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The onset of liver cancer is insidious. Currently, there is no effective method for the
early detection of hepatocellular carcinoma (HCC). Transcriptomic profiles of 826 tissue
samples from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA),
Genotype tissue expression (GTEx), and International Cancer Genome Consortium
(ICGC) databases were utilized to establish models for early detection and surveillance
of HCC. The overlapping differentially expressed genes (DEGs) were screened by
elastic net and robust rank aggregation (RRA) analyses to construct the diagnostic
prediction model for early HCC (DP.eHCC). Prognostic prediction genes were screened
by univariate cox regression and lasso cox regression analyses to construct the survival
risk prediction model for early HCC (SP.eHCC). The relationship between the variation
of transcriptome profile and the oncogenic risk-score of early HCC was analyzed by
combining Weighted Correlation Network Analysis (WGCNA), Gene Set Enrichment
Analysis (GSEA), and genome networks (GeNets). The results showed that the AUC
of DP.eHCC model for the diagnosis of early HCC was 0.956 (95% CI: 0.941–0.972;
p < 0.001) with a sensitivity of 90.91%, a specificity of 92.97%. The SP.eHCC model
performed well for predicting the overall survival risk of HCC patients (HR = 10.79; 95%
CI: 6.16–18.89; p < 0.001). The oncogenesis of early HCC was revealed mainly involving
in pathways associated with cell proliferation and tumor microenvironment. And the
transcription factors including EZH2, EGR1, and SOX17 were screened in the genome
networks as the promising targets used for precise treatment in patients with HCC. Our
findings provide robust models for the early diagnosis and prognosis of HCC, and are
crucial for the development of novel targets applied in the precision therapy of HCC.

Keywords: hepatocellular carcinoma, transcriptome, diagnosis prediction model for early HCC, survival risk
prediction model for early HCC, machine learning algorithm

Abbreviations: AUC, area under the curve; CI, confidence intervals; DEGs, differentially expressed genes; DP.eHCC,
diagnosis prediction model for early HCC; GeNets, genome networks; GSEA, Gene Set Enrichment Analysis; HCC,
hepatocellular carcinoma; HR, hazard ratio; ML, machine learning; SP.eHCC, survival risk prediction model for early HCC;
WGCNA, weighted correlation network analysis.
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INTRODUCTION

Liver cancer, with the incidence (8.2% of the total cancer cases)
and mortality (4.7% of the total cancer deaths) rates, is the
sixth commonly diagnosed cancer and the fourth leading cause
of cancer deaths among 36 cancers in the world (Bray et al.,
2018). The best curative treatment plans for early hepatocellular
carcinoma (HCC) patients involve surgical resection, local
ablation, and liver transplantation (Llovet et al., 2016; Vibert et al.,
2020), and patients who undergo such treatments usually have
a relatively good prognosis, with a 5-year survival rate ranging
from 60 to 80% (Bruix et al., 2016). Therefore, providing a robust
and accurate tool for the diagnosis and prognosis of patients with
early HCC will have a significant impact on clinical outcomes
(Dhanasekaran et al., 2019).

As the amount of publicly available high-throughput data
in global databases continues to grow, an open question has
arisen: How can we exploit these large-scale data appropriately
to achieve a comprehensive understanding of cancer at the
molecular level? Machine learning (ML) is the scientific study
of algorithms and statistical models and plays a critical role in
various fields of human life, especially as it provides methods for
diagnosis and prognosis in human diseases (Rajkomar et al., 2019;
Issa et al., 2020). Several studies have applied multiple biomarkers
to build prediction models for diagnosis or prognosis in clinical
patients (Villanueva et al., 2011; Shi et al., 2014; Kim et al., 2019).
However, the prediction accuracy and application scope of these
models, which consist of predictive biomarkers, have been largely
limited by sample size in previous studies.

In the present study, considering the decisive role of
the sample size and tissue source in the accuracy of the
model, a total of 826 patients with tumor-node-metastasis
(TNM) stage I HCC from the Gene Expression Omnibus
(GEO), International Cancer Genome Consortium (ICGC),
Genotype tissue expression (GTEx) databases (International
Cancer Genome Consortium et al., 2010; Barrett et al.,
2013; Carithers and Moore, 2015), and The Cancer Genome
Atlas (TCGA) were screened for the construction of models
aimed at developing approaches for universal applications in
early diagnosis and prognostication of HCC. Accordingly, the
relationship between the variation of transcriptome profile and
the oncogenic risk-score of early HCC could be investigated
to clarify the potential molecular mechanism involved in the
occurrence and progression of early HCC.

