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Gene–environment interaction is a key part of evolutionary biology, animal, and plant
breeding, and a number of health sciences, like epidemiology and precision medicine.
However, bottlenecks in models of gene–environment interaction have recently been
made manifest, particularly in the field of medicine and, consequently, specific
improvements have been explicitly requested—namely, an implementation of gene–
environment interaction satisfactorily disentangled from gene–environment correlation.
The present paper meets those demands by providing mathematical developments
that implement classical models of genetic effects and bring them up to date with the
prospects current available data bestow. These developments are shown to overcome
the limitations of previous proposals through the analysis of illustrative examples on
disease susceptibility, with special attention paid to precision medicine. Indeed, a
number of misconceptions about the application of models of genetic/environmental
effects to precision medicine are here identified and clarified. The theory here provided
is argued to strengthen, in particular, the methodology required for high-precision
characterization of strain virulence in the study of the COVID-19 pandemic.

Keywords: gene–environment interaction, gene–environment correlation, precision medicine, disease
susceptibility, COVID-19, mathematical model, NOIA

INTRODUCTION

Scientific progress is often accompanied with expectations beyond objective appraisal. On the one
hand, quantitative trait locus experiments became prominent 30 years ago and substantial resources
were soon after expectantly invested for elucidating genetic architectures of traits of economic
importance (see e.g., Rifkin, 2012; Álvarez-Castro, 2016). In turn, the latest decade witnessed major
efforts to aid livestock production and plant breeding to undergo a swift switch toward genomic
prediction (see e.g., Gondro et al., 2013). On the other hand, although initially developed for model
species, genetic mapping of human traits became possible at the beginning of the current century
by means of The International HapMap Project (International_Hapmap_Consortium., 2003) and
genome-wide association studies (GWAS; see e.g., Gondro et al., 2013) but—in line with the fate
of quantitative trait locus experiments—its potential for dissecting the genetic basis of diseases is
openly questioned nowadays (see e.g., Teperino, 2020a).

The aforementioned advances in genetics methodologies have enabled increasingly accurate
medical predictions, particularly in regards to treatment efficiencies and prevention strategies for
different (groups of) individuals, an approach that has been coined as precision medicine. In this
context, the first half of the title above, “Gene–environment interaction in the era of precision
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medicine,” has been stolen from a recent paper in which
bottlenecks of classical models of genetic effects and their use
in genetic mapping are discussed (Li et al., 2019). This is so
because the present paper takes the baton of the aforementioned
one by reviewing whether it is realistic and worth it to try and
further amend classical models of genetic effects or whether it
proves more sensible (or even necessary) to undertake alternative
theoretical strategies instead.

In order to further feed into that debate, the present paper
dissects the advantages and limitations of the current theory
of gene–environment interaction stemming from the classical
models of genetic effects and provides a new mathematical
implementation that overcomes their historical limitations. Next,
the advantages of the theory here provided are shown through
built-in cases on disease susceptibility, which also serve to further
illustrate the application of this theory to make predictions in
the aid of precision medicine. Then, in the discussion, all the
above is argued to endorse both the general flexibility of the
classical models of genetic effects to serve as a basis for further
implementations and, particularly, the theory here provided to
enable a demanded leap in the application of gene–environment
interaction for medical purposes, like the achievement of a
detailed understanding of important facts of the current COVID-
19 pandemic.

PREVIOUS MODELS OF
GENE–ENVIRONMENT INTERACTION

Firstly, the basic conceptual definition of gene–environment
interaction is here discussed. The genetic and environmental
components act independently as long as environmental changes
cause the same effects on phenotypes for all genotypes. If,
for instance, genotype G1 displays phenotypes 1 and 3 under
environments E1 and E2, respectively (i.e., the environmental
change causes an increase of two phenotypic units to this
genotype), and genotype G2 displays a phenotype of 2 under
environment E1, then it is said that there is gene–environment
interaction whenever genotype G2 displays a phenotype different
from 4 under environment E2.

