performed for three datasets, including
GSE122063 (McKay et al., 2019), GSE36980 (Hokama et al.,
2014), and GSE5281 (Liang et al., 2007, 2008a,b; Readhead et al.,
2018). Converting probes to gene symbols for series matrix files of
each dataset and merging the gene expression data of these three
datasets were conducted using Perl (version 5.18.4) (Wall, 1994,
Wall et al., 2000). Batch normalization of the merged file was
conducted using the ComBat method from the R package “sva”
(Johnson et al., 2007; Leek et al., 2019; R Core Team, 2020). DEG
screenings were conducted using the R package “limma” (Ritchie
et al., 2015). P-values were adjusted using the false discovery
rate (FDR) method. Genes with adjusted P <0.05 and | log2 fold
change (FC)| >0.5 were considered as DEGs in the combined
analysis. A heatmap of all DEGs was made by the R package
“pheatmap” (Kolde, 2019). The R package “OmicCircos” was
used to show the chromosomal locations, as well as expression
patterns of the top 100 DEGs from the combined analysis.

Function Enrichment Analyses
GO and KEGG pathway analyses were conducted utilizing the
R package “clusterProfiler” (Yu et al., 2012). GO terms and
KEGG pathways with adjusted P <0.05 were considered to be

significant and were exhibited using the R package “GOplot”
(Walter et al., 2015).

Weighted Gene Coexpression Network
Analysis
We used the DEGs from the combined analysis to perform
WGCNA using expression data from GSE118553 (Patel et al.,
2019). The R package “WGCNA” was used to conduct this
analysis and to find clinical trait–related modules and hub genes
among the DEGs (Langfelder and Horvath, 2008, 2012). To
transform the adjacency matrix to a topological overlap matrix,
a soft-threshold power with a scale-free R2 near 0.9 and a
slope near 1 was selected. We set the soft-threshold power as 5
(scale-free R2 = 0.9, slope = -0.96), cut height as 0.25, and the
minimal module size as 10 for network construction and module
detection. The module with the highest correlation with AD was
considered the key module. The network of the key module from
WGCNA was generated by Cytoscape (version 3.7.1)2. Genes in
the key module were selected to perform GO and KEGG analyses
to explore their biological functions. Hub genes in WGCNA were
defined as those with a gene significance (GS) >0.4 and a module
membership (MM) >0.8.

Validation of Hub Genes in Datasets
Expression data of hub genes extracted from Dataset GSE132903
(Piras et al., 2019) and the other four aforementioned datasets
were utilized to validate the differential expression of these
hub genes in the temporal cortex. Hub gene expression
data, β-secretase activity, and Aβ42 levels in AD samples
from GSE106241 (Marttinen et al., 2019) were used to
validate the expressions of hub genes in different Braak
stages and to investigate their correlations with β-secretase
activity and Aβ42 levels. Moreover, GSE63060 and GSE63061
(Sood et al., 2015) were used to explore the differential

2https://cytoscape.org
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expressions of hub genes in the blood of AD and MCI samples.
Using the two datasets, receiver operating characteristic
(ROC) curves were made by GraphPad Prism (version
8.0.0)3. Bar plots, box plots, and correlation analysis in this
section were all generated using GraphPad Prism (version
8.0.0)3.

Mice
The animal study protocol was reviewed and approved by the
Ethics Committee of Capital Medical University. 5xFAD mice
express five AD-related mutations in human forms of APP and
PSEN1, including three in APP (K670N/M671L, I716V, and
V717I) and two in PSEN1 (M146L and L286V). Eight-month
5xFAD and wild-type (WT, non-transgenic littermates) mice with
mixed genders were used in the experiments.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted from cortices of 8-month 5xFAD and
WT mice by RNAsimple Total RNA Kit (#DP419, TIANGEN,
China). RNA 1 µg was used in the following reverse transcription
(#RR047, Takara, Japan). Quantitative real-time polymerase
chain reaction (qRT-PCR) was done on Applied Biosystems
ViiATM 7 Real-Time PCR System using TB Green R© Premix
Ex Taq (#RR420, Takara, Japan). β-Actin was used as internal
control, and relative expression was determined using 2−11CT

method. Primers were designed and synthesized by BGI Tech
Solutions (Beijing Liu He) Co., Ltd. Sequences of primers were
shown in Supplementary Table 1.