MATERIALS AND METHODS

Extraction and Preprocessing of TNM
Stage I HCC Transcriptome Data
The main procedure used in our research is illustrated in
Figure 1. In this study, eligible datasets were searched and
reviewed via the GEO1 database. The following strategy was used
to search the GEO datasets: ((((((Hepatocellular Carcinomas) OR
Hepatocellular Carcinoma) OR Hepatoma) OR Liver Cancer) OR

1https://www.ncbi.nlm.nih.gov/geo/

Adult Liver Cancer) OR Liver Cell Carcinoma) AND “Homo
sapiens.” Independent investigators (XG and AL) reviewed
the eligible datasets that met the criteria and extracted the
appropriate datasets. The inclusion criteria were as follows:
(i) diagnosis of a stage I hepatocellular carcinoma patient
based on the tumor-node-metastasis (TNM) classification system
of the American Joint Committee on Cancer (AJCC); (ii)
detection of expression profiling in tissue samples; and (iii)
availability of original expression profiling data in both cancerous
and non-cancerous specimens. The exclusion criteria were as
follows: (i) datasets from research on cell lines or animals; (ii)
cancerous or non-cancerous groups with small sample sizes
(n < 5); and (iii) expression datasets without gene expression
data, such as non-coding RNA profiling by array, methylation
profiling by array, and so on. Discrepancies between the
decisions of the two investigators were resolved by discussions
among all authors.

Moreover, processed GEO data were fetched using the R
package GEOquery (Davis and Meltzer, 2007), and microarray
probes were transformed to Entrez Gene IDs using the R package
biomaRt (Durinck et al., 2009). For these microarray probes,
if multiple probes are mapped to the same Entrez Gene ID,
the expression value for the Entrez Gene ID is calculated as
the median of the expression values of those probes. RNA-
Seq datasets (“TCGA_liver” and “gtex_liver”) of TCGA and
GTEx2 were extracted from R package recount3 (Collado-Torres
et al., 2017). The batch effects between TCGA and GTEx
normalized data were analyzed by tSNE analysis and corrected
by ComBat of the R package sva (Johnson et al., 2007). The
merged TCGA_GTEx dataset was used for the down-stream
analyses. The JP Project from International Cancer Genome
Consortium (ICGC-LIRI-JP) collected the RNA-Seq data and
clinical information of HCC patients, and this ICGC dataset
was extracted from Database of Hepatocellular Carcinoma
Expression Atlas (HCCDB) (Lian et al., 2018).

Construction of the DP.eHCC Model
Elastic net, a generalization of ridge regression and the Lasso, is
a regularization method that is used to fit a generalized linear
model via the function of the R package glmnet (Friedman
et al., 2010). The eligible datasets (TCGA_GTEx, GSE76427,
GSE36376, GSE84005, GSE101685, and ICGC) were analyzed
by using the elastic net. These datasets were split into two
groups: training datasets (GSE76427, GSE36376, GSE84005, and
TCGA_GTEx) and testing datasets (GSE101685 and ICGC).
Next, training datasets were merged after the batch effects from
each dataset were adjusted by ComBat (Johnson et al., 2007). In
order to use the elastic net, the expression data were reduced to
the set of genes that were common to all datasets being merged,
because it was possible for each dataset to have expression values
for a slightly different set of genes. The penalty (α = 0.9) of
the elastic net was utilized to fit a generalized linear model.
And, the elastic net is used to perform cross-validation. One of
the results of cross-validation is a value for the regularization

2https://www.gtexportal.org/home/
3https://jhubiostatistics.shinyapps.io/recount/
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FIGURE 1 | Flow diagram of the main procedure in our study. Six datasets from four international platforms were utilized to establish the diagnosis model and
prognosis model. Their clinical significance and molecular mechanism were further elucidated.

parameter lambda, which determines how much shrinkage is
used to train the model. In addition, leave-one-study-out cross-
validation was used for the classifier test in each training group
dataset, and this classifier was then tested for each testing group
dataset (Hughey and Butte, 2015).

Differential gene expression analysis between hepatocellular
carcinoma tissues and non-cancerous liver tissues was performed
using the R package limma (Ritchie et al., 2015) for training
datasets (GSE76427, GSE36376, GSE84005, and TCGA_GTEx).
The overlapping differentially expressed genes (DEGs) from
these datasets were identified by robust rank aggregation (RRA)
method of the R package RobustRankAggreg (Kolde et al.,
2012). DEGs were distinguished by having log2 fold change > 1
and adjusted p-value < 0.05. As the predictors for early HCC
diagnosis with the most confidence, the DEGs intersecting
between the RRA method and the elastic net penalty method were
picked up by the R package Venn Diagram. The combination of
these predictors was analyzed by logistic regressions to generate
the formula for the construction of the diagnosis prediction
model for early HCC (DP.eHCC).

Construction of the SP.eHCC Model
Eligible datasets (GSE76427, TCGA_GTEx, and ICGC) with
survival information were used for the survival analysis.
A univariate Cox analysis was performed to assess the
prognostication genes for predicting the overall survival (OS) of
early HCC patients. Prognostication genes with a Univariate Cox
value of p < 0.05 were further screened with the least absolute
shrinkage and selection operator (Lasso) Cox model (Tibshirani,
1997) by utilizing the R package glmnet. Moreover, the genes
screened by the Lasso Cox regression analysis with min lambda
were utilized to construct a survival risk prediction model for
early HCC (SP.eHCC). The formula of SP.eHCC was established
by calculating the expression levels of selected genes weighted

by their corresponding coefficients. The relationship between the
risk score of overall survival and the prognostic genes of the
SP.eHCC model was illustrated by risk score distribution, scatter
plot, and gene expression heatmap.