An Alternative Road Planned for
Modeling Gene–Environment Interaction
In the aforementioned paper, Li et al. (2019) echo the message
that techniques using conventional genetic models do not often
provide insightful enough results and that, in particular, they
have so far provided no clear-cut evidence on whether disease
etiologies are due to rare alleles with strong effects or to common
alleles with weak effects. More to the point, Li et al. (2019)
have carried out a simulation by means of which certain genetic
models are shown not to be able to capture the complexity of
realistic underlying factors of a disease—particularly, involving
epistatic effects (gene interactions, i.e., departures from the sum
of the marginal contributions of the effects of the genes involved).

Further on, Li et al. (2019) provide a probabilistic approach
based on a Bayesian framework to hierarchically model gene–
environment interaction, leading to a population-dependent

index, C, called the genetic coefficient of the disease (at a
population)—“a large C indicates large distinguishability of
case genomes from control genomes.” Then they illustrate the
performance of the proposed methodology using a built-up
example in which the disease susceptibility is by default very low
(0.01) and it significantly increases due to either environmental
(exposure) or genetic (risk allele) factors or both, to 0.4, 0.5,
and 0.9, respectively. That case is hereafter referred to as the
risk and exposure (RAE) case (see Table 1). With an exposure
frequency of 0.24 and a frequency of the risk allele of 0.15, Li
et al. (2019) report the genetic coefficient of the disease of the
RAE case to be C = 0.79.

The Classical Road-Network of
Gene–Environment Interaction
About half a dozen years earlier, Ma et al. (2012) provided a
model of gene–environment interaction based on the natural
and orthogonal interactions (NOIA) model of genetic effects
(Álvarez-Castro and Carlborg, 2007), stemming from the
classical models. In these models, the parameter 2α can be used
to reflect the “difference between the additive expectations of case
genomes and control genomes,” thus providing an alternative
measure for the genetic coefficient of the disease, C from the
work of Li et al. (2019). Assuming Hardy–Weinberg proportions
at the risk allele locus and an equal risk of heterozygotes and
homozygotes for the risk allele (since it is not explicitly specified
otherwise in that paper), the model from Ma et al. (2012) can be
used to compute a difference between the additive expectations
of case genomes and control genomes of 2α = 0.85 (or, to be
more precise, 2αG = 0.85, using the specific notation from Ma
et al. (2012)). The departure between this value and the genetic
coefficient of the disease, C = 0.79, from the work of Li et al.
(2019), could be due to the choices necessary in relation with
dominance and the Hardy–Weinberg proportions.

Along with the aforementioned statistical formulation of
genetic effects, both NOIA (Álvarez-Castro and Carlborg,
2007) and the extension of it to gene-environment interaction
by Ma et al. (2012) entail a so-called functional formulation.
Whereas the statistical formulation is population-referenced
and thus its parameters reflect properties of populations, the
functional formulation is individual-referenced and thus its

TABLE 1 | Phenotypes (disease susceptibility) of the four individual classes (risk
allele carriers and non-carriers under exposed and non-exposed environments) for
the two cases considered in the text—the case taken from Li et al. (2019), here
called the risk and exposure (RAE) case and the genetic risk to exposure (RTE)
case.

Genetics

Case Environment Default Risk

RAE Default 0.01 0.5

Exposed 0.4 0.9

RTE Default 0.01 0.01

Exposed 0.4 0.9

Complete dominance of the risk allele is assumed so that homozygotes for the risk
allele and heterozygotes are equally susceptible to the disease.
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parameters reflect plane effects of substitutions from a reference
class (a genotype at an environment) to the others. Applying
that functional formulation from the default (non-exposed and
non-risk) individual reference (0.01), the additive, dominance,
environment, additive-by-environment, and dominance-by-
environment effects reflecting the aforementioned substitutions
are 0.245, 0.245, 0,39, 0.005, and 0.005, respectively (see Table 2).
Those values show that, although the RAE case by Li et al. (2019)
entails both genetic and environmental effects, it can hardly be
considered a gene–environment interaction case as intended,
since the gene–environment interaction effects are extremely
small relative to both the genetic and the environmental
marginal contributions—the interaction effects actually lie about
two orders of magnitude below the marginal effects.