Gene Set Enrichment Analysis
GSEA (version 4.0.3, Broad Institute, Inc., Massachusetts
Institute of Technology, and Regents of the University of
California) was conducted to explore the possible biological
functions of the hub genes (Mootha et al., 2003; Subramanian
et al., 2005). AD samples in GSE118553 (Patel et al., 2019) were
divided into two groups according to the expression level of
the hub genes. The database “c2.cp.kegg.v7.0.symbols.gmt” was
chosen for enrichment. Terms with P <0.05 and FDR <0.25 were
defined as significant.

Statistical Analysis
The normality test and homogeneity of variance test were
performed on data extracted from GEO datasets. Data that
passed these two tests then underwent t-testing for comparisons
between two groups and analysis of variance (ANOVA) testing
for comparisons among three or more groups. After ANOVA
analysis, a Dunnett multiple-comparisons test was used for post-
hoc testing. Data that passed the normality test, but did not
pass the homogeneity of variance test, underwent t-testing with
Welch correction for comparisons between two groups and the
Brown–Forsythe ANOVA test for comparisons among three or
more groups. Data that did not pass the normality test underwent
non-parametric testing, using the Kruskal–Wallis test and Dunn

3https://www.graphpad.com

multiple-comparisons test for comparisons among three or more
groups. GraphPad Prism (version 8.0.0) (see text footnote 4) was
utilized to perform the above tests.

RESULTS

Screening of DEGs by Combined
Analysis
Datasets GSE122063 (McKay et al., 2019), GSE36980 (Hokama
et al., 2014), and GSE5281 (Liang et al., 2007, 2008a,b; Readhead
et al., 2018) were included in the combined analysis. After
combined analysis, 850 DEGs (223 up-regulated and 627 down-
regulated) were identified and are shown in heatmap and volcano
plots (Supplementary Figures 1, 2 and Supplementary Table 2).
The polarity of genes described as “up-regulated” or “down-
regulated” in this article is with respect to AD vs. CN. The
top 100 DEGs (according to | log2FC|, including top 50 up-
regulated genes, as well as top 50 down-regulated genes) were
chosen to visualize their chromosomal locations and expression
patterns across the three datasets used for combined analysis,
as well as their logarithmic adjusted P-values shown in the
inner layer (Figure 2). The top five up-regulated genes were
SERPINA3, FCGBP, MAFF, SCIN, and CD163, whereas the top
five down-regulated genes were CARTPT, SST, PCSK1, PPEF1,
and NPTX2 (Figure 2).

Functional Enrichment Analysis of DEGs
All DEGs were utilized to perform GO and KEGG analyses,
and the top five of these terms based on their adjusted P-values
are shown in chord plots (Figure 3). We found enrichments
in several biological process terms for GO analysis. The top
five terms were neurotransmitter transport, synaptic vesicle
cycle, neurotransmitter secretion, signal release from synapse,
and vesicle-mediated transport in synapse, which are shown
in Figure 3A. The top five cellular component terms for
GO analysis were presynapse, glutamatergic synapse, synaptic
membrane, axon part, and exocytic vesicle (Figure 3B). The
top five molecular function terms for GO analysis were
neurotransmitter receptor activity, voltage-gated ion channel
activity, voltage-gated channel activity, ion gated channel
activity, and gated channel activity (Figure 3C). For KEGG
pathway analysis, DEGs were mostly enriched in neuroactive
ligand-receptor interaction, nicotine addiction, GABAergic
synapse, synaptic vesicle cycle, and amphetamine addiction
pathways (Figure 3D). Further, we did enrichment analyses
in up-regulated genes and down-regulated genes of AD
brains separately and found that up-regulated genes were
mostly enriched in regulation of angiogenesis, whereas down-
regulated genes were mostly related to synaptic functions
(Supplementary Figures 3, 4).

WGCNA and Key Module Identification
Expression data of 823 DEGs were extracted from GSE118553
(27 DEGs not available; Patel et al., 2019) and used to conduct
WGCNA (Figure 4). By setting the soft-threshold power as 5
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FIGURE 2 | Circos plot of expression patterns and chromosomal positions of top 100 differentially expressed genes (DEGs). The outer circle represents
chromosomes, and lines coming from each gene point to their specific chromosomal locations. The three Alzheimer disease (AD) microarray datasets from Gene
Expression Omnibus (GEO) used for combined analysis are represented in the inner circular heatmaps. GSE122063, GSE36980, and GSE5281 are presented from
the outside to the inside. The red lines in the inner layer indicate -log10 (adjusted P-value) of each gene. According to |log2 fold change|, the top five up-regulated
genes (red) and the top five down-regulated genes (blue) are connected with red and blue lines in the center of the Circos plot.