WGCNA for the Transcriptome Data of
Early HCC
The Weighted Correlation Network Analysis (WGCNA)
(Langfelder and Horvath, 2008) was utilized to build the
weighted gene co-expression correlation network, and the
distances between different transcripts were calculated using the
“Pearson” correlation coefficient. Construction of the WGCNA
network and detection of the co-expressed gene modules were
conducted using an unsigned topological overlap matrix (TOM),
a β power of 3, and a minimal module size of 30. By evaluating
the relationships among co-expression gene modules and clinical
parameters including gender, age, DP.eHCC, and SP.eHCC, we
were able to identify the modules that were highly correlated with
the clinical parameters of HCC patients. The modules (with the
highest correlation coefficient among all the modules) correlated
with DP.eHCC and SP.eHCC (positively or negatively) were
selected for the further analyses.

GSEA and GeNets Analyses
Gene Set Enrichment Analysis (GSEA)4, was used to identify
the significant KEGG pathways enriched in the modules highly
correlated with DP.eHCC and SP.eHCC. Co-expressed genes in
the modules selected by WGCNA analysis were ranked by the
Pearson correlation coefficient between gene expression and the
fraction of clinical traits. The statistically significant (p < 0.05)
pathways enriched in the gene set of modules correlated with
the DP.eHCC and SP.eHCC were visualized using the R package

4http://www.broad.mit.edu/gsea

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 857

http://www.broad.mit.edu/gsea
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00857 July 28, 2020 Time: 18:37 # 4

Gan et al. Early Diagnosis of Hepatocellular Carcinoma

clusterProfiler (Yu et al., 2012). Additionally, the co-expressed
genes in WGCNA modules were used to construct the genome
networks (GeNets) mapped by the pathways of GSEA. And,
this molecular regulatory network was utilized to illustrate the
potential oncogenes and corresponding pathways involved in
the modules correlated with DP.eHCC and SP.eHCC using the
GeNets platform (Li et al., 2018).

Statistical Analyses
Statistical analyses of this study were conducted using R software
(version 3.5.2)5 and SPSS software (version 22.0). Receiver
operating characteristic (ROC) curve analysis with area under the
curve (AUC) was utilized to assess the predictive performance
of DP.eHCC and its DEG members via the R package pROC.
In order to appraise the prognostic performance of early HCC
patients with different clinical parameters including gender, age
(cut-off value by 50), SP.eHCC (utilizing the median risk score
as the cutoff value), Kaplan–Meier curves with the log-rank
test were performed using the R package survival. Additionally,
univariate Cox regression and multivariable Cox regression
analyses were utilized to confirm the independent prognostic
factors within clinical pathological characteristics including
gender, age, and SP.eHCC. Furthermore, based on the identified
prognostic factors confirmed by multivariate Cox analysis, a
nomogram was utilized to predict the 1-, 3-, and 5-year overall
survival probabilities in early HCC. Calibration of the nomogram
was evaluated graphically by calibration curves and determined
by the concordance index (C-index).

RESULTS

In order to explore the diagnostic and prognostic prediction
methods for early hepatocellular carcinoma (HCC), a total of
826 cases of cancerous or non-cancerous liver tissue specimens
with early HCC from six merged datasets (GSE76427, GSE36376,
GSE84005, GSE101685, TCGA_GTEx, and ICGC) were included
in our study (Figure 1 and Supplementary Table S1).
Additionally, the batch effect between TCGA and GTEx was
visualized and adjusted by tSNE and ComBat, respectively
(Supplementary Figure S1). And, the batch effects among those
six eligible datasets were visualized using tSNE (Supplementary
Figure S2), further analyses were conducted after the batch effects
among each eligible dataset were adjusted by ComBat.

Diagnostic Prediction Performance of
the DP.eHCC Model in Early HCC
By combining the elastic net and robust rank aggregation (RRA)
analysis, the DP.eHCC model was constructed to provide early
diagnosis method for early HCC. As shown in Figure 2, using
the value of the regularization parameter that gave the lowest
binomial deviance, we identified a binomial classifier on all
samples from the training datasets (Figure 2A). This classifier
was erected based on the expressive signatures of 15 genes
(Figure 2B), and genes with non-zero coefficients for each class

5http://www.R-project.org

were found to be almost mutually exclusive (Figure 2C and
Supplementary Table S2). The heatmap showed the differential
expression levels of the 15 genes in cancerous and non-cancerous
liver tissues across multiple training datasets (Figure 2D). The
overall accuracy (fraction of correctly classified samples) of
the binomial classifier for cross-validation on training datasets
was 90.6% (Supplementary Figure S3 and Supplementary
Table S3). To further validate our method, we also evaluated
the classifier on two independent testing datasets (Figure 2E).
Across the two testing datasets, the overall accuracy was 98.6%
(Supplementary Table S4). These results indicated that our
method can successfully extract a robust signal from gene
expression data derived from multiple platforms.

A total of 27 up-regulated and 81 down-regulated significantly
differentially expressed genes (DEGs) were identified by RRA
analysis, and these genes were split into red and light blue groups,
respectively (Figure 3A). Next, from the results of the elastic net
and RRA analysis, nine DEGs were selected by a Venn diagram
for building the DP.eHCC model (Figure 3B). The risk score
formula consisting of nine DEGs was established as follows:
DP.eHCC (risk score) = 1.7986040–0.4530214 × expression level
of AFM + 0.7464234 × expression level of AKR1C3–0.1653185 ×

expression level of CYP1A2–0.2039676 × expression level of
CYP2E1 + 0.5878815 × expression level of GPC3–0.2612360 ×

expression level of HAMP–0.3634324 × expression level of HBB–
0.1410460 × expression level of MT1G + 0.1215430 × expression
level of SPINK1.