Hitherto, it has been shown that relatively recent
implementations of the classical models not only enable the
analysis of the RAE case built up by Li et al. (2019) to illustrate
their theoretical proposals but are also adequate to easily and
precisely quantify basic properties of that case itself, which
have apparently been missed by those authors. More generally
speaking, theoretical developments stemming from the classical
models are not always fairly acknowledged. To this regard, it is
worth noting that both NOIA (Álvarez-Castro and Carlborg,
2007) and the extension of it to gene-environment interaction
by Ma et al. (2012) can properly deal with departures not only
from complete dominance but also from Hardy–Weinberg
proportions, which were assumed above only due to the absence
of any explicit specifications of departures from those features.

Nevertheless, the general warning Li et al. (2019) post on
the use of genetic models still holds—the current state-of-
the-art implementations of classical models of genetic effects,
whether unfairly acknowledged or not, still leave room for
further improvement. Indeed, the original NOIA proposal
fails to properly account for nonrandom associations of
marginal genotypic frequencies (i.e., assumes linkage equilibrium
between/among the loci involved) and Ma et al. (2012) inherit
that limitation in regards to nonrandom associations between

TABLE 2 | Genetic/environmental effects of the two cases, RAE and RTE,
considered in the text and detailed in Table 1.

Genetic/environmental effects

Case Reference Additive Dominance Environment AEI DEI

RAE 0.01 0.245 0.245 0.39 0.005 0.005

0.245 0.393 0.246 0.394 0.008 0.005

RTE 0.01 0 0 0.39 0.25 0.25

0.081 0.096 0.06 0.57 0.4 0.25

AEI and DEI stand for additive–environment interaction and dominance–
environment interaction, respectively. For each of the two cases, this table shows
both functional (i.e., individual-referenced) effects from the reference of the default
(non-risk and non-exposed class, with a disease susceptibility of 0.01) and
statistical (i.e., population-referenced) effects from the reference of the average
phenotype. The reference population of the statistical effects has a frequency
of exposure of 0.24, a frequency of the risk allele of 0.15, Hardy–Weinberg
proportions, and random associations of (i.e., absence of correlation between)
genotypes and environments. By virtue of the latest, the results here reported may
be equally obtained using the former NOIA setting and ARNOIA (ultimately from
expression 4), as explained in the text.

the marginal frequencies of genotypes and environments (i.e.,
gene–environment correlation). Thus, those association-pending
models shall hereafter be referred to as the former NOIA
setting. Incidentally, it is imperative to overcome that limitation
both because correlations between/among marginal frequencies
may occur in populations and because they are in any case
likely to achieve significant levels in the actual samples used in
real data analyses.

GENE–ENVIRONMENT INTERACTION
DISENTANGLED FROM
GENE–ENVIRONMENT CORRELATION

Opportunely, it is hereafter shown that the gaps of the
former NOIA setting for gene–environment interaction can be
bridged. Indeed, new mathematical developments for studying
gene–environment interaction are provided below, in which
gene–environment correlation is properly implemented. Since
the resulting theoretical proposal bridges the aforementioned
associations-pending gap, it shall be referred to as ARNOIA
(associations-resolved NOIA).

Theoretical Developments
A biallelic locus A (with alleles A1 and A2) and two
environmental instances (E1 and E2) of an environmental
variable E are initially considered. This setting leads
to six possible classes—combinations of genotypes and
environments—and thus to six phenotypic expectations (e.g.,
six values of disease susceptibility). Those values are gathered
in the column-vector of genotypic values, G = (Gijk), where the
subscripts indicate genotype AjAk at environment Ei.

The genotypic values can be expressed in terms of genetic
effects by means of regression model

G = Nµµ+ Nee+ Nαα+ Nδδ+ Nαeαe+ δe, (Expression 1)

in which the explanatory variables are the mean phenotype µ, the
environmental effect, e = υ1 = (e1, e2)T (where T stands for the
transpose operation), the genetic additive effect, α = υ2 = (α1,
α2)T, the dominance effect, δ = υ3 = (δ11, δ12, δ22)T, and the
additive-by-environment effect, αe = υ4 = (αe11, αe12, αe21,
αe22)T, and the residual term is the dominance-by-environment
effect, δe = η4 = (δeijk).