(scale-free R2 = 0.9, slope = -0.96; Figure 4B and Supplementary
Figure 5) and cut height as 0.25, we acquired eight modules
(Figures 4C,D), with non-clustering DEGs in the gray module.
Genes in each module are shown in Supplementary Table 3.
From the heatmap of module–trait correlations, we found that
the green module was the most highly correlated with AD
(correlation coefficient = -0.57, P = 2 × 10−8; Figures 4E,F).
We also found that the blue, yellow, and brown modules had

similar correlation coefficients with the green module. However,
after comparing the relationships between GS and MM, we
considered the green module (correlation coefficient = 0.74,
P = 2 × 10−6; Figure 5A and Supplementary Figure 6) to
be the key module associated with AD and therefore analyzed
it further in detail. The key module contained 31 genes
(Figure 5A and Supplementary Table 3), and the interaction
of the genes in the key module is shown in Figure 5B. To
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FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of all differentially expressed genes. Chord plots indicate
enrichment analysis of genes. (A) Biological process of GO analysis. (B) Cellular component of GO analysis. (C) Molecular function of GO analysis. (D) KEGG
pathways.

explore the potential biological functions of genes in the key
module, GO and KEGG analyses were performed, and the
enrichments are shown in Figures 5C–F. The results indicated

that genes in the key module were mostly related to biological
processes like learning or memory and cognition (Figure 5C)
and enriched in pathways like nicotine addiction and retrograde
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FIGURE 4 | Key module correlated with Alzheimer disease identified by weighted gene coexpression network analysis (WGCNA). (A) Clustering of samples to detect
outliers. (B) Scale-free topology model (left) and mean connectivity (right) for finding the soft-thresholding power. The power selected is 5. (C) Cluster dendrogram of
genes. (D) Clustering of all modules. The red line indicates the height cutoff (0.25). (E) Heatmap shows the relationships between different modules and clinical traits.
(F) Gene significance in different modules associated with AD. AD, Alzheimer disease; CN, cognitively normal.
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FIGURE 5 | Functional enrichment of the key module. (A) Scatter plot of module eigengenes in the key module. (B) Interaction network of genes in the key module.
Genes in black circles are hub genes in the key module. (C) Bubble plots of biological process of gene ontology (GO) analysis. (D) Bubble plots of cellular
component of GO analysis. (E) Bubble plots of molecular function of GO analysis. (F) Bubble plots of KEGG pathways.

endocannabinoid signaling (Figure 5F). Under the threshold of
MM >0.8 and GS >0.4, we identified the following 19 down-
regulated hub genes in the key module:AP3B2,CAMKK2, CHGB,
CLSTN1, CRYM, GABRD, GPR158, KIAA0513, MAL2, NPTX1,
NRXN3, PHYHIP, RASGRF1, RPH3A, SCN2A, SCN2B, SLC8A2,
STMN2, and TERF2IP.

Validation of the Expression of Hub
Genes
All 19 hub genes underwent expression validation in GSE132903
(Piras et al., 2019), GSE122063 (McKay et al., 2019), GSE36980
(Hokama et al., 2014), GSE5281 (Liang et al., 2007, 2008a,b;
Readhead et al., 2018), and GSE118553 (Patel et al., 2019)
datasets. Except for CRYM, GABRD, PHYHIP, SCN2B,
and TERF2IP in GSE36980 and CAMKK2, PHYHIP, and
GPR158 in GSE132903, all other hub genes were significantly

down-regulated in AD samples from the five datasets (P < 0.05,
0.01, 0.001, or 0.0001; Figure 6 and Supplementary Figure 7).
Among the 19 hub genes, we selected AP3B2, GABRD, GPR158,
KIAA0513, and MAL2, which have been little studied on the
associations with AD, in order to validate their expressions in
cortices of 5xFAD and WT mice and in different Braak stages
of AD samples (GSE106241; Marttinen et al., 2019). All five
hub genes were down-regulated in cortices of 5xFAD mice
compared to those of WT (Figure 7). We also found that the
five hub genes were down-regulated as AD progressed, especially
AP3B2, KIAA0513, and MAL2, which were significantly down-
regulated in Braak III–IV and Braak V–VI when compared with
Braak 0 (P < 0.05, 0.01, respectively, Figure 8A). β-Secretase
activity and Aβ42 levels in GSE106241 were identified to be
up-regulated during AD progression (Figure 8A). We found
that all five hub genes were negatively associated with β-secretase
activity (P < 0.0001, P = 0.001, P = 0.0004, P < 0.0001,

Frontiers in Genetics | www.frontiersin.org 8 August 2020 | Volume 11 | Article 981

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00981 August 26, 2020 Time: 18:40 # 9