Furthermore, the predictive performance of the DP.eHCC
model and its gene members in 826 total cases of early HCC
was verified by ROC curves. The AUC of DP.eHCC model for
the diagnosis of early HCC was 0.956 (95% CI: 0.941–0.972;
p < 0.001) with a sensitivity of 90.91%, a specificity of 92.97%,
and a diagnostic threshold value of 0.0324 (Figure 3C). The
results showed that the DP.eHCC model significantly improved
the prediction performance over its nine differentially expressed
genes alone, including the following AUC values: AFM—0.8787
(95% CI: 0.8538–0.9037; p < 0.001); AKR1C3—0.8588 (95% CI:
0.8319–0.8856; p < 0.001); CYP1A2—0.8753 (95% CI: 0.8495–
0.901; p < 0.001); CYP2E1—0.8045 (95% CI: 0.7723–0.8368;
p < 0.001); GPC3—0.8358 (95% CI: 0.8057–0.8658; p < 0.001);
HAMP—0.8440 (95% CI: 0.8156–0.8724; p < 0.001); HBB—
0.7728 (95% CI: 0.7406–0.8050; p < 0.001); MT1G—0.8617
(95% CI: 0.8333–0.8901; p < 0.001); and SPINK1—0.7740
(95% CI: 0.7409–0.8071; p < 0.001) (Figure 3C). Additionally,
the diagnosis performance of the DP.eHCC model in HCC
patients was also validated in TCGA and ICGC cohort, the
results showed the DP.eHCC model also achieved a well
diagnosis performance in HCC from the independent database
(Supplementary Figure S4).

Prognostic Prediction Performance of
the SP.eHCC Model in Early HCC
All of the 256 early HCC patients collected from the merged
cohort (GSE76427, TCGA_GTEx, and ICGC) were included
in the overall-survival analysis. Among 1344 prognosis-related
genes (Supplementary Table S5, p-value < 0.05) screened by
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FIGURE 2 | The screening and validation of 15 genes conducted by the diagnostic classifier. (A,B) Binomial deviance as a function of the regularization parameter
lambda for leave-one-study-out cross-validation on the training datasets. Points correspond to the means, and error bars correspond to the standard deviations.
Coefficients of 15 genes were selected by the lambda with the minimum binomial deviance marked by the blue dashed line (lambda = 0.025, ln(lambda) = −3.692).
(C) Coefficient values for each of the fifteen selected genes. A positive coefficient for a gene signature within its class indicates that elevated expression of this gene
increases the probability of a specimen belonging to its tissue type. (D) Heatmap for describing the expression levels of selected genes in the binomial classifier
erected by training datasets. Each row is a gene with its Entrez Gene ID in parentheses; each column is a sample. (E) Estimated probabilities for samples in testing
datasets (GSE101685 and ICGC). For each sample, there are two points, corresponding to the probability that the sample belongs to the respective class. Within
each dataset and class, samples are sorted by the probability of the true class. For most samples, the probability of the true subtype is near 1, indicating an
unambiguous classification.

univariate Cox regression, nine genes were further selected for
SP.eHCC model construction using the minimizing λ method of
the Lasso Cox analysis (Figures 4A,B). The prognostic risk score
formula consisting of these nine genes was established as follows:
SP.eHCC (risk score) = 0.2609 × expression level of UBLCP1–
0.4423 × expression level of CCDC42–0.1963 × expression level

of AQP5 + 0.0717 × expression level of KCTD8 + 0.3821 ×

expression level of LARS + 0.2059 × expression level of SMS–
0.5612 × expression level of TNNT3 + 0.4541 × expression level
of RUVBL1 + 0.5156 × expression level of YIF1B.

The correlations between the risk scores of 256 ordered
patients and 9-gene expression patterns are illustrated. These
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FIGURE 3 | Diagnostic performance of the DP.eHCC model selected by elastic net and RRA. (A) Heatmap showing the top 27 up-regulated genes and top 81
down-regulated genes in the training datasets (logFC > 1, adjusted p < 0.05). Each row represents one gene and each column indicates one dataset. Red indicates
up-regulation and light blue represents down-regulation. DEGs: differentially expressed genes; RRA: robust rank aggregation. (B) As illustrated in the Venn Diagram,
nine robust DEGs (AFM, AKR1C3, CYP1A2, CYP2E1, GPC3, HAMP, HBB, MT1G, and SPINK1) were identified by the intersection genes from the RRA (blue) and
elastic net (yellow) analyses. (C) Receiver operating characteristic (ROC) curve analyses of the DP.eHCC model and its gene members for early HCC diagnosis.
When compared with each gene member of the DP.eHCC model, the prediction efficiency of the DP.eHCC model was shown to be significantly enhanced
(AUC = 0.956, p < 0.001).