Let 1(m) be a column vector of length m with all its scalars

equal to 1, I(n) an identity matrix of dimension n, N =
(

2 1 0
0 1 2

)T

,

and ⊗ the Kronecker product. Then, the design matrices in
expression (1) can be expressed as:

Nµ = 1(6), Ne = N1 = I(2) ⊗ 1(3), Nα = N2 = 1(2) ⊗ N,

Nδ = N3 = 1(2) ⊗ I(3) and Nαe = N4 = I(2) ⊗ N. (expression 2)

Regression (1) with design matrices (2) is meant to be solved
sequentially, as follows. Let the population frequencies be pijk and
let P be the diagonal matrix of those frequencies, P = diag(pijk).
Then, the mean phenotype is µ = 6pijk Gijk, the mean-corrected
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vector of genotypic values is η0 = G – 1(6)µ, and the expressions
for the remaining explanatory variables and the residual term of
regression (1) come from computing,

υl = H̃lηl−1 and ηl = Mlηl−1, l = 1 to 4, (expression 3)

where H̃l =
(
NT

l PNl
)−1 NT

l P and Ml = I(6) – NlH̃l .
With this, a theory of population-referenced (i.e., statistical,

orthogonal) genetic/environmental effects that properly accounts
for both gene–environment interaction and gene–environment
correlation is provided, which shall hereafter be referred to
as a correlationwise orthogonal interactions (COIA) model. In
order to fully integrate COIA within the aforementioned NOIA
framework (Álvarez-Castro and Carlborg, 2007), regression (1)
has to be expressed in the form of a standardized statistical
formulation. Such a formulation is

G = S E, (expression 4)

where E = (µ, α, δ, e, αe, δe)T is the vector of
genetic/environmental effects and the genetic/environmental-
effects design matrix, S, is computed via its inverse, S−1, whose
rows can be obtained using expressions (1–3) where: the first one
is (pijk), the set of coefficients of µ = 6pijk Gijk, the second, third,
fourth and fifth ones are, analogously, the sets of coefficients of
Gijkl in α = (α2 – α1), δ = δ12 – ((δ11 + δ22)/2), e = e2 – e1 and
αe = (αe11 – αe12 – αe21 + αe22), respectively, and the sixth one
is (1/2,−1, 1/2,−1/2, 1,−1/2).

From expression (4) it is easy to perceive how critical building
fine-tuned genetic/environmental-effects design matrices
becomes in order to perfectly grease the machinery of the NOIA
model, (here upgrading it in particular to an ARNOIA level,
i.e., resolving the implementation of any kind of associations
by means of COIA). Indeed, expression (4) is a compact way
of representing how a genotype-to-phenotype map (essentially,
a G vector) can be translated into its evolutionary properties.
As noted by Álvarez-Castro and Carlborg (2007), the statistical,
orthogonal genetic (and, here, also environmental) effects
reflecting evolutionary properties of two populations, “1” and
“2,” can easily be transformed into each other by equating the
genotypic values in expression (4), i.e., simply as E2 = (S2)−1S1E1.
And in what regards the individual-referenced (i.e., functional,
natural) side of NOIA, this expression holds when one of
the vectors of genetic/environmental effects (or both) and
its corresponding matrix do not reflect allele substitutions
made from the reference of a population, but of an individual
genotype/environment instead. As pointed out above, functional
(natural) genetic/environmental effects design matrices for
gene–environment interactions imply a biallelic locus and two
environments have been provided by Ma et al. (2012).

Using previous extensions of classical models of genetic effects
(Álvarez-Castro and Yang, 2011; Alvarez-Castro and Crujeiras,
2019), the COIA regression framework for gene–environment
interaction developed above and its implementation into an
ARNOIA model can be extended to several, possibly multiallelic,
loci with arbitrary epistasis and arbitrary departures from linkage
equilibrium and simultaneously to several environmental
variables with multiple environmental instances, with

nonrandom associations (i.e., correlations) of environmental
variables and of genotypes and environments. The details of such
extensions are, though, beyond the scope of this paper.