Zhu et al. Novel Hub Genes in Alzheimer’s

FIGURE 6 | Expression of five hub genes in the temporal cortex. Only hub genes that have been little characterized to be associated with Alzheimer disease (AD) are
listed. The green box indicates the cognitively normal group, and the orange box indicates the AD group. T-testing was performed to compare the means of two
groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. AD, Alzheimer disease; CN, cognitively normal; ns, no significance.

and P = 0.0002, respectively, Figure 8B) and that AP3B2 and
KIAA0513 were negatively associated with Aβ42 levels (P = 0.019,
0.032, respectively, Figure 8C). Next, we tested the differential
expressions of the five hub genes in the two AD GEO datasets
from the blood (data not shown; Sood et al., 2015) and found
that KIAA0513 was significantly up-regulated in MCI and AD
samples when compared with CN samples (P < 0.05, 0.01,
0.0001, respectively, Figure 9A). We also found that KIAA0513
had the ability to differentiate MCI and AD from CN in the two
datasets (Figure 9B). In GSE63060, the area under the curve
(AUC) for differentiating MCI and CN samples is 0.69 [95%
confidence interval (CI) = 0.61–0.77], and AUC for AD and CN
samples is 0.63 (95% CI = 0.56–0.70). In GSE63061, AUC for
MCI and CN is 0.62 (95% CI = 0.55–0.69), and AUC for AD
and CN is 0.58 (95% CI = 0.51–0.65). Furthermore, KIAA0513
was found to be enriched in neurons of healthy human brains,

as determined using an online database AlzData (Xu et al., 2018;
Supplementary Figure 8)4.

GSEA Reveals Potential Biological
Functions of Hub Genes
We conducted GSEA of the five little-studied hub genes in the
expression data of GSE118553. AD samples in GSE118553 were
divided into a “high-expression group” and a “low-expression
group.” We acquired 17, 9, 1, 7, and 33 significant gene sets
enriched in the expression groups of AP3B2, GABRD, GPR158,
KIAA0513, and MAL2, respectively (Supplementary Table 4).
According to normalized enrichment scores, genes in the low-
expressed KIAA0513 group were mostly related to ribosome

4http://www.alzdata.org/single_RNAseq.php
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FIGURE 7 | Expression of five hub genes in cortex of 5xFAD mice. The results
were presented as mean ± standard deviation (t-testing; n = 4 in each group).
*P < 0.05; **P < 0.01. WT, wild type.

function, antigen processing and presentation, and graft-vs.-host
disease (Figure 9C).

DISCUSSION

The current study incorporated gene expression data extracted
from the temporal cortex in three GEO datasets for combined
analysis and identified a key module and hub genes associated
with AD via WGCNA. We believe that this is the first
study to integrate combined analysis and WGCNA to identify
potential hub genes as candidate biomarkers or therapeutic
targets for AD using temporal cortex datasets. According to
GO and KEGG analyses, the DEGs identified by combined
analysis were mostly enriched in synapse function, and genes
from the key module were mostly related to learning and
memory, which are closely correlated with AD onset. Among
these DEGs, we identified some robust genes that played vital
roles in AD pathogenesis, such as SERPINA3 (Kamboh et al.,
2006), CD163 (Pey et al., 2014), and SST (Duron et al., 2018;
Solarski et al., 2018).

We also found 19 down-regulated hub genes. Some of these
genes and their encoded proteins have been implicated in
AD proceeding. For example, it was reported that aberrant
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2)
may lead to the interference of iron homeostasis in the
brain of AD. Also, a loss of calsyntenin-1 (CLSTN1) induced

alterations to amyloid precursor protein (APP) processing
(Vagnoni et al., 2012), and neuronal pentraxin 1 (NPTX1)
was implicated in synaptic function dysregulation during AD
progression (Cummings et al., 2017). Among these 19 hub
genes, we selected five that have been little studied in AD,
namely, AP3B2, GABRD, GPR158, KIAA0513, and MAL2, in
order to explore their potential functions. Results of qRT-
PCR revealed their down-regulation in 8-month 5xFAD mice,
and reference mining suggested that these genes are involved
in synaptic functions. AP3B2 encodes adaptor-related protein
complex 3 subunit β2 (AP3B2) that composes the neuronal
isoform of adaptor-related protein complex 3 (AP-3 complex),
which is involved in the sorting of synaptic vesicle proteins
(Newell-Litwa et al., 2009). It was reported that AP3B2-knockout
mouse exhibited neurobehavioral abnormalities (Anazi et al.,
2017). GABRD encodes the delta subunit of γ-aminobutyric
acid type A (GABA-A) receptor, named GABRD, which
was necessary for synaptic plasticity in the hippocampi of
mouse models (Whissell et al., 2016). GPR158 encodes G
protein–coupled receptor 158 (GPR158), which was found
to be important in synaptic modulation, especially in the
hippocampus (Khrimian et al., 2017; Condomitti et al., 2018;
Sutton et al., 2018; Cetereisi et al., 2019). KIAA0513 encodes
the protein KIAA0513, which was assumed to participate in
neuroplasticity and apoptosis (Lauriat et al., 2006). MAL2
encodes a multispan transmembrane protein belonging to the
myelin and lymphocyte (MAL) proteolipid family named MAL2,
which was shown to be necessary as a membrane constituent
of synaptic vesicles (Gronborg et al., 2010). We determined
that all five hub genes were not only significantly down-
regulated as AD progressed, but also in negative correlation with
β-secretase activity, indicating their strong involvement existed
during AD proceeding.