results suggest that as the risk score of patients increased,
the number of death events accumulated, and risk markers
(coefficient of gene > 0) exhibited increased expression, while
protective markers (coefficient of gene < 0) exhibited decreased
expression (Figure 4C). Kaplan–Meier curves were used to
evaluate the relationships among clinical parameters (SP.eHCC,
age, and gender) and the overall survival of patients. When a
median value of 1.755 was selected as the SP.eHCC risk score
level threshold, early HCC patients with relatively low risk scores
(n = 128) had longer mean survival times than patients with
relatively high risk scores (n = 128) (95.705 ± 5.642 months
vs. 55.901 ± 3.763 months, p < 0.0001) (Figure 4D). Patients
aged ≤ 50 (n = 42) had longer mean survival times than
patients aged > 50 (n = 214) (102.078 ± 4.535 months vs.
70.472 ± 5.665 months, p = 0.0079) (Figure 4E). Male patients
(n = 181) had longer mean survival times than female patients

(n = 75) (85.504 ± 4.641 months vs. 65.516 ± 7.326 months,
p = 0.0061) (Figure 4F). The results of multivariable Cox
regression analysis showed that SP.eHCC model performed
best for predicting the overall survival risk of HCC patients
(HR = 10.79; 95% CI: 6.16–18.89; p < 0.001) compared with
gender (HR = 0.47; 95% CI: 0.27–0.85; p = 0.012), and age
(HR = 1.01; 95% CI: 0.99–1.04; p = 0.272). Notably, the results
indicated that age could not be considered as a prognostic
predictor for early HCC patients (Table 1).

To further test the coefficient prediction efficiency of overall
survival predictors validated by multivariable Cox regression
analysis, including gender and SP.eHCC. A nomogram model
was established in 256 early HCC patients. The results showed
that the overall score of the nomogram was helpful for providing
a quantitative method to accurately predict the prognosis of
early HCC patients (1-, 3-, and 5-year survival probabilities)

Frontiers in Genetics | www.frontiersin.org 6 July 2020 | Volume 11 | Article 857

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00857 July 28, 2020 Time: 18:37 # 7

Gan et al. Early Diagnosis of Hepatocellular Carcinoma

FIGURE 4 | Continued
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FIGURE 4 | Prognostic significance of the SP.eHCC model and other clinical parameters in early stage hepatocellular carcinoma (HCC). (A,B) Lasso Cox analysis
identified nine genes at lambda with minimum partial likelihood deviance (red dotted line) that correlated with the overall survival of early stage HCC patients in the
merged cohort (GSE76427, TCGA_GTEx, and ICGC). The red vertical dashed lines indicate the lambda min. (C) The relationship between the risk score of overall
survival and the expression of nine genes (AQP5, TNNT3, CCDC42, SMS, YIF1B, KCTD8, UBLCP1, LARS, and RUVBL1) in the SP.eHCC model was shown in the
risk score distribution (top), scatter plot of survival status (middle), and heatmap of the prognostic 9-gene signature (bottom) in patients with HCC. The pseudocolors
on the right of the heatmap plot represent expression levels from low to high on a scale from –1 to 1, ranging from a low correlation power (white) to high (blue, or
red). (D–F) Kaplan–Meier curves of overall survival for 256 early stage HCC patients with different clinical parameters including SP.eHCC, Age, and Gender. HCC
patients with relatively low-risk scores had longer mean survival times than patients with relatively high-risk scores (p < 0.0001). Patients aged ≤ 50 had longer mean
survival times than patients aged > 50 (p = 0.0079). Male patients had longer mean survival times than female patients (p = 0.0061).

TABLE 1 | Cox analysis of clinicopathological parameters for overall survival
in HCC.

Variables Univariate Multivariate

HR 95% CI p value HR 95% CI p value

Age 1.04 1.01–1.06 0.005* 1.01 0.99–1.04 0.272

Gender 0.46 0.26–0.81 0.007* 0.47 0.27–0.85 0.012*

SP.eHCC 11.65 6.81–19.91 *p < 0.001 10.79 6.16–18.89 *p < 0.001

HR, hazard ratio; 95% CI, 95% confidence interval; HCC, hepatocellular
carcinoma; SP.eHCC, survival risk prediction model for early HCC. *Statistically
significant (p < 0.05).

(Figure 5A). The prediction probability and actual probability
of 1-, 3-, and 5-year survival in the calibration curve showed
satisfactory overlap, indicating a good agreement (Figure 5B),
and the C-index of this nomogram was 0.841 (95% CI: 0.789–
0.893; p < 0.001).

Molecular Mechanism Underlying the
Oncogenesis of Early HCC
To investigate the mechanism of oncogenesis and progression of
early HCC, we performed WGCNA on the merged expression
matrix (GSE76427, GSE84005, TCGA_GTEx and ICGC) in 275
early HCC patients with clinical traits including age, gender,
DP.eHCC, and SP.eHCC. The expression levels of 11,853 genes in
this matrix were implemented to build a co-expression network.

By setting the soft-thresholding power as 3 (scale free R2 = 0.83),
we eventually identified 22 modules (Supplementary Figure S5;
non-clustering genes shown in gray). The relationships between
the clinical traits and the eigenvalue of each module are presented
in the heatmap (Figure 6A). From the heatmap of module-trait
correlations, we identified two modules, including a turquoise
module (1452 genes), and yellow module (776 genes), which
were significantly highly correlated with clinical traits, including
SP.eHCC and DP.eHCC (Figure 6B).