How Much of an Improvement?
The advantage ARNOIA confers over the shoulders it stands
on—the ones of the former NOIA setting (Álvarez-Castro
and Carlborg, 2007) and, particularly, of its implementation
with gene–environment interaction (Ma et al., 2012)—is
discussed hereafter. As a baseline, the population-referenced
genetic/environmental effects of the RAE case in the absence
of gene–environment correlation are shown in Table 2 and
they can be equally computed using either of the two methods.
The whole range of possible correlations between the risk
allele and environmental exposure is inspected in Figure 1A.
The thick vertical line marks the point of random association
(i.e., no correlation) where all values provided by the former
NOIA setting by Ma et al. (2012) are correct and meet the
ones provided by ARNOIA (i.e., as mentioned right above, the
values in Table 2). Then, the model from Ma et al. (2012) still
provides, within the whole range of correlations, those same
values shown in Table 2 to fit to the random association scenario
(gray horizontal lines) whereas ARNOIA (black lines) shows
instead how the genetic/environmental effects actually change
with negative (to the left of zero) and positive (to the right) risk-
exposure correlations. Roughly, the effects decrease and increase
with negative and positive correlations, respectively, although
a slight decrease of the additive effect toward the maximum
positive correlations and slightly more capricious behavior of
the dominance effect for intermediate positive correlations can
also be noticed.

In view of Figure 1A, it could seem that settling for
the relatively simpler formulae of the former NOIA setting
(not accounting for nonrandom associations of genes and
environments) by Ma et al. (2012) would not come with a high
cost. Indeed, values that are correct for circumstances known
beforehand (precisely, nonrandom associations) are retrieved
regardless the nonrandom associations involved. However, that is
but a mirage for such a constraint shall, on the one hand, severely
hamper the flexibility of the model for making predictions (as
illustrated in the following section) and, on the other hand, make
the models less efficient in disclosing genetic architectures (as
explained below).

In what follows, a case of actual gene–environment interaction
is considered. It is a case of genetic risk to environmental
exposure (thus referred to hereafter as RTE), where the risk
allele increases disease susceptibility only when combined with
exposure, hence actually interacting with the environment.
Thus described, the interaction behaves as a switch—the
environmental effect shall either be switched on (when carrying
the risk allele) or turned off (otherwise), as shown in Table 1.

Table 2 shows that the functional additive and dominance
effects (i.e., the marginal genetic effects) of the RTE case from
the reference of the individual default class (no genetic risk
and no exposure) are zero, which is in accordance with the
genetic risk being turned off in the absence of exposure. In
Table 2 it is also illustrated that large gene-interaction effects
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FIGURE 1 | Genetic and environmental effects of disease susceptibility influenced by a risk allele and environmental exposure, for the whole range of possible
correlations (including negative and positive associations) of the risk allele and environmental exposure. The risk allele frequency is 0.15, with genotypic frequencies
under Hardy–Weinberg equilibrium, and the environmental exposure frequency is 0.24. The RAE case (see Table 1) is shown in panel (A), where the former NOIA
setting and ARNOIA, shown with gray and black lines, respectively, are compared. The thick black solid vertical line marks the case of random association (i.e., no
correlation) between risk and exposure. The genetic effects obtained with ARNOIA for the RTE case (see Table 1) are shown in panel (B). The marginal genetic and
environmental effects are shown with the same black lines as in panel (A) and gray lines are used here for the interaction effects.
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actually have a noticeable influence on the lower level effects,
since marginal genetic effects become not nil under a different
genetic/environmental background (i.e., when expressing the
effects from a different reference) and also the environmental
effect is significantly modified. In the RAE case, only the additive
effects change noticeably under different references, which is
an effect of dominance interaction under backgrounds with
differential presence of the alleles.

For a broader scope, Figure 1B shows all the
genetic/environmental effects of the system as obtained using
ARNOIA, for the whole range of possible gene–environment
correlations. Marginal effects are displayed as in Figure 1A and
gene–environment interaction effects are shown in gray. The
marginal genetic effects of the RTE case are small in the absence
of gene-environment correlation. Indeed, this case entails a
visual example of a warning issued above since it illustrates
that marginal effects approach zero as an occasional outcome
(of a particular set of population frequencies), making it tricky
to spot them in a mapping experiment. The trouble vanishes
though as long as the (larger) gene–environment interaction
effects are inspected (despite the apparent absence of marginal
genetic effects) and disclosed. Note also that although the
marginal genetic effects get closer to zero under certain negative
correlations (toward the far-left end of the graph), the additive-
by-environment interaction effect increases accordingly. Thus,
in any case, eventually out-of-reach marginal effects may be
unveiled by diligently fishing interaction effects.