We also explored the diagnostic values of these five hub
genes. Intriguingly, expression of KIAA0513 was found to have
a negative correlation with Aβ42 levels in the temporal cortex
of AD samples and was able to distinguish MCI and AD
samples from CN samples in the blood, according to ROC
curves. These findings indicate that KIAA0513 could be an
interesting target for further exploration. Further investigation
of KIAA0513 revealed that it was shown to be enriched in
neurons of normal human brains, suggesting that low expression
level of this gene might reflect the pathological condition of the
brains. Furthermore, GSEA indicated that the low-expression
group of this gene was related to immune function during AD
progression. In addition, its encoded protein KIAA0513 was
found to potentially interact with kidney and brain expressed
protein (KIBRA) in vitro, a cytoplasmic phosphoprotein exerting
neuroprotective effects in AD (Lauriat et al., 2006; Song
et al., 2019a). KIBRA was reported to be involved in exosome
secretion and synaptic plasticity (Tracy et al., 2016; Song et al.,
2019b), suggesting that KIAA0513 might participate in these
biological functions. Because of its involvement in immune
function, exosome secretion, and synaptic plasticity, a low level
of expression of KIAA0513 in neurons may cause synaptic
dysfunction and neuronal apoptosis during AD progression.
Based on these findings, KIAA0513 could be a promising
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FIGURE 8 | Correlation of five hub genes with β-secretase activity and Aβ42 levels using GSE106241. (A) The five hub gene expression, β-secretase activity, and
Aβ42 levels in different Braak stages. Red asterisks indicate significant vs. Braak 0 groups. (B) Correlation between five hub genes and β-secretase activity.
(C) Correlation between five hub genes and Aβ42 levels. For Panels B and C, P values in red are significant (P < 0.05). *P < 0.05; **P < 0.01; ****P < 0.0001. AD,
Alzheimer disease; CN, cognitively normal.
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FIGURE 9 | Disease-predicting ability and Gene Set Enrichment Analysis (GSEA) of KIAA0513. (A) The expression of KIAA0513 in two blood GEO datasets,
GSE63060 and GSE63061. (B) Receiver operating characteristic (ROC) curve of KIAA0513 for predicting AD and MCI. (C) The top three GSEA terms, according to
normalized enrichment scores in the low-expression group of KIAA0513. *P < 0.05; **P < 0.01; ****P < 0.0001. AD, Alzheimer disease; CN, cognitively normal;
MCI, mild cognitive impairment.

biomarker for AD diagnosis, as well as a potential target
for AD treatment.

Previous microarray analyses used for combined analysis
in the present study had identified genes that were involved
in cellular physiological process (Liang et al., 2008a), energy
metabolism (Liang et al., 2008b), gliosis (Hokama et al., 2014),
and oxidative phosphorylation (McKay et al., 2019). However,
after combining the three datasets (total: 54AD, 53CN), we
obtained genes that mainly participated in synaptic functions,
which is consistent with the results of datasets having similar
or larger sample sizes (Patel et al., 2019; Piras et al., 2019).
The accordance indicates that a large sample size for analysis
may bring us closer to understand the genuine pathogenesis
of a disease. In addition, when the resources are limited, a
valid combined analysis could be of great help to enlarge
the sample size.

CONCLUSION

In conclusion, after integrating combined analysis and WGCNA,
we identified that AP3B2, GABRD, GPR158, KIAA0513, and
MAL2, which have been little characterized previously to be
associated with AD, are vulnerable to AD. Among them,
KIAA0513 was found to be a potential biomarker for early
diagnosis of AD and potentially even a therapeutic target. Further
research is needed to validate further the roles of these hub genes
in AD pathogenesis.
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