For a better understanding of the molecular functions
underlying the oncogenesis of early HCC, Gene Set
Enrichment Analysis (GSEA) was applied to analyze the
possible functional pathways of co-expressed genes in the
two modules (turquoise and yellow) highly correlated with
DP.eHCC and SP.eHCC. For co-expressed genes in the
turquoise module, the significant pathways (p < 0.05) including
“TGF-beta signaling pathway,” “Endocytosis,” and “Vascular
smooth muscle contraction,” were negatively correlated
with DP.eHCC. And, the significant pathways (p < 0.05)
including “Vascular smooth muscle contraction,” “Protein
digestion and absorption,” and “ECM-receptor interaction,”
were negatively correlated with SP.eHCC (Figures 6C,D).
For co-expressed genes in the yellow module, we discovered
four significant pathways (p < 0.05) including “cell cycle,”
“DNA replication,” “oocyte meiosis,” and “RNA transport”
that were positively correlated with DP.eHCC and SP.eHCC
simultaneously. And, both DP.eHCC and SP.eHCC were

FIGURE 5 | Prognostic significance of overall survival predictors validated in nomogram model. (A) A nomogram was established to predict the risk score and
survival probability of early HCC patients. Survival risk factors including SP.eHCC and gender were integrated in the nomogram. (B) The comparison between
predicted and actual outcomes for 1-, 3-, and 5-year survival probabilities in the nomogram is shown in the calibration plots.
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FIGURE 6 | Continued
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FIGURE 6 | Identification of the functional pathways of modules related to the DP.eHCC, and SP.eHCC. (A) Weighted Correlation Network Analysis (WGCNA)
showing correlations between module eigengenes and clinical traits of early-stage HCC. Each block contains the correlation coefficient and p value. (B) Verification
of the WGCNA gene modules highly correlated with clinical traits. The scatter plots were utilized to illustrate the correlations of gene significance for clinic traits
versus module members in the two modules including the turquoise and yellow modules. The “Pearson” score and p value of each module are shown in the top left
of each figure. (C,D) Enrichment plots showing the KEGG gene sets (p < 0.05) enriched by co-expressed genes of the turquoise module correlated with DP.eHCC
and SP.eHCC, respectively. (E,F) Enrichment plots showing the KEGG gene sets (p < 0.05) enriched by co-expressed genes of the yellow module correlated with
DP.eHCC and SP.eHCC, respectively. Enrichment score (ES): A positive ES indicates gene set enrichment at the top of the ranked list; a negative ES indicates gene
set enrichment at the bottom of the ranked list. The ranking metric measures a gene’s correlation with a phenotype.

negatively correlated with “complement and coagulation
cascades” (p < 0.05). Additionally, DP.eHCC was negatively
correlated with “Metabolic pathways” (p < 0.05), and SP.eHCC
was positively correlated with “Pyrimidine metabolism”
(p < 0.05) (Figures 6E,F).

Moreover, for the purpose of identifying the hub genes
that play crucial roles in the molecular regulation network
involved in the pathways of the modules highly correlated
to DP.eHCC and SP.eHCC, we selected the co-expressed
genes from two modules (turquoise and yellow) to construct
the genome networks (GeNets). For the turquoise module,
we built a genome network which was mapped by three
pathways: “Cell adhesion molecules (CAMs),” “ECM-
receptor interaction,” and “TGF-beta signaling pathway.”
EGR1 (the transcription factor without significant protein-
altering mutations) and SOX17 (the transcription factor with
significant protein-altering mutations) were selected as the
molecules regulating the oncogenesis of HCC (Figure 7A).
For the yellow module, we built a genome network which
was mapped by three cell proliferation pathways (KEGG):
“cell cycle,” “DNA replication,” and “oocyte meiosis.” EZH2
(the transcription factor with significant protein-altering
mutations) was selected in the molecular regulation network
most probably regulating the oncogenesis of HCC (Figure 7B).
These results indicate that the oncogenesis of early HCC is
mainly mediated by pathways associated with cell proliferation
and tumor microenvironment.

DISCUSSION

Delayed diagnosis is a major factor responsible for the
poor prognosis of hepatocellular carcinoma (HCC). Therefore,
developing a novel strategy for early detection of HCC could
improve outcomes of patients with HCC (Marrero et al.,
2018; Ayoub et al., 2019). Alpha-fetoprotein (AFP) performs
disappointingly in early HCC screening and surveillance because
of its low sensitivity and specificity (Marrero et al., 2009; El-
Bahrawy, 2010). Compared with AFP, GPC3 performs better in
the early detection of HCC, and its capacity for diagnosis is
not affected by the tumor size and stage (Tangkijvanich et al.,
2010). More importantly, GPC3 can even distinguish dysplastic
nodules in cirrhosis from early HCC (Llovet et al., 2006).
However, the predictive performance of individual biomarkers
is impaired by the high heterogeneity of HCC. Consequently,
a combination of multiple biomarkers and further clinical
tests is recommended to boost the early diagnosis of HCC
(Chaiteerakij et al., 2015).