Overall, for properly detecting marginal (genetic and
environmental) and interaction (gene–gene and gene–
environment) effects (and, therefore, identify their corresponding
loci and environmental variables) in mapping experiments it is
essential that the genetic models entail not only any interactions
between/among the effects themselves but also any departures
from equilibrium genotype/environment frequencies, as
Figure 1 shows ARNOIA to accomplish. Moreover, it is hereafter
illustrated that the advantages of ARNOIA over the former
NOIA setting are also crucial for using detected genetic and
environment underlying factors of traits in the formulation of
predictions, particularly in the context of precision medicine.

Predictions Under Diminishing Exposure
Figure 2A shows the genetic coefficient of the disease—as defined
by Li et al. (2019)—for the RAE case, which, as mentioned above,
in the context of the developments stemming from the classical
models of genetic effects is given by the parameter 2α. On top
of the variables already considered in Figure 1A, Figure 2A has
one dimension added for enabling predictions in the context of a
hypothetical decrease of the environmental exposure. The black
solid line in Figure 2A marks random association and shows
that the genetic coefficient of the disease is simply not affected
by decreasing the exposure frequency in the population. This
is as expected under the lack of interplay between gene and
environment (i.e., no interaction and no correlation). Indeed,
although the trait is subject to both genetic and environmental
influence, as long as there is no (or very little) interplay between
them, the genetic parameter remains virtually constant in the face
of variations in the environmental exposure.

FIGURE 2 | Genetic coefficient of the disease obtained with ARNOIA for the
RAE and RTE cases, shown in panels (A) and (B), respectively. The details of
panels (A) and (B) of Figure 1 apply to panels (A) and (B) of Figure 2,
respectively. The range of possible risk-exposure correlations is shown by the
light gray area at the bottom of each graph. The values of the vertical axis
range from 0 to 1.20. The thick black line (whose projection at the bottom of
the figure is shown in dark gray) marks the absence of correlation between
risk allele and environmental exposure, which are the ones the former NOIA
setting would provide for the whole range of correlations between the risk
allele and environmental exposure.
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However, as already shown above in relation with Figure 1
(where the additive genetic effect, α, was shown instead of the
genetic coefficient of the disease, 2α), such an interplay may
come not only by means of gene–environment interaction but
also through gene–environment correlation. Thus, whereas the
genetic coefficient of the disease remains constant in Figure 2A
against diminishing exposure in the absence of significant gene–
environment interaction, it is in point of fact affected by
risk-exposure correlations. In particular, negative associations
between the risk allele and exposure causes the genetic coefficient
of the disease to decrease, as the surface to the left of the black
line shows. Conversely, positive associations make it increase, to
the right of the black line, although this occurs up to a maximum
followed by a slight decrease. This is, naturally, the same kind of
behavior the additive effect, α, displays in Figure 1A. Note also
that the range of possible risk-exposure correlations (shown by
the light gray area at the bottom of the figure) narrows down as
the exposure frequency approaches zero, which explains the tip
of the surface at the end of the black line.

In Figure 2B, the RTE case of Figure 1B is resumed
and further extended in a way analogous to Figure 2A from
Figure 1A. As Figure 2B shows, for the RTE case the genetic
coefficient of the disease decreases for decreasing values of
exposure under random associations of risk and environment
(decreasing black line). That coefficient also decreases for
decreasing (increasingly negative) associations between the risk
allele and environmental exposure, as the left tip of the surface
shows. In plain language, the figure shows that the problem of
increased disease susceptibility of the carriers of the risk allele
may be reduced (and eventually removed) either by reducing
exposure for the whole population or by restricting the access
to the exposed environment only for the risk population, or
even through any intermediate alternative (any reduction of the
exposure in the population biased toward the carriers of risk
alleles). Optimal management would then depend just upon
the reluctance of the average individual to avoid the exposed
environment (or even the actual feasibility of bringing the whole
population out of it) and the cost of tests to detect the risk allele,
which would enable personalized warnings.

Overall, the RAE and RTE cases considered in Figure 2
deal with rather singular instances (virtually absent and switch-
type, respectively) of gene–environment interaction, for which
some predictions would be feasible even without mathematical
modeling. The results obtained using ARNOIA not only
reassuringly agree with the conceptually attainable predictions
but also further illustrate how to precisely quantify any
desired genetic/environmental parameter. Such an advantage
can hereafter be applied to more complex real cases of interest
undergoing less intuitive behaviors.

DISCUSSION

An Accurate Route Planner for Complex
Genetic Architectures
Interactions are known to encrypt the map where a pursued
genetic architecture could be spotted. This is known to occur

because interactions of any kind (from just dominance to gene–
environment interaction) may make lower level effects (like
environmental effects or genetic additive effects) vanish under
a certain genetic/environmental composition of a population
or of an experimental sample (see e.g., Álvarez-Castro, 2012).
This fact, which has been further illustrated in Figure 1A, is
unfortunately not always properly taken into account. In relation
with this, the commendable review by Malosetti et al. (2013) on
models of gene–environment interaction in the context of plant
breeding reasonably recommend to adhere to a strategy where
effects are inspected sequentially—as they also are in expressions
(1–3) above—, but it oversteps the mark when more specifically
proposing a conditional sequential procedure, by claiming that
“dominance effects should be tested conditioned on the additive
effects present in the model.” Indeed, since interactions make
effects on the phenotype able to cancel out in average at the
group of individuals under study and to thus be missed in
mapping experiments, unveiling interactions actually becomes
doubly imperative rather than something to be subject to the
condition of first having found their (possibly masked) lower-
order effects.

Thus, in order for the theoretical genetic/environment models
and the estimation strategies used in mapping methods to
become accurate enough to address the difficulty of dealing
with possibly masked effects, it is necessary in the first place
to opportunely implement such models with interaction effects,
as thoroughly recalled by Li et al. (2019), particularly in
regards to precision medicine. But interactions are deceitfully
puzzling and thus trying to properly map complex genetic
architectures makes it crucial to also improve the flexibility of
the models to accurately fit to the frequencies of the genotypes
in the population/sample under study. Indeed, Zan et al.
(2018) have recently shown to what extent departures from
linkage equilibrium frequencies may condition the models to
strikingly distort the genetic architecture of a trait, particularly
in regards to genetic interactions. To this regard, it has become
particularly opportune that an elusive implementation of models
of genetic interactions, even claimed to be beyond reach, has
recently been attained, enabling genetic interaction (epistasis)
and genotype frequencies correlation (linkage disequilibrium)
to be disentangled (Alvarez-Castro and Crujeiras, 2019). The
COIA regression framework and the ARNOIA model developed
above attain an analogous goal in what regards a joint
implementation of gene–environment interaction and gene–
environment correlation, which is particularly timely for aiding
precision medicine, as further discussed below.

The Road Maintenance System
Affordable data is an ever-changing variable and it is thus sensible
to assume that, likewise, theoretical models required in data
analyses shall need to keep on being worked out every now
and then. In this context, it is as essential to make the best
possible use of the models available at a particular time-spot as
it is to point out in which precise way they are at that time
imposing limitations on the analyses. In what has been recently
understood as the, at least relative, “failure of GWAS” (Teperino,
2020b), gene–environment interaction has been pointed out
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as a key factor. Indeed, the importance of gene–environment
interaction in human health has been stressed in relation with
a broad spectrum of disorders ranging from obesity, cardio-
metabolic diseases, and other metabolic disorders, through to
cancer, autoimmune diseases, and mental disorders (e.g., Karl
and Arnold, 2015; Lopizzo et al., 2015; Flouris et al., 2017; Cust,
2020; Smith, 2020; Teperino, 2020a). All in all, the lack of a fine-
tuned theory of gene–environment interaction has, thus, been
imposing serious limitations in this field.