There are several methods to build the multiple linear
regression model, as each method is suitable for a given dataset
with specific features. However, the bias of multiple linear
regression model is dependent on the response variable (n)
and the predictive variable (p). The character of our data
has a statistical frame of 826 early HCC samples and more
than 10,000 independent variables. In view of previous studies
(Engebretsen and Bohlin, 2019; Du et al., 2020), elastic net
is known to work better for this data type of our study
that has much more independent variables than dependent
variables (n < < p). By using the elastic net and RRA analysis,
we screened nine gene expression signatures, including AFM,
AKR1C3, CYP1A2, CYP2E1, GPC3, HAMP, HBB, MT1G, and
SPINK1, to construct a diagnosis prediction model for early
HCC (DP.eHCC). Compared with GPC3 or other independent
gene signatures, the diagnosis efficiency of DP.eHCC in our
study greatly improved in 826 cases of early HCC patients
(AUC = 0.956; 95% CI: 0.941–0.972; p < 0.001). In addition
to GPC3, most gene signatures used in our diagnosis model
have also been confirmed in liver cancer (Wu et al., 2000; Chen
et al., 2014; Ji et al., 2014; Li et al., 2015; Zhao et al., 2019),
and the expression trends of those genes are consistent with
our DP.eHCC model. In order to provide a robust indicator
for the prognostic evaluation of early HCC, we also constructed
a prognostic model, named SP.eHCC (HR = 10.79; 95% CI:
6.16–18.89; p < 0.001). This prognostic model consists of nine
genes, including UBLCP1, CCDC42, AQP5, KCTD8, LARS, SMS,
TNNT3, RUVBL1, and YIF1B. We clearly illustrated the impacts
of these nine gene expression levels on the overall survival risk
of HCC patients by a combination of the risk score distribution,
survival status scatter plot, and gene expression heatmap (see
Figure 4C). Furthermore, our study indicated that male patients
with early HCC could achieve longer overall survival times
than female patients with early HCC. In consideration of the
synergistic role of clinical parameters (age, gender, and SP.eHCC)
in the overall survival condition of early HCC patients, we further
put these clinical parameters into the Cox and nomogram model
analysis. The nomogram model was certified to perform well
for predicting the 1-, 3-, and 5-year survival rates of patients,
showing a C-index of 0.841 (95% CI: 0.789–0.893; p < 0.001).

In recent years, some researchers have applied machine
learning algorithms to provide methods for the early detection
of HCC. Shi et al. identified a three-gene model with an AUC
of 0.96 (95% CI: 0.93–0.99) for early HCC diagnosis based on
six differentially expressed genes (DEGs) sifted by a microarray
analysis of peripheral blood mononuclear cell (PBMC) samples
from 26 patients (Shi et al., 2014). Kim et al. identified a five-
metabolite (methionine, proline, ornithine, pimelylcarnitine, and
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FIGURE 7 | Genome networks analysis of co-expressed genes in modules of weighted correlation network analysis (A) The genome network of co-expressed genes
in turquoise module (B) The genome network of co-expressed genes in yellow module. Network nodes represent proteins (Size: large nodes represent transcription
factor and small nodes do not represent transcription factor; Color: red module means having significant protein-altering mutations, blue module means having no
significant protein-altering mutations, gray means not assigned), and network edges represent protein-protein associations (The edges have a score between (0,1)
and the encoding is gray scale. The edges with higher scores represent darker edges and the edges with smaller scores represent lighter edges). KEGG pathways of
nodes are based on the 853 expertly curated pathways from the Molecular Signatures Database (MSigDB), respectively. Overlay the enriched KEGG pathways on
the network using bubble sets and code the square with different color.
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octanoylcarnitine) model for early HCC diagnosis with serum
samples, and their model distinguished 53 HCC patients from
47 cirrhosis patients and 50 normal controls, with an area under
the receiver operating curve (AUC) of 0.82 in the training
group. They tested the five-metabolite model in 82 HCC and 80
cirrhosis patients, and the performance of their model was also
demonstrated to have a good performance with an AUC of 0.94
in the testing group (Kim et al., 2019). However, the accuracy of
the statistical data and the diagnosis performance stability of their
models were limited by the study population, sample size, and
tissue type in their research.

Up to date, (Cai et al., 2019) developed a 5 hmc diagnostic
model by using the elastic analysis of genome data of early
HCC, and their research showed promising to boost the
current knowledge of diagnosis of early HCC. Compared
with the limitation of their study, our study has its own
novelty and advantages. Firstly, our study conducted elastic net
analysis of a large early HCC cohort with various population
from international multi-platforms, which makes our predictive
models more compatible for universal applications in early
diagnosis and prognostication of HCC. Secondly, our diagnosis
prediction model was established based on the differentially
expressed genes generated in the cancerous and non-cancerous
liver tissue samples of early HCC patients, which could be a
more credible way for explaining the alterations in hepatocellular
carcinogenesis. Consequently, the oncogenic risk-score of early
HCC could be utilized to investigate the potential molecular
mechanism involved in the pathogenesis of early HCC. Kaur et al.
(2019) performed a universal multiple-platform transcriptome
analysis, and identified three genes (FCN3, CLEC1B, and PRC1)
for diagnosis and prognosis of HCC. Liu et al. (2019) developed
six gene signatures and nomogram model to predict overall
survival of HCC by using the lasso Cox analysis of HCC cohort
from global databases, and the predictive model established in
their study showed a good performance in prognosis of HCC.
However, at the perspective of clinical application, they might
neglect a critical factor that the genomic variation of HCC
patients will be largely affected by various treatment measures for
late-stage HCC patients including radiotherapy, chemotherapy,
or combination. Thus, they need to take this into consideration
when they established their genomic prognosis model. Compared
with their study, we selected the TNM stage I HCC cohort for
the establishment of prognosis model so that our model could be
erected with the minimum influence by those factors, including
the intervention measures and tumor genetic alteration of HCC.