More precisely, developments implementing the effects of
both gene–environment interaction and gene–environment
correlation in a properly disentangled manner have explicitly
been demanded within the field of precision medicine. Indeed,
in the context of mental health, Assary et al. (2020) have recently
advocated that “[i]dentifying which form of gene–environment
interplay contributes to a particular disorder or behavior is
absolutely crucial in order to select suitable intervention efforts”
because theoretical developments that enable a joint analysis of
both phenomena are needed, in particular for “ensuring that the
outcomes of one do not bias the effects of the other.” The present
paper meets that demand and it does so within a theoretical
framework capable of simultaneously addressing many other
genetic facts of relevance.

Indeed, the ARNOIA model here provided illustrates the
possibilities of mathematical developments stemming from
the classical models of genetic effects in regards to their
potencial to be continuousy improved and thus address eventual
demands to come. In other words, since the machinery here
provided has proven useful to fill in inconvenient potholes
of the classical road network, it should be deemed to be
applicable to increasingly complex challenges in the future.
For instance, the need to consider gene–gene–environment
interaction (e.g., Zan and Carlborg, 2020) and/or gene–
environment–environment interaction (e.g., Keers and Pluess,
2017) has already arisen and it is to this regard worth highlighting
here that the advantages of ARNOIA can also be applied
to address such complexities (and actually gene–environment
interaction/correlation, multiple alleles, dominance, epistasis and
departures from Hardy-Weinberg equilibrium and from linkage
equilibrium, simultaneously) by merging the mathematical
developments provided above with previous theory (Álvarez-
Castro and Yang, 2011; Alvarez-Castro and Crujeiras, 2019).

The previous is, however, not to say that alternative roads—
like Li et al. (2019)—should never be built. It looks sensible in
any case to assume that a new road will consume significant
resources before providing benefits comparable to the already
existing ones, especially in regards to the wealth of experience
amassed in the use of them. Therefore, it would be reasonable
to first thoroughly inspect the possibilities of the existing roads
to be fixed and as well to guarantee the added value the new
road is intended to bring. On top of that, it would also make
perfect sense to assume that the new road would only provide
its best service when adequately connected with the previous
road network. Whenever developed along these lines, alternative
perspectives in genetic modeling could aim to open doors to
novel analyses and/or double check the already existing ones and
thus enrich the application of mathematical models of genetic
and environmental effects in precision medicine.

Accurately Assessing COVID-19
As a final remark, it would be regrettable in the context
of the current COVID-19 pandemic not to explicitly point
out that ARNOIA improves the methodology that can in
particular be applied to dissect the behavior, and thus help to
eventually overtake, such a global threat. Epidemiology relies
on a thorough study of interactions (see e.g., Dewan, 2018)
and the particularly strong link between epidemiology and
gene–environment interaction has already been underscored in
relation to the COVID-19 pandemic (Rodriguez-Morales et al.,
2020). In the cases analyzed above, ARNOIA has been applied
to disease susceptibility and from those instances it becomes
easy to perceive that it is equally applicable to other traits
of interest in epidemiology, including, for instance, mortality
caused by a disease.

Generally, the dynamics of a pandemic shall depend upon
how the different strains of the infectious agent affect different
(groups of) individuals, with different (proportions of) genotypes
and under different environmental conditions. It becomes
particularly useful to notice in this regard that although virulence
variability is underlain by mutations (and thus conceptually
related to genetics), ARNOIA may naturally integrate the
presence of different strains (with differential virulence) simply as
an (additional) environmental variable, since that is how they are
perceived from the perspective of the susceptible individuals—
the genetic component of the model. Bearing that in mind, it
is easier to perceive why it is crucial, for the study of COVID-
19, that ARNOIA considers together (but disentangled) gene–
environment interaction and gene–environment correlation.
Indeed, the various geographical regions affected by the
disease do not only undergo different proportions of virus
strains (environmental component of the model) but also
different genetic backgrounds of the susceptible individuals
(genetic component), thus setting a human genotype–strain
(gene–environment) correlation scenario in which human
genotype–strain (gene–environment) interaction needs to be
properly understood.
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