The oncogenesis mechanism involved in early HCC is
determined by the complex interactions of biological molecules.
Comprehensive analysis of the molecular regulatory network
via exploring the variation of transcriptome profile will help
explain the hepatocarcinogenesis process. By utilizing Weighted
Correlation Network Analysis (WGCNA), Gene Set Enrichment
Analysis (GSEA), and genome networks (GeNets) analyses, we
explored the molecular mechanisms responsible for elucidating
the pathogenesis of HCC to provide crucial evidence for the
molecular targeted therapy of early HCC. On one hand, both
DP.eHCC and SP.eHCC are negatively correlated with the
co-expressed genes in yellow module, which are significantly

enriched in pathways closely associated with cell proliferation
(“cell cycle,” “DNA replication,” and “oocyte meiosis”). And the
GeNets analysis indicates that those cell proliferation pathways
are most probably regulated by enhancer of zeste homologue
2 (EZH2). EZH2, as a master regulator of transcription, plays
a critical role in occurrence and progression of human cancers
(Kim and Roberts, 2016). EZH2 has been unraveled as a core
factor in hepatocarcinogenesis, self-renewal of liver cancer stem
cells (CSCs), and molecular targeted therapy (Cheng et al., 2011;
Zhu et al., 2016; Xiao et al., 2019). However, the regulatory
mechanism of EZH2 in oncogenic transformation remains
unclear. Our study hence provides the evidence for elucidating
the oncogenesis of HCC based on the regulatory network
of EZH2.

On the other hand, both DP.eHCC and SP.eHCC are
negatively correlated with the co-expressed genes in turquoise
module, which are significantly enriched in pathways, including
“Cell adhesion molecules (CAMs),” “ECM-receptor interaction,”
and “TGF-beta signaling pathway.” Those pathways were closely
associated with immune and tumor microenvironment (TME)
of liver (Harjunpaa et al., 2019; Hintermann and Christen,
2019). Moreover, the GeNets analysis indicates that those
pathways are most probably mediated by early growth response
1 (EGR1). The protein encoded by EGR1 is a nuclear protein
and functions as a transcriptional regulator. EGR1 was confirmed
as a cancer suppressor by targeting CD24A in HCC (Li et al.,
2019). Compared with the EGR1, SRY-box transcription factor
17 (SOX17) has been confirmed as the transcription factor
with significant protein-altering mutations by WGCNA and
GeNets. SOX17 could encode a member of the SOX (SRY-
related HMG-box) family of transcription factors involved in the
regulation of embryonic development and in the determination
of the cell fate, and inhibit human HCC cells growth via
negatively regulating the β-catenin/Tcf-dependent transcription
(Jia et al., 2010). Expression of SOX17 could induce tuft cells
express the tumorigenic factors that can alter the TME in mice
(Delgiorno et al., 2014), but the relationship of SOX17 with
TME-related pathways is still not clear in the oncogenesis of
HCC. Thus, our research provides evidence to identify the
potential relationship of SOX17 with the TME-related pathways
in the oncogenesis of early HCC. Nevertheless, we established
the transcriptional regulatory network of molecules annotated
by functional pathways for illustrating the occurrence and
progression of early HCC. Further researches are still required
to verify the role of EZH2, EGR1, and SOX17 for the molecular
targeted therapies of early HCC patients through in vitro and
in vivo experiments.

Our predictive models will be promoted through overcoming
the following limitations: Firstly, batch effects are still the
important factor for the comprehensive analysis of large cohort
of early HCC from multi-platforms, although we reduced the
influence of batch effects in our research using Combat (Johnson
et al., 2007). Secondly, the TNM staging of AJCC system fails
to account for the degree of liver dysfunction and patient’s poor
performance status (Marrero et al., 2018), which results in those
clinical factors not to be considered in our research. Therefore, it
is of significance to verify the performance of our diagnosis and
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prognosis models in patients with early HCC defined by the other
staging systems.

CONCLUSION

We established the robust prediction models (DP.eHCC
and SP.eHCC) for the diagnosis and prognosis of early
hepatocellular carcinoma (HCC). Moreover, based on molecular
regulatory relationships and functional pathway annotations
of the transcriptome profile, we comprehensively analyzed the
molecular mechanism involved in occurrence and progression
of early HCC. It was clarified that the oncogenesis and poor
prognosis of early HCC are mainly caused by abnormalities
in signal pathways associated with cell proliferation and tumor
microenvironment. The current study provides evidence that the
transcription factors including EZH2, EGR1, and SOX17 can
be developed as the promising targets used for the molecular
targeted therapy in patients with HCC.